Statistical Modeling and Optimization of Process Parameters for 2,4-Dichlorophenoxyacetic Acid Removal by Using AC/PDMAEMA Hydrogel Adsorbent: Comparison of Different RSM Designs and ANN Training Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Response Surface Modeling
2.1.1. Face-Centered Composite Design (FCCD)
2.1.2. Optimal Design
2.1.3. Two-Level Factorial Design
2.2. Neural Network Modeling
2.3. Comparative Analysis of RSM and ANN Models
3. Results and Discussion
3.1. Response Surface Methodology (RSM)
3.1.1. Predictive Modeling
3.1.2. Statistical Analysis
3.1.3. Analysis of Response Surface
3.1.4. Optimization
3.2. Artificial Neural Network (ANN)
3.3. Post Analysis of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nord, N.B.; Berthelsen, N.M.S.; Milter, H.; Bester, K. Removal of herbicides from landfill leachate in biofilters stimulated by ammonium acetate. Water 2020, 12, 1649. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H. Water Pollution from Agriculture: A Global Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- US EPA. Herbicides. Available online: https://www.epa.gov/caddis-vol2/caddis-volume-2-sources-stressors-responses-herbicides (accessed on 25 January 2022).
- Taktak, F.; İlbay, Z.; Şahin, S. Evaluation of 2,4-D removal via activated carbon from pomegranate husk/polymer composite hydrogel: Optimization of process parameters through face centered composite design. Korean J. Chem. Eng. 2015, 32, 1879–1888. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, B. Unusual catalytic effect of Fe3+ on 2,4-dichlorophenoxyacetic acid degradation by radio frequency discharge in aqueous solution. Water 2022, 14, 1719. [Google Scholar] [CrossRef]
- Lv, X.; Ma, Y.; Li, Y.; Yang, Q. Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles. Water 2020, 12, 2909. [Google Scholar] [CrossRef]
- Shankar, M.V.; Anandan, S.; Venkatachalam, N.; Arabindoo, B.; Murugesan, V. Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2. Chemosphere 2006, 63, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Zahedi, M.M.; Pourmortazavi, S.M. Removal of 2,4-dichlorophenoxyacetic acid from aqueous samples using electrospun polyacrylonitrile nanofiber-based supported liquid membrane transport. J. Iran. Chem. Soc. 2020, 18, 631–639. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Kord Mostafapour, F.; Faridi, H.; Farzadkia, M.; Sargazi, S.; Sohrabi, A. Removal of 2, 4-dichlorophenoxyacetic acid (2, 4-d) from aqueous environments using single-walled carbon nanotubes. Health Scope 2013, 2, 39–46. [Google Scholar] [CrossRef]
- Herrera-García, U.; Castillo, J.; Patiño-Ruiz, D.; Solano, R.; Herrera, A. Activated Carbon from Yam Peels Modified with Fe3O4 for removal of 2,4-dichlorophenoxyacetic acid in aqueous solution. Water 2019, 11, 2342. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.-C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 2014, 160, 150–160. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kayri, M. Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: A comparative empirical study on social data. Math. Comput. Appl. 2016, 21, 20. [Google Scholar] [CrossRef]
- Kang, J.-K.; Kim, Y.-G.; Lee, S.-C.; Jang, H.-Y.; Yoo, S.-H.; Kim, S.-B. Artificial neural network and response surface methodology modeling for diclofenac removal by quaternized mesoporous silica SBA-15 in aqueous solutions. Microporous Mesoporous Mater. 2021, 328, 111497. [Google Scholar] [CrossRef]
- Prasad, R.; Yadav, K.D. Use of response surface methodology and artificial neural network approach for methylene blue removal by adsorption onto water hyacinth. Water Conserv. Manag. 2020, 4, 83–89. [Google Scholar] [CrossRef]
- Sen, S.; Nandi, S.; Dutta, S. Application of RSM and ANN for optimization and modeling of biosorption of chromium(VI) using cyanobacterial biomass. Appl. Water Sci. 2018, 8, 148. [Google Scholar] [CrossRef]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Le, T.-H.; Jang, H.; Shin, S. Determination of the optimal neural network transfer function for response surface methodology and robust design. Appl. Sci. 2021, 11, 6768. [Google Scholar] [CrossRef]
- Nair, A.T.; Makwana, A.R.; Ahammed, M.M. The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: A review. Water Sci. Technol. 2013, 69, 464–478. [Google Scholar] [CrossRef]
- Statease. Tutorials» Two-Level Factorial. Available online: https://www.statease.com/docs/v11/tutorials/two-level-factorial/ (accessed on 29 November 2021).
- Trifonov, R.; Yoshinov, R.; Pavlova, G.; Tsochev, G. Artificial neural network intelligent method for prediction. AIP Conf. Proc. 2017, 1872, 020021. [Google Scholar]
- Mourabet, M.; El Rhilassi, A.; Bennani- Ziatni, M.; Taitai, A. Comparative study of artificial neural network and response surface methodology for modelling and optimization the adsorption capacity of fluoride onto apatitic tricalcium phosphate. Univers. J. Appl. Math. 2014, 2, 84–91. [Google Scholar] [CrossRef]
- Aklilu, E.G.; Adem, A.; Kasirajan, R.; Ahmed, Y. Artificial neural network and response surface methodology for modeling and optimization of activation of lactoperoxidase system. S. Afr. J. Chem. Eng. 2021, 37, 12–22. [Google Scholar] [CrossRef]
- Safa, Y.; Bhatti, H.N. Adsorptive removal of direct textile dyes by low cost agricultural waste: Application of factorial design analysis. Chem. Eng. J. 2011, 167, 35–41. [Google Scholar] [CrossRef]
- Xu, M.; Yin, P.; Liu, X.; Tang, Q.; Qu, R.; Xu, Q. Utilization of rice husks modified by organomultiphosphonic acids as low-cost biosorbents for enhanced adsorption of heavy metal ions. Bioresour. Technol. 2013, 149, 420–424. [Google Scholar] [CrossRef]
- Jazayeri, K.; Jazayeri, M.; Uysal, S. Comparative analysis of Levenberg-Marquardt and Bayesian Regularization backpropagation algorithms in photovoltaic power estimation using artificial neural network. In Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2016. Lecture Notes in Computer Science; Perner, P., Ed.; Springer: Cham, Switzerland, 2016; Volume 9728, pp. 80–95. [Google Scholar]
Factors (Independent Variables) | Ranges of Coded and Actual Values | |
---|---|---|
(−1) | (+1) | |
pH | 3 | 9 |
Initial concentration of 2,4-D (mg/L) | 20 | 100 |
Activated carbon content (%) | 2.5 | 20 |
Label | Factors | Low Actual | High Actual | Vertex | < > Skip | Constraint Point |
---|---|---|---|---|---|---|
A | pH | 3 | 9 | 9 | A < | 3 |
B | Initial concentration of 2,4-D | 20 | 100 | 20 | B > | 100 |
C | Activated carbon content | 2.5 | 20 | 20 | C < | 2.5 |
Name | Units | Difference to Detect Delta (Signal) | Estimated Standard Deviation (Noise) | Signal/Noise Ratio |
---|---|---|---|---|
Removal of 2,4-D | % | 10 | 2.21 | 4.525 |
Adsorption capacity | mg/g | 10 | 1.82 | 5.495 |
Source | df | Removal of 2,4-D (%) | |||
---|---|---|---|---|---|
Sum of Squares | Mean Square | F-Value | p-Value | ||
Model | 8 | 4364.32 | 545.54 | 119.11 | <0.0001 |
A | 1 | 3160.08 | 3160.08 | 689.96 | <0.0001 |
B | 1 | 343.88 | 343.88 | 75.08 | <0.0001 |
C | 1 | 431.47 | 431.47 | 94.2 | <0.0001 |
AB | 1 | 31 | 31 | 6.77 | 0.0246 |
AC | 1 | 24.41 | 24.41 | 5.33 | 0.0414 |
A² | 1 | 142.17 | 142.17 | 31.04 | 0.0002 |
B² | 1 | 253.4 | 253.4 | 55.33 | <0.0001 |
C² | 1 | 80.67 | 80.67 | 17.61 | 0.0015 |
Residual | 11 | 50.38 | 4.58 | ||
Lack of Fit | 6 | 50.26 | 8.38 | 334.67 | <0.0001 |
Pure Error | 0.1251 | 0.025 | |||
Cor Total | 4414.7 | ||||
Standard Deviation | 2.14 | ||||
C.V (%) | 7.58 | ||||
Adjusted R2 | 0.9803 | ||||
Predicted R2 | 0.9387 | ||||
R2 | 0.9886 | ||||
Adeq Precision | 42.09 | ||||
Source | df | Adsorption Capacity (mg/g) | |||
Sum of Squares | Mean Square | F-Value | p-Value | ||
Model | 6 | 5312.5 | 885.42 | 267.73 | <0.0001 |
A | 1 | 1796.56 | 1796.56 | 543.25 | <0.0001 |
B | 1 | 2632.51 | 2632.51 | 796.02 | <0.0001 |
C | 1 | 176.15 | 176.15 | 53.26 | <0.0001 |
AB | 1 | 650.58 | 650.58 | 196.72 | <0.0001 |
AC | 1 | 12.86 | 12.86 | 3.89 | 0.0703 |
BC | 1 | 43.85 | 43.85 | 13.26 | 0.003 |
Residual | 13 | 42.99 | 3.31 | ||
Lack of Fit | 8 | 42.96 | 5.37 | 744.8 | <0.0001 |
Pure Error | 5 | 0.036 | 0.0072 | ||
Cor Total | 19 | 5355.49 | |||
Standard Deviation | 1.82 | ||||
C.V (%) | 8.25 | ||||
Adjusted R2 | 0.9883 | ||||
Predicted R2 | 0.9747 | ||||
R2 | 0.9920 | ||||
Adeq Precision | 62.88 |
Source | df | Removal of 2,4-D (%) | |||
---|---|---|---|---|---|
Sum of Squares | Mean Square | F-Value | p-Value | ||
Model | 7 | 49.7 | 7.1 | 408.82 | <0.0001 |
A | 1 | 38.06 | 38.06 | 2191.21 | <0.0001 |
B | 1 | 4.27 | 4.27 | 245.79 | <0.0001 |
C | 1 | 5.06 | 5.06 | 291.59 | <0.0001 |
BC | 1 | 0.083 | 0.083 | 4.78 | 0.0493 |
A² | 1 | 0.621 | 0.621 | 35.75 | <0.0001 |
B² | 1 | 2.36 | 2.36 | 135.65 | <0.0001 |
C² | 1 | 0.7051 | 0.7051 | 40.6 | <0.0001 |
Residual | 12 | 0.2084 | 0.0174 | ||
Lack of Fit | 7 | 0.2084 | 0.0298 | ||
Pure Error | 5 | 0 | 0 | ||
Cor Total | 19 | 49.91 | |||
Standard Deviation | 0.1318 | ||||
C.V (%) | 2.39 | ||||
Adjusted R2 | 0.9934 | ||||
Predicted R2 | 0.9855 | ||||
R2 | 0.9958 | ||||
Adeq Precision | 58.05 | ||||
Source | df | Adsorption Capacity (mg/g) | |||
Sum of Squares | Mean Square | F-Value | p-Value | ||
Model | 9 | 83.94 | 9.33 | 4805.91 | <0.0001 |
A | 1 | 21.55 | 21.55 | 11102.94 | <0.0001 |
B | 1 | 34.44 | 34.44 | 17747.62 | <0.0001 |
C | 1 | 3.02 | 3.02 | 1555.35 | <0.0001 |
AB | 1 | 1.07 | 1.07 | 553.8 | <0.0001 |
AC | 1 | 0.0463 | 0.0463 | 23.84 | 0.0006 |
BC | 1 | 0.0076 | 0.0076 | 3.91 | 0.0763 |
A² | 1 | 0.2681 | 0.2681 | 138.12 | <0.0001 |
B² | 1 | 0.6381 | 0.6381 | 328.81 | <0.0001 |
C² | 1 | 0.0083 | 0.0083 | 4.26 | 0.0659 |
Residual | 10 | 0.0194 | 0.0019 | ||
Lack of Fit | 5 | 0.0194 | 0.0039 | ||
Pure Error | 5 | 0 | 0 | ||
Cor Total | 19 | 83.96 | |||
Standard Deviation | 0.0441 | ||||
C.V (%) | 0.9651 | ||||
Adjusted R2 | 0.9996 | ||||
Predicted R2 | 0.9989 | ||||
R2 | 0.9998 | ||||
Adeq Precision | 219.504 |
Source | df | Removal of 2,4-D (%) | |||
---|---|---|---|---|---|
Sum of Squares | Mean Square | F-value | p-Value | ||
Model | 3 | 27.63 | 9.21 | 336.04 | <0.0001 |
A | 1 | 22.11 | 22.11 | 806.75 | <0.0001 |
B | 1 | 2.01 | 2.01 | 73.28 | 0.001 |
C | 1 | 3.51 | 3.51 | 128.09 | 0.0003 |
Residual | 4 | 0.1096 | 0.0274 | ||
Cor Total | 7 | 27.74 | |||
Standard Deviation | 0.1655 | ||||
C.V (%) | 3.22 | ||||
Adjusted R2 | 0.9931 | ||||
Predicted R2 | 0.9842 | ||||
R2 | 0.9960 | ||||
Adeq Precision | 48.2812 | ||||
Source | df | Adsorption Capacity (mg/g) | |||
Sum of Squares | Mean Square | F-Value | p-Value | ||
Model | 3 | 3978.69 | 1326.23 | 26.21 | 0.0043 |
A | 1 | 1367.83 | 1367.83 | 27.04 | 0.0065 |
B | 1 | 1960.29 | 1960.29 | 38.75 | 0.0034 |
AB | 1 | 650.58 | 650.58 | 12.86 | 0.023 |
Residual | 4 | 202.37 | 50.59 | ||
Cor Total | 7 | 4181.06 | |||
Standard Deviation | 7.11 | ||||
C.V (%) | 31.89 | ||||
Adjusted R2 | 0.9153 | ||||
Predicted R2 | 0.8064 | ||||
R2 | 0.9516 | ||||
Adeq Precision | 11.4243 |
Design | Optimum Condition | Predicted Response | Desirability | |||
---|---|---|---|---|---|---|
pH | Initial Concentration of 2,4-D (mg/L) | Activated Carbon Content (wt%) | Removal of 2,4-D (%) | Adsorption Capacity (mg/g) | ||
FCCD | 3.00 | 99.97 | 2.52 | 63.63 | 68.47 | 1.000 |
Optimal | 3.00 | 94.52 | 2.50 | 65.01 | 65.29 | 0.911 |
Two-level | 3.00 | 100.00 | 2.50 | 63.52 | 60.05 | 0.912 |
Design | Optimum Condition | Removal of 2,4-D (%) | Adsorption Capacity (mg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
pH | Initial Concentration of 2,4-D (mg/L) | Activated Carbon Content (wt%) | RSM Predicted | Levenberg–Marquardt | Conjugated Gradient | Bayesian | RSM Predicted | Levenberg–Marquardt | Conjugated Gradient | Bayesian | |
FCCD | 3 | 99.97 | 2.52 | 63.630 | 62.555 | 60.461 | 61.112 | 68.470 | 69.206 | 66.306 | 68.308 |
Optimal | 3 | 94.52 | 2.5 | 65.010 | 64.713 | 60.323 | 61.094 | 65.280 | 66.555 | 65.677 | 68.234 |
Two-Level | 3 | 100 | 2.5 | 63.520 | 62.657 | 60.462 | 61.112 | 60.050 | 69.252 | 66.308 | 68.309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlan, I.; Azhar, E.E.M.; Hassan, S.R.; Aziz, H.A.; Hung, Y.-T. Statistical Modeling and Optimization of Process Parameters for 2,4-Dichlorophenoxyacetic Acid Removal by Using AC/PDMAEMA Hydrogel Adsorbent: Comparison of Different RSM Designs and ANN Training Methods. Water 2022, 14, 3061. https://doi.org/10.3390/w14193061
Dahlan I, Azhar EEM, Hassan SR, Aziz HA, Hung Y-T. Statistical Modeling and Optimization of Process Parameters for 2,4-Dichlorophenoxyacetic Acid Removal by Using AC/PDMAEMA Hydrogel Adsorbent: Comparison of Different RSM Designs and ANN Training Methods. Water. 2022; 14(19):3061. https://doi.org/10.3390/w14193061
Chicago/Turabian StyleDahlan, Irvan, Emillia Eizleen Md Azhar, Siti Roshayu Hassan, Hamidi Abdul Aziz, and Yung-Tse Hung. 2022. "Statistical Modeling and Optimization of Process Parameters for 2,4-Dichlorophenoxyacetic Acid Removal by Using AC/PDMAEMA Hydrogel Adsorbent: Comparison of Different RSM Designs and ANN Training Methods" Water 14, no. 19: 3061. https://doi.org/10.3390/w14193061
APA StyleDahlan, I., Azhar, E. E. M., Hassan, S. R., Aziz, H. A., & Hung, Y. -T. (2022). Statistical Modeling and Optimization of Process Parameters for 2,4-Dichlorophenoxyacetic Acid Removal by Using AC/PDMAEMA Hydrogel Adsorbent: Comparison of Different RSM Designs and ANN Training Methods. Water, 14(19), 3061. https://doi.org/10.3390/w14193061