Enhanced Adsorption of Rhodamine B on Biomass of Cypress/False Cypress (Chamaecyparis lawsoniana) Fruit: Optimization and Kinetic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Adsorbent
2.2. Preparation of Adsorbate Aqueous Solution
2.3. Experimental Method and Measurements
2.4. Instrumentation
3. Results and Discussion
3.1. Comparison of the Adsorption Efficiency of Different Parts of C. lawsoniana Plant
3.2. Effect of pH on Adsorption of RhB
3.3. Effect of Ionic Strength on Adsorption of RhB
3.4. Effect of Initial Concentration of Dye on Adsorption of RhB
3.5. Effect of Contact Time on the Adsorption of RhB
3.6. Effect of Adsorbent Dose on the Adsorption of RhB
3.7. Comparative Analysis of the Adsorption of RhB in Real Water Samples
3.8. Comapartive Analysis of the Efficiency of the Sun-Dried Powdered Fruit of C. lawsoniana Plant with Conventional Adsorbents
3.9. Kinetic Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chauhan, S.; Gupta, K.; Singh, J.; Morar, G. Purification of drinking water with the application of natural extracts. J. Glob. Biosci. 2015, 4, 1861–1866. [Google Scholar]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, S.; Bishop, P.L.; Agha, A.M. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manag. 1994, 14, 127–137. [Google Scholar] [CrossRef]
- Nigam, P.; Armour, G.; Banat, I.M.; Singh, D.; Marchant, R. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 2000, 72, 219–226. [Google Scholar] [CrossRef]
- Purkait, M.K.; Maiti, A.; Dasgupta, S.; De, S. Removal of congo red using activated carbon and its regeneration. J. Hazard. Mater. 2007, 145, 287–295. [Google Scholar] [CrossRef]
- Parmar, S.; Daki, S.; Bhattacharya, S.; Shrivastav, A. Microorganism: An ecofriendly tool for waste management and environmental safety. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 175–193. [Google Scholar]
- Li, Q.; Tang, X.; Sun, Y.; Wang, Y.; Long, Y.; Jiang, J.; Xu, H. Removal of Rhodamine B from wastewater by modified Volvariella volvacea: Batch and column study. RSC Adv. 2015, 5, 25337–25347. [Google Scholar] [CrossRef]
- Yu, J.-X.; Li, B.-H.; Sun, X.-M.; Jun, Y.; Chi, R.-A. Adsorption of methylene blue and rhodamine B on baker’s yeast and photocatalytic regeneration of the biosorbent. Biochem. Eng. J. 2009, 45, 145–151. [Google Scholar] [CrossRef]
- Hii, S.-L.; Yong, S.-Y.; Wong, C.-L. Removal of rhodamine B from aqueous solution by sorption on Turbinaria conoides (Phaeophyta). J. Appl. Phycol. 2009, 21, 625–631. [Google Scholar] [CrossRef]
- Souza, F.H.; Leme, V.F.; Costa, G.O.; Castro, K.C.; Giraldi, T.R.; Andrade, G.S. Biosorption of rhodamine B using a low-cost biosorbent prepared from inactivated Aspergillus oryzae cells: Kinetic, equilibrium and thermodynamic studies. Water Air Soil Pollut. 2020, 231, 242. [Google Scholar] [CrossRef]
- Singh, S.; Parveen, N.; Gupta, H. Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environ. Technol. Innov. 2018, 12, 189–195. [Google Scholar] [CrossRef]
- da Rosa, A.L.D.; Carissimi, E.; Dotto, G.L.; Sander, H.; Feris, L.A. Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. J. Clean. Prod. 2018, 198, 1302–1310. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Liu, W.; Zhang, X.; Wu, Z.; Bi, S.; Zhang, W.; Zhan, H. Effective removal of methyl orange and rhodamine B from aqueous solution using furfural industrial processing waste: Furfural residue as an eco-friendly biosorbent. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123976. [Google Scholar] [CrossRef]
- Panda, G.C.; Das, S.K.; Guha, A.K. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J. Hazard. Mater. 2009, 164, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.-T.; Keng, P.-S.; Lee, W.-N.; Ha, S.-T.; Hung, Y.-T. Dye waste treatment. Water 2011, 3, 157–176. [Google Scholar] [CrossRef]
- Puvaneswari, N.; Muthukrishnan, J.; Gunasekaran, P. Toxicity assessment and microbial degradation of azo dyes. Indian J. Exp. Biol. 2006, 44, 618–626. [Google Scholar] [PubMed]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Abd El-Latif, M.; Ibrahim, A.M.; El-Kady, M. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J. Am. Sci. 2010, 6, 267–283. [Google Scholar]
- Auta, M.; Hameed, B. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids Surf. B Biointerfaces 2013, 105, 199–206. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Senanayake, G.; Shah, N.; Thi-Le, X.N.; Parkinson, G.M.; Fawcett, D. Adsorption of the aurocyanide, Au (CN) 2-complex on granular activated carbons derived from macadamia nut shells–A preliminary study. Miner. Eng. 2011, 24, 1694–1702. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K.; Phan, C. Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption. Water Air Soil Pollut. 2014, 225, 1818. [Google Scholar] [CrossRef]
- Hernández-Montoya, V.; Pérez-Cruz, M.A.; Mendoza-Castillo, D.I.; Moreno-Virgen, M.; Bonilla-Petriciolet, A. Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manag. 2013, 116, 213–221. [Google Scholar] [CrossRef]
- Errais, E.; Duplay, J.; Elhabiri, M.; Khodja, M.; Ocampo, R.; Baltenweck-Guyot, R.; Darragi, F. Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2012, 403, 69–78. [Google Scholar] [CrossRef]
- Kooh, M.R.R.; Dahri, M.K.; Lim, L.B.; Lim, L.H.; Chan, C.M. Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies. Appl. Water Sci. 2018, 8, 61. [Google Scholar] [CrossRef]
- Kooh, M.R.R.; Dahri, M.K.; Lim, L.B. Removal of methyl violet 2B dye from aqueous solution using Nepenthes rafflesiana pitcher and leaves. Appl. Water Sci. 2017, 7, 3859–3868. [Google Scholar] [CrossRef]
- Zobel, D.B. Ecology, Pathology, and Management of Port-Orford-Cedar (Chamaecyparis Lawsoniana); US Department of Agriculture, Forest Service, Pacific Northwest Forest Range Experiment Station: Portland, OR, USA, 1985; Volume 184.
- Rundel, P.W. A neogene heritage: Conifer distributions and endemism in mediterranean-climate ecosystems. Front. Ecol. Evol. 2019, 7, 364. [Google Scholar] [CrossRef]
- Kooh, M.R.R.; Dahri, M.K.; Lim, L.B. The removal of rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent. Cogent Environ. Sci. 2016, 2, 1140553. [Google Scholar] [CrossRef]
- Mukherjee, T.; Rahaman, M. Removal of Alizarin Red S dye from aqueous solution by electrocoagulation process. Int. J. Res. Eng. Appl. Manag. 2018, 4, 287–290. [Google Scholar]
- Mohamad Zaidi, N.A.H.; Lim, L.B.; Priyantha, N.; Usman, A. Artocarpus odoratissimus leaves as an eco-friendly adsorbent for the removal of toxic rhodamine B dye in aqueous solution: Equilibrium isotherm, kinetics, thermodynamics and regeneration studies. Arab. J. Sci. Eng. 2018, 43, 6011–6020. [Google Scholar] [CrossRef]
- Donatto, A.E.; Nascimento, M.S.; Lourenço, J.B.; da Silva, W.L. Study of adsorption of rhodamine b dye using the residual biomass of mdf and porongo. Int. J. Sci. Res. 2019, 10, 31158. [Google Scholar]
- Thakur, A.; Kaur, H. Removal of hazardous Rhodamine B dye by using chemically activated low cost adsorbent: Pine cone charcoal. Int. J. Chem. Phys. Sci. 2016, 5, 17–28. [Google Scholar]
- Singh, S.; Kumar, A.; Gupta, H. Activated banana peel carbon: A potential adsorbent for Rhodamine B decontamination from aqueous system. Appl. Water Sci. 2020, 10, 185. [Google Scholar] [CrossRef]
- Corbett, J.F. Pseudo first-order kinetics. J. Chem. Educ. 1972, 49, 663. [Google Scholar] [CrossRef]
- Ho, Y.-S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Noreen, U.; Ali, R.; Ullah, A.; Naeem, A.; Aslam, M. Adsorptive removal of Congo red from aqueous phase using graphene–tin oxide composite as a novel adsorbent. Int. J. Environ. Sci. Technol. 2022, 19, 10275–10290. [Google Scholar] [CrossRef]
- Begum, B.; Ijaz, S.; Khattak, R.; Qazi, R.A.; Khan, M.S.; Mahmoud, K.H. Preparation and Characterization of a Novel Activated Carbon@ Polyindole Composite for the Effective Removal of Ionic Dye from Water. Polymers 2021, 14, 3. [Google Scholar] [CrossRef]
S.No. | Adsorbent | pH | Conc. (ppm) | Time (min) | Dose (g) | % Removal | References |
---|---|---|---|---|---|---|---|
1 | Artocarpus odoratissimus leaves | 3 | 100 | 30 | 0.5 | 81 | [31] |
2 | Spent tea leaves | 3 | 20 | 120 | 0.25 | 14 | [32] |
3 | Pinecone charcoal | 2.4 | 75 | 60 | 2.0 | 80 | [33] |
4 | Causuarina equisetifolia needles | 4.4 | 20 | 20 | 0.04 | 85 | [29] |
5 | Activated banana peel carbon | 2 | 120 | 60 | 12 | 85 | [34] |
6 | C. lawsoniana sundried powdered fruit | 2 | 40 ppm | 105 | 0.5 | 85.42 | This study |
Experimental | Pseudo-1st-Order | Pseudo-2nd-Order | ||||
---|---|---|---|---|---|---|
Qe (mg/g) | Qe (mg/g) | k1 (min−1) | R2 | Qe (mg/g) | k2 (g mg−1 min−1) | R2 |
6.83 | 5.69 | −0.00024 | 0.97 | 7.24 | 0.0092 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, S.; Gul, H.; Gul, M.; Khattak, R.; Rukh, G.; Khan, M.S.; Aouissi, H.A. Enhanced Adsorption of Rhodamine B on Biomass of Cypress/False Cypress (Chamaecyparis lawsoniana) Fruit: Optimization and Kinetic Study. Water 2022, 14, 2987. https://doi.org/10.3390/w14192987
Gul S, Gul H, Gul M, Khattak R, Rukh G, Khan MS, Aouissi HA. Enhanced Adsorption of Rhodamine B on Biomass of Cypress/False Cypress (Chamaecyparis lawsoniana) Fruit: Optimization and Kinetic Study. Water. 2022; 14(19):2987. https://doi.org/10.3390/w14192987
Chicago/Turabian StyleGul, Salma, Hajera Gul, Maria Gul, Rozina Khattak, Gul Rukh, Muhammad Sufaid Khan, and Hani Amir Aouissi. 2022. "Enhanced Adsorption of Rhodamine B on Biomass of Cypress/False Cypress (Chamaecyparis lawsoniana) Fruit: Optimization and Kinetic Study" Water 14, no. 19: 2987. https://doi.org/10.3390/w14192987
APA StyleGul, S., Gul, H., Gul, M., Khattak, R., Rukh, G., Khan, M. S., & Aouissi, H. A. (2022). Enhanced Adsorption of Rhodamine B on Biomass of Cypress/False Cypress (Chamaecyparis lawsoniana) Fruit: Optimization and Kinetic Study. Water, 14(19), 2987. https://doi.org/10.3390/w14192987