Streamflow and Sediment Yield Analysis of Two Medium-Sized East-Flowing River Basins of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Digital Elevation Model (DEM)
2.2.2. Land Use Land Cover (LULC)
2.2.3. Soil Data
2.2.4. Weather Data
2.2.5. Hydrological Data
2.3. SWAT Model Setup
2.4. Model Performance Evaluation
3. Results and Discussion
3.1. Calibration and Validation Analysis
3.1.1. Sensitivity Analysis
3.1.2. Streamflow Simulation
3.1.3. Sediment Simulation
3.2. Water Balance of Nagavali and Vamsadhara River Basins
3.3. Spatial Distribution of Water Balance Components
3.4. Spatial Variability of Sediment Yield and Identification of Sediment Source Areas
3.4.1. Nagavali River Basin
3.4.2. Vamsadhara River Basin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Jiang, H. Sediment Yield Modeling Using SWAT Model: Case of Changjiang River Basin. IOP Conf. Ser. Earth Environ. Sci. 2019, 234, 012031. [Google Scholar] [CrossRef]
- Panda, C.; Das, D.M.; Raul, S.K.; Sahoo, B.C. Sediment yield prediction and prioritization of sub-watersheds in the Upper Subarnarekha basin (India) using SWAT. Arab. J. Geosci. 2021, 14, 809. [Google Scholar] [CrossRef]
- Li, X.H.; Yang, J.; Zhao, C.Y.; Wang, B. Runoff and sediment from orchard terraces in southeastern China. Land Degrad. Dev. 2014, 25, 184–192. [Google Scholar] [CrossRef]
- Beskow, S.; Mello, C.; Norton, L.; Curi, N.; Viola, M.; Avanzi, J. Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 2009, 79, 49–59. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, A. Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin. Water Resour. Manag. 2015, 29, 1749–1765. [Google Scholar] [CrossRef]
- Kabir, A.; Dutta, D.; Hironaka, S. Estimating Sediment Budget at a River Basin Scale Using a Process-Based Distributed Modelling Approach. Water Resour. Manag. 2014, 28, 4143–4160. [Google Scholar] [CrossRef]
- Narayana, D.V.; Babu, R. Estimation of soil erosion in India. J. Irrig. Drain. Eng. 1983, 109, 419–434. [Google Scholar] [CrossRef]
- Xu, K.; Peng, H.Q.; Rifu, D.G.J.; Zhang, R.X.; Xiao, H.; Shi, Q. Sediment Yield Simulation Using SWAT Model for Water Environmental Protection in an Agricultural Watershed. Appl. Mech. Mater. 2015, 713–715, 1894–1898. [Google Scholar] [CrossRef]
- CWC. Compendium on Sedimentation of Reservoirs in India; Water Planning and Projects Wing, Environment Management Organisation, Watershed and Reservoir Sedimentation Directorate, Central Water Commission, Govt of India: New Delhi, India, 2020. [Google Scholar]
- Saroha, J. Soil Erosion: Causes, Extent, and Management in India. Int. J. Creat. Res. Thoughts 2017, 5, 1321–1330. [Google Scholar]
- Rao, G.V.; Reddy, K.V.; Sridhar, V. Sensitivity of Microphysical Schemes on the Simulation of Post-Monsoon Tropical Cyclones over the North Indian Ocean. Atmosphere 2020, 11, 1297. [Google Scholar]
- Eadara, A.; Kannam, H. Slope studies of Vamsadhara River basin: A Quantitative Approach. Int. J. Eng. Innov. Technol. 2013, 3, 184–188. [Google Scholar]
- Mannering, J.V. Use of soil loss tolerances as a strategy for soil conservation. In Soil Conservation Problems and Prospects, Proceedings of the Conservation 80, the International Conference on Soil Conservation, Bedford, UK, 21–25 July 1980; Wiley: Chichester, UK, 1981; pp. 337–349. [Google Scholar]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M.; et al. Soil Degradation in India: Challenges and Potential Solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef]
- Das, S. Dynamics of streamflow and sediment load in Peninsular Indian rivers (1965–2015). Sci. Total Environ. 2021, 799, 149372. [Google Scholar] [CrossRef]
- Vaithiyanathan, P.; Ramanathan, A.L.; Subramanian, V. Erosion, transport and deposition of sediments by the tropical rivers of India. In Sediment Budgets; IAHS Publication: Wallingford, UK, 1988; p. 174. [Google Scholar]
- Singh, G.; Babu, R.; Narain, P.; Bhushan, L.S.; Abrol, I.P. Soil erosion rates in India. J. Soil Water Conserv. 1992, 47, 97–99. [Google Scholar]
- Prasannakumar, V.; Vijith, H.; Abinod, S.; Geetha, N. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci. Front. 2012, 3, 209–215. [Google Scholar] [CrossRef]
- Himanshu, S.K.; Pandey, A.; Shrestha, P. Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environ. Earth Sci. 2017, 76, 3. [Google Scholar] [CrossRef]
- Himanshu, S.K.; Pandey, A.; Yadav, B.; Gupta, A. Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil Tillage Res. 2019, 192, 42–58. [Google Scholar] [CrossRef]
- Dutta, S.; Sen, D. Application of SWAT model for predicting soil erosion and sediment yield. Sustain. Water Resour. Manag. 2018, 4, 447–468. [Google Scholar] [CrossRef]
- Mahapatra, S.K.; Reddy, G.P.O.; Nagdev, R.; Yadav, R.P.; Singh, S.K.; Sharda, V.N. Assessment of Soil Erosion in the Fragile Himalayan Ecosystem of Uttarakhand, India Using USLE and GIS for Sustainable Productivity. Curr. Sci. 2018, 115, 108–121. [Google Scholar] [CrossRef]
- Saha, A.; Ghosh, P.; Mitra, B. GIS Based Soil Erosion Estimation Using Rusle Model: A Case Study of Upper Kangsabati Watershed, West Bengal, India. Int. J. Environ. Sci. Nat. Resour. 2018, 13, 119–126. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Groll, M. Estimation of soil erosion and sediment yield concentration across the Kolleru Lake catchment using GIS. Environ. Earth Sci. 2021, 80, 161. [Google Scholar] [CrossRef]
- Hoekema, D.J.; Sridhar, V. Relating climatic attributes and water resources allocation: A study using surface water supply and soil moisture indices in the Snake River basin, Idaho. Water Resour. Res. 2011, 47, W07536. [Google Scholar] [CrossRef]
- Sridhar, V.; Jin, X.; Jaksa, W.T.A. Explaining the hydroclimatic variability and change in the Salmon River basin. Clim. Dyn. 2012, 40, 1921–1937. [Google Scholar] [CrossRef]
- Beasley, D.B.; Huggins, L.F.; Monke, E.J. ANSWERS: A Model for Watershed Planning. Trans. ASAE 1980, 23, 938–944. [Google Scholar] [CrossRef]
- Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Foster, G.R.; Lane, L.J. User Requirements: USDA, Water Erosion Prediction Project (WEPP) Draft 6.3. NSERL Report (USA); National Soil Erosion Research Laboratory, USDA, Agricultural Research Service: Washington, DC, USA, 1987.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part i: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Roti, V.; Kashyap, P.; Kumar, A.; Srivastava, R.; Chandra, H. Runoff and Sediment Yield Estimation by SWAT Model: Review and Outlook. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 879–886. [Google Scholar] [CrossRef]
- Matamoros, D.; Guzman, E.; Bonini, J.; Vanrolleghem, P.A. AGNPS and SWAT Model Calibration for Hydrologic Modeling of an Ecuadorian River Basin under Data Scarcity; River Basin Restoration and Management; IWA Publishing: London, UK, 2005; pp. 71–78. [Google Scholar]
- Mishra, A.; Kar, S.; Pandey, A.C. Comparison of SWAT with HSPF model in Predicting hydrologic processes of a small Multivegetated watershed. J. Agric. Eng. 2008, 45, 29–35. [Google Scholar]
- Gitau, M.W.; Gburek, W.J.; Bishop, P.L. Use of the SWAT Model to Quantify Water Quality Effects of Agricultural BMPs at the Farm-Scale Level. Trans. ASABE 2008, 51, 1925–1936. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Trans. ASAE 2003, 46, 1553. [Google Scholar] [CrossRef]
- Rossi, C.G.; Srinivasan, R.; Jirayoot, K.; Le Duc, T.; Souvannabouth, P.; Binh, N.; Gassman, P.W. Hydrologic evaluation of the Lower Mekong River Basin with the soil and water assessment tool model. Int. Agric. Eng. J. 2009, 18, 1–13. [Google Scholar]
- Sridhar, V.; Kang, H.; Ali, S.A. Human-Induced Alterations to Land Use and Climate and Their Responses for Hydrology and Water Management in the Mekong River Basin. Water 2019, 11, 1307. [Google Scholar] [CrossRef]
- Setti, S.; Maheswaran, R.; Sridhar, V.; Barik, K.; Merz, B.; Agarwal, A. Inter-Comparison of Gauge-Based Gridded Data, Reanalysis and Satellite Precipitation Product with an Emphasis on Hydrological Modeling. Atmosphere 2020, 11, 1252. [Google Scholar] [CrossRef]
- Kang, H.; Sridhar, V.; Mainuddin, M.; Trung, L.D. Future rice farming threatened by drought in the Lower Mekong Basin. Sci. Rep. 2021, 11, 9383. [Google Scholar] [CrossRef]
- Sridhar, V.; Kang, H.; Ali, S.A.; Bola, G.B.; Tshimanga, R.M.; Lakshmi, V. Water Budgets and Droughts under Current and Future Conditions in the Cong River Basin. In Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Stratton, B.T.; Sridhar, V.; Gribb, M.M.; McNamara, J.P.; Narasimhan, B. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1390–1408. [Google Scholar] [CrossRef]
- Setti, S.; Rathinasamy, M.; Chandramouli, S. Assessment of water balance for a forest dominated coastal river basin in India using a semi distributed hydrological model. Model. Earth Syst. Environ. 2018, 4, 127–140. [Google Scholar] [CrossRef]
- Loukika, K.N.; Keesara, V.R.; Buri, E.S.; Sridhar, V. Predicting the Effects of Land Use Land Cover and Climate Change on Munneru River Basin Using CA-Markov and Soil and Water Assessment Tool. Sustainability 2022, 14, 5000. [Google Scholar] [CrossRef]
- Reddy, N.N.; Reddy, K.V.; Vani, J.S.L.S.; Daggupati, P.; Srinivasan, R. Climate change impact analysis on watershed using QSWAT. Spat. Inf. Res. 2018, 26, 253–259. [Google Scholar] [CrossRef]
- Niraula, R.; Kalin, L.; Wang, R.; Srivastava, P. Determining Nutrient and Sediment Critical Source Areas with SWAT: Effect of Lumped Calibration. Trans. ASABE 2011, 55, 137–147. [Google Scholar] [CrossRef]
- Rao, G.V.; Reddy, K.V.; Srinivasan, R.; Sridhar, V.; Umamahesh, N.; Pratap, D. Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern India. Weather Clim. Extremes 2020, 29, 100265. [Google Scholar]
- Iqbal, T.H.P.K.M.; Yarrakula, K. Probabilistic flood inundation mapping for sparsely gauged tropical river. Arab. J. Geosci. 2020, 13, 940. [Google Scholar] [CrossRef]
- Mishra, S.P.; Panigrahi, R. Storm impact on south Odisha coast, India. Int. J. Adv. Res. Sci. Eng. 2014, 3, 209–225. [Google Scholar]
- DECCAN CHRONICLE. 2017. Available online: https://www.deccanchronicle.com/nation/current-affairs/190717/nagavali-vamsadhara-inflows-recede-flash-floods-threat-looms.html (accessed on 16 July 2022).
- Pai, D.S.; Rajeevan, M.; Sreejith, O.P.; Mukhopadhyay, B.; Satbha, N.S. Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett. 2009, 10, 249–254. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation: Version 2005; USDA Agricultural Research Service and Blackland Research Center: Temple, TX, USA, 2005.
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; VanLiew, M.W.; et al. Swat: Model Use, Calibration, and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Sehgal, V.; Sridhar, V.; Juran, L.; Ogejo, J.A. Integrating Climate Forecasts with the Soil and Water Assessment Tool (SWAT) for High-Resolution Hydrologic Simulations and Forecasts in the Southeastern U.S. Sustainability 2018, 10, 3079. [Google Scholar] [CrossRef]
- Sehgal, V.; Sridhar, V. Watershed-scale retrospective drought analysis and seasonal forecasting using multi-layer, high-resolution simulated soil moisture for Southeastern U.S. Weather. Clim. Extrem. 2018, 23, 100191. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation (No. 282); Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1965.
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Bonumá, N.B.; Rossi, C.G.; Arnold, J.G.; Reichert, J.M.; Minella, J.P.; Allen, P.M.; Volk, M. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model. J. Environ. Qual. 2014, 43, 55–66. [Google Scholar] [CrossRef] [PubMed]
- FLDAS. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 16 July 2022).
- Singh, V.P. Computer Models of Watershed Hydrology; Water Resources Publications: Littleton, CO, USA, 1995. [Google Scholar]
- Tripathi, M.; Panda, R.; Raghuwanshi, N. Identification and Prioritisation of Critical Sub-watersheds for Soil Conservation Management using the SWAT Model. Biosyst. Eng. 2003, 85, 365–379. [Google Scholar] [CrossRef]
Reservoir Name | RES_EVOL (104 m3) | RES_ESA (Ha) | RES_PVOL (104 m3) | RES_PSA (Ha) | RES_Operational Year |
---|---|---|---|---|---|
Madduvalasa reservoir | 9551 | 2673 | 9358 | 2405 | 2002 |
Thotapalli barrage | 8503 | 1983 | 7105 | 1785 | 1908 |
Vottigedda reservoir | 2713 | 440 | 2514 | 272 | 1976 |
Janjavathi reservoir | 9628 | 2680 | 7855 | 2450 | 1978 |
Vengalarayasagar reservoir | 4051 | 575 | 3646 | 518 | 1998 |
Vegavathi/Peddagedda reservoir | 3038 | 294 | 2891 | 265 | 2003 |
Badnalla reservoir | 5480 | 753 | 4932 | 678 | 1997 |
Harabhangi reservoir | 11,116 | 1107 | 10,000 | 1000 | 1998 |
S. No. | SWAT Code | Class Name | % of Area | |
---|---|---|---|---|
Nagavali River Basin | Vamsadhara River Basin | |||
1 | RICE | Kharif crop | 12.3 | 9.94 |
2 | AGRL | Rabi crop | 5.29 | 2.87 |
3 | ORCD | Plantation | 2.94 | 1.2 |
4 | CRDY | Current fallow | 12.21 | 7.63 |
5 | AGRR | Double or Triple crop | 10.22 | 7.67 |
6 | FRSE | Evergreen forest | 3.06 | 3.09 |
7 | FRSD | Deciduous forest | 29.34 | 46.65 |
8 | RNGB | Degraded or Scrub-forest | 1.53 | 1.44 |
9 | BARR | Wasteland | 19.05 | 17.23 |
10 | WATR | Waterbodies | 2.91 | 1.84 |
11 | URBN | Built-up land | 1.14 | 0.43 |
S. No. | Parameter_Name | Nagavali River | Vamsadhara River | ||
---|---|---|---|---|---|
p-Value | t-Stat | p-Value | t-Stat | ||
1 | R__CN2.mgt | 0.00 | −8.74 | 0.00 | −11.64 |
2 | V__ALPHA_BF.gw | 0.00 | 4.39 | 0.37 | −0.90 |
3 | A__GW_DELAY.gw | 0.31 | 1.03 | 0.36 | 0.91 |
4 | A__GWQMN.gw | 0.41 | 0.83 | 0.00 | 6.23 |
5 | V__GW_REVAP.gw | 0.49 | 0.69 | 0.00 | 3.99 |
6 | A__RCHRG_DP.gw | 0.62 | 0.50 | 0.87 | 0.16 |
7 | A__REVAPMN.gw | 0.37 | −0.90 | 0.35 | −0.93 |
8 | V__ALPHA_BF_D.gw | 0.11 | −1.61 | 0.23 | −1.21 |
9 | R__SOL_AWC.sol | 0.87 | 0.16 | 0.01 | −2.70 |
10 | V__ESCO.hru | 0.41 | 0.82 | 0.38 | −0.88 |
11 | V__CANMX.hru | 0.09 | 1.69 | 0.10 | 1.64 |
12 | V__CH_N2.rte | 0.12 | −1.55 | 0.54 | −0.62 |
13 | V__CH_K2.rte | 0.02 | −2.28 | 0.56 | −0.58 |
14 | V__CH_K1.sub | 0.01 | 2.47 | 0.00 | 6.17 |
15 | V__CH_N1.sub | 0.55 | 0.59 | 0.12 | 1.55 |
S. No. | Parameter_Name | Min_Value | Max_Value | Fitted Values | |
---|---|---|---|---|---|
Nagavali River Basin | Vamsadhara River Basin | ||||
1 | R__CN2.mgt | −0.1 | 0.1 | −0.088 | −0.092 |
2 | V__ALPHA_BF.gw | 0 | 1 | 0.642 | 0.093 |
3 | A__GW_DELAY.gw | −30 | 90 | 84.300 | −11.1 |
4 | A__GWQMN.gw | −1000 | 1000 | 5 | −345 |
5 | V__GW_REVAP.gw | 0.02 | 0.2 | 0.053 | 0.172 |
6 | A__REVAPMN.gw | −750 | 750 | −498.75 | 123.75 |
7 | V__ALPHA_BF_D.gw | 0 | 1 | 0.45 | 0.687 |
8 | A__RCHRG_DP.gw | −0.05 | 0.05 | −0.019 | −0.036 |
9 | R__SOL_AWC.sol | −0.1 | 0.1 | 0.04 | −0.029 |
10 | V__ESCO.hru | 0.3 | 0.6 | 0.53 | 0.58 |
11 | V__CANMX.hru | 0 | 20 | 0.45 | 9.35 |
12 | V__CH_N2.rte | 0.01 | 0.1 | 0.033 | 0.084 |
13 | V__CH_K2.rte | 0 | 100 | 74.75 | 24.25 |
14 | V__CH_K1.sub | 0 | 100 | 73.25 | 91.75 |
15 | V__CH_N1.sub | 0.01 | 0.3 | 0.19 | 0.15 |
River Basin | Gauge Station | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|
Period | R2 | NSE | Pbias | Period | R2 | NSE | Pbias | ||
Monthly streamflow simulations | |||||||||
Nagavali | Srikakulam | 1991–2005 | 0.85 | 0.84 | 3.4 | 2006–2014 | 0.73 | 0.71 | 9.7 |
Vamsadhara | Kashinagar | 1991–2005 | 0.82 | 0.8 | −6.7 | 2006–2014 | 0.74 | 0.73 | 10.3 |
Monthly sediment simulations | |||||||||
Nagavali | Srikakulam | 2002–2010 | 0.86 | 0.85 | −13.6 | 2011–2013 | 0.76 | 0.7 | −14.3 |
Vamsadhara | Kashinagar | 2002–2010 | 0.75 | 0.71 | 14.8 | 2011–2013 | 0.7 | 0.68 | −42.8 |
S. No. | Parameter_Name | Min_Value | Max_Value | Fitted Values | |
---|---|---|---|---|---|
Nagavali River Basin | Vamsadhara River Basin | ||||
1 | V__CH_COV1.rte | 0 | 0.6 | 0.23 | 0.46 |
2 | V__CH_COV2.rte | 0 | 1 | 0.39 | 0.17 |
3 | V__SPCON.bsn | 0.0001 | 0.01 | 0.006 | 0.0068 |
4 | V__SPEXP.bsn | 1 | 1.5 | 1.12 | 1.08 |
5 | R__USLE_K(..).sol | −0.2 | 0.2 | −0.1 | −0.09 |
S. No. | Sediment Yield (t/ha/yr) | Soil Erosion Class | Nagavali River Basin | Vamsadhara River Basin | ||
---|---|---|---|---|---|---|
Percent Area | Sub-Watershed Numbers | Percent Area | Sub-Watershed Numbers | |||
1 | 0–5 | Slight | 24 | 1–7, 10, 12–14, 19, 21 | 13 | 5, 10, 21, 22, 26 |
2 | 5–10 | Moderate | 49.5 | 8, 9, 11, 16, 18, 20, 25, 26, 28–31 | 38 | 1, 2, 4, 7–9, 13–15, 27, 30 |
3 | >10 | High | 26.5 | 15, 17, 22–24, 27, 32–34 | 49 | 3, 6, 11, 12, 16–20, 23–25, 28, 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagireddy, N.R.; Keesara, V.R.; Sridhar, V.; Srinivasan, R. Streamflow and Sediment Yield Analysis of Two Medium-Sized East-Flowing River Basins of India. Water 2022, 14, 2960. https://doi.org/10.3390/w14192960
Nagireddy NR, Keesara VR, Sridhar V, Srinivasan R. Streamflow and Sediment Yield Analysis of Two Medium-Sized East-Flowing River Basins of India. Water. 2022; 14(19):2960. https://doi.org/10.3390/w14192960
Chicago/Turabian StyleNagireddy, Nageswara Reddy, Venkata Reddy Keesara, Venkataramana Sridhar, and Raghavan Srinivasan. 2022. "Streamflow and Sediment Yield Analysis of Two Medium-Sized East-Flowing River Basins of India" Water 14, no. 19: 2960. https://doi.org/10.3390/w14192960
APA StyleNagireddy, N. R., Keesara, V. R., Sridhar, V., & Srinivasan, R. (2022). Streamflow and Sediment Yield Analysis of Two Medium-Sized East-Flowing River Basins of India. Water, 14(19), 2960. https://doi.org/10.3390/w14192960