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Abstract: Groundwater contributes to the delivery of phreatic water to crop aeration zones via
evapotranspiration, which is important for crop growth in drought-prone regions. Most studies on
groundwater contribution have not considered the influence of crop growth stage or daily evapotran-
spiration. In this study, a neural network based on a genetic algorithm and the Levenberg–Marquardt
backpropagation algorithm, as well as formula methods based on an accelerated genetic algorithm,
were built to assess soybean groundwater contribution; in addition, a performance comparison
was conducted. The results indicated that machine learning had the best performance for fitting
errors, with values for relative mean error (RME), root mean square percentage error (RMSPE), and
correlation coefficient of 1.088, 2.165, and 0.762, respectively; in addition, for validation errors, it
had values for RME, RMSPE, and correlation coefficient of 1.069, 2.136, and 0.735, respectively. The
machine learning method is recommended for readers seeking to calculate groundwater contribution.

Keywords: groundwater contribution; phreatic evaporation; machine learning; crop evapotranspiration;
crop growth stages; soybeans; Huaibei Plain of China

1. Introduction

The groundwater contribution of growing crops occurs through phreatic evapora-
tion [1,2]. Crop roots are often above groundwater; the evaporation of groundwater can
increase soil moisture, and crop roots can absorb water from soil moisture. Therefore,
groundwater is an important water source for crop growth, and the calculation of its
contribution is significant for irrigation planning and water resource management [3]. In
hydrological models, groundwater is also an important component, and its evaporation
affects the modeling of soil moisture [4,5].

It has previously been observed that phreatic evaporation is related to water evapora-
tion capacity and water table depth. Aviriyanover [6] proposed empirical formulae involv-
ing groundwater depth, water evaporation capability, and phreatic water evaporation to
calculate phreatic evaporation. Subsequently, similar formulae have been developed [7–9].
However, these studies did not consider crop growth and could not simulate phreatic evap-
oration in crops. Therefore, Fidantemiz, et al. [10] used lysimeter experiments to obtain crop
water use data and analyzed the relationship between crop water use and groundwater
depth. However, they only analyzed qualitative relationships rather than quantitative
relationships. Zhou and Wang [11] and Wang, et al. [12] established a quantitative relation-
ship between groundwater contribution and groundwater depth and used Gaussian or
quasi-Gaussian functions to fit the scatter of groundwater contribution and groundwater
depth; however, they did not consider the influence of meteorological conditions or crop
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evapotranspiration on the groundwater contribution. As a result, they only fitted the
groundwater contribution data on a ten-day or monthly scale. For hydrological models
and water resource management, it is very common to use daily scale data for calculation
and analysis. Karimov, et al. [13] considered the effect of crop evapotranspiration and
fitted the scatter of the ratio of groundwater contribution, crop evapotranspiration, and
groundwater depth; however, they did not develop a formula for groundwater contri-
bution. Shah, et al. [14] calculated the crop groundwater contribution for different land
cover types and focused on the relationship between the depth to the water table and the
ratio of groundwater evapotranspiration to potential evapotranspiration. However, crop
water uptake differs because of different root densities in different crop growth stages,
and Shah, Nachabe and Ross [14] did not consider the influence of crop growth stages on
groundwater contribution.

Therefore, the main issue addressed in this study is the introduction of crop growth
stages and crop evapotranspiration into phreatic evaporation formulas to consider the
effect of additional factors on groundwater contribution. In addition, we used machine
learning in order to find a better simulation model for groundwater contribution, with the
values for crop evapotranspiration and groundwater depth fed into the neural network.

Several studies have introduced machine learning for groundwater modeling. They
have mainly focused on groundwater-level simulations [15–18] and groundwater quality
evaluations [19–22]. Previous studies on machine learning have not considered groundwater
contribution. In addition, previous studies on groundwater contribution have not considered
the influence of crop growth stages or crop evapotranspiration on groundwater contribution.

In this study, to consider the influence of crop growth stages and crop evapotranspira-
tion, machine learning and formula methods based on an accelerated gene algorithm (AGA)
were used to simulate soybean groundwater contribution, and their performances were
compared. In addition, soybean growth stage was regarded as an important influencing
factor, and the relationship between soybean growth stage and groundwater contribution
was analyzed.

2. Materials and Methods
2.1. Groundwater Contribution of Soybeans

The groundwater contribution of soybeans was estimated using a Mariotte bottle
system (Figure 1). The bottles were connected to the crop test pit, and both bottles and pits
had the same water table. When the soybeans consumed underground water, the water
from the bottle replenished the underground water in the test pit. To maintain the water
table at a constant level, water was automatically added to the Mariotte bottle using a
pressure sensor and controller, and the value of the groundwater contribution was obtained
from the flowmeter and recorded on a computer. In the absence of crops, the groundwater
contribution was equal to that of phreatic evaporation.
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Figure 1. The schematic diagram of the Mariotte bottle system for observing the groundwater
contribution of soybeans.
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2.1.1. Machine Learning Method

The machine learning method used was a feed-forward model of a neural network with
three layers (see Figure 2), which consisted of an input layer, an output layer, and some hid-
den layers. It was trained using the Levenberg–Marquardt backpropagation algorithm [23],
which is the standard backpropagation for supervised learning. The Levenberg–Marquardt
algorithm [24] is the fastest method for training moderate-sized feed-forward neural net-
works but requires more memory than other algorithms. The Levenberg–Marquardt
algorithm was used iteratively to minimize the mean square error (MSE) between the
output of the ANN and the observation of the groundwater contribution. The iteration
process was stopped when the iteration times were larger than a threshold value or when
the MSE was below a threshold value.
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The structure of the neural network included daily crop evapotranspiration (ET) and
groundwater depth (H) in the input layer, which were normalized using Equations (1) and (2).
Normalized data were fed into the first hidden layer. There are I nodes in the first hidden
layer, and the calculation is shown in Equation (3). All outputs of the I nodes were fed
into the second hidden layer, and the results were calculated using Equation (4). Then, the
outputs of the kth hidden layer were fed into the k+1th hidden layer using Equation (4),
and there were K hidden layers. Finally, the results were obtained for the output node.

NET = (ET −min (ET))/(max (ET) −min (ET)) (1)

NH = (H −min (H))/(max (H) −min (H)) (2)

a1
i = f un(WNET,i NET + WHi H + bi (3)

ak+1
m = f un(

J

∑
j=1

ak
j Wm

j + bk+1
m ) (4)

where NET is the normalized ET; min (ET) is the minimum value of all the ET data (mm/d);
max (ET) is the maximum value of all the ET data (mm/d); NH is the normalized H; a1

i is
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the output of node i in the first hidden layer; WNET,i and WH,i are the weights of node i for
NET and H in the first hidden layer, respectively; bi is the bias of node i in the first hidden
layer; ak+1

m is the output of node m in the k+1th hidden layer; Wm
j is the weight of node m

for ak
j in the k+1th hidden layer; bk+1

m is the bias of node m in the k+1th hidden layer; J is the
total number of hidden layers; and fun is an activation function.

A genetic algorithm (GA) was used to optimize the structure of the neural network.
The number of nodes and hidden layers are the optimization variables, and Equation (5) is
the objective function. The number of nodes ranged from 1 to 7, and the number of hidden
layers ranged from 1 to 3. There were six activation functions: the symmetric sigmoid
transfer function, the logarithmic sigmoid transfer function, the Elliot sigmoid transfer
function, the positive hard limit transfer function, the positive linear transfer function,
and the linear transfer function. We tested each activation function and found that the
symmetric sigmoid transfer function (Equation (6)) led to the best performance for the
neural network. Therefore, Equation (6) was selected as the activation function.

min (1− r2) = min

m
∑

i=1
(xi − yi)

2

m
∑

i=1
(yi − y)2

(5)

y =
2

1 + e−2x − 1 (6)

where xi is the simulated daily groundwater contribution (mm/d), yi the observed daily
groundwater contribution, r2 is the goodness of fit, x is the independent variable of the
symmetric sigmoid transfer function, and y is the dependent variable of the symmetric
sigmoid transfer function.

2.1.2. Formula Method

In terms of formula methods, there are some formulas for phreatic evaporation, such
as those of Aviriyanover and Ye Shuiting, as well as the power function [25]. However,
these formulas cannot account for phreatic evaporation with soybean growth, that is, the
groundwater contribution of soybeans. To consider the effect of soybean evapotranspiration
on groundwater contribution [4], groundwater contribution formulas were built by refer-
ring to the phreatic evaporation formulas, in which evaporation capacity was replaced by
soybean evapotranspiration. The groundwater contribution is shown in Equations (7)–(9):

(1) The Aviriyanover formula:

Eg = ETc(1−
H

Hmax
)

n
(7)

(2) The Ye Shuiting formula:

Eg = ETc · e−a1
H

Hmax (8)

(3) The power function formula:

Eg = a · ETc(
H

Hmax
)
−b

(9)

where Eg is the daily groundwater contribution (mm/d); ETc is the daily soybean evapo-
transpiration (mm/d) (see the section “Soybean evapotranspiration”); H is groundwater
depth (m); Hmax is the groundwater depth where the groundwater contribution of soy-
beans is 0 (m); and n, a1, a, and b are empirical constants. These empirical constants were
optimized using an accelerated genetic algorithm (AGA) [26] and objective Function (5).
The ranges of n, a1, a, and b are 0~7, 0.5~5, 0~1, and 0~3, respectively.
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The groundwater contribution data were fitted and validated using machine learning
and formula methods, combined with 15 years of recorded data from a test station (Figure 3).
The fitting and validation errors were then calculated using Equations (10)–(12). The
recommended calculation method can be determined based on the validation results to
provide a reference for the calculation of groundwater contribution in the Huaibei Plain.
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(1) Relative mean error (RME) [27]:

RME =

m
∑

i=1

|xi−yi |
yi

m
(10)

(2) Root mean square percentage error (RMSPE) [27]:

RMSPE = (
1
m

m

∑
i=1

[
xi − yi

yi
]
2
)

0.5

(11)

(3) Correlation coefficient (R) [28]:

R =

m
∑

i=1
(xi − x)(yi − y)√

m
∑

i=1
(xi − x)2

√
m
∑

i=1
(yi − y)2

(12)

where i is the sample number, and i = 1, 2, . . . , m; m is the total number of groundwater
contribution samples; xi is the calculated value of the groundwater contribution on day i,
in mm; yi is the observed value of the groundwater contribution on day i, in mm; x is the
average calculated value of the groundwater contribution, in mm; and y is the observed
average value of the groundwater contribution, in mm.

2.2. Soybean Evapotranspiration

Soybean evapotranspiration values can be obtained by multiplying the reference crop
evapotranspiration by the relevant crop factors:

ETc = Kc × ET0 (13)
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ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(ea − ed)

∆ + γ(1 + 0.34U2)
(14)

where ETc is daily crop evapotranspiration (mm/d); Kc is a crop coefficient that reveals
the relationship parameters between actual crop evapotranspiration and reference crop
evapotranspiration (the crop coefficients of soybeans in various growth periods are shown
in Table 1); ET0 is the reference crop evapotranspiration (mm/d), which was calculated
using the Penman–Monteith formula [29,30] (see Formula (14)); ∆ is the slope of the
tangent of point T in the relation curve between temperature and saturation vapor pressure
(kPa·◦C−1); Rn is the net radiance (MJ/m2·d); G is the soil heat flux (MJ/m2·d); γ is the
humidity constant (kPa ◦C−1); T is the average temperature (◦C); U2 is the wind speed at
a height of 2 m (m/s); ea is the saturation vapor pressure (kPa); and ed is the actual water
pressure (kPa).

Table 1. Crop factors for soybeans.

Crops Growth Periods Jan. 1 Feb. Mar. Apr. May Jun. July Aug. Sep. Oct. Nov. Dec.

Soybean 6.10–9.30 2 0.536 0.909 1.142 1.279
1 Soybeans do not grow from January to May or from October to December. Therefore, there are no values for
some months. 2 “6.10–9.30” means that soybeans are in a growth period from 10 June to 30 September.

3. Results and Discussion
3.1. Relation Analysis between Groundwater Contribution and Soybean Evapotranspiration in the
Different Soybean Growth Periods

Wind speed, relative humidity, and other atmospheric data were collected, and daily
crop evapotranspiration from 1991 to 2005 was simulated using Equation (13). Soybean
growth periods are shown in Table 2; for each soybean growth period from 1991 to 2005, two-
dimensional scatter diagrams of soybean evapotranspiration and groundwater contribution
at different groundwater depths were drawn. The diagrams for the flowering–podding
stage are shown in Figure 4. For the different groundwater depths in each growth period,
the correlation coefficients for groundwater contribution and soybean evapotranspiration
were calculated, and the correlation coefficients of all growth periods are shown in Figure 5.

Table 2. Detailed growth period times for soybeans.

Growth Periods
of Soybean Seedling Stage Branch Stage Flowering–Podding

Stage Mature Stage

Time 6.10–7.10 7.11–7.31 8.1–8.31 9.1–9.30

Figure 4 shows that the groundwater contribution increased with an increase in
soybean evapotranspiration. The water in soybean evapotranspiration was due to the
groundwater contribution, and the groundwater contribution affected soybean evapotran-
spiration. In addition, Figures 4 and 5 show that with the increase in groundwater depth,
the slope of the straight fit line gradually decreased, and the correlation coefficients of
soybean evapotranspiration and groundwater contribution gradually decreased. The thick
soil affected the movement of groundwater evaporation in the vertical vadose zone, and the
degree of dependence between the groundwater contribution and soybean evapotranspira-
tion gradually decreased. Since the linear relationship between groundwater use and crop
evapotranspiration was not significant enough, we built nonlinear equations and models
to fit the scatters of groundwater use and crop evapotranspiration.

The highest correlation coefficient in Figure 5 is 0.78, which is lower than 1. The water
for soybean evapotranspiration was derived from soil water in the aeration zone, as well as
from surface runoff, precipitation, and groundwater evaporation.
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In terms of the relationship between the growth stages and the correlation coefficients
between soybean evapotranspiration and shallow groundwater contribution, the correla-
tion coefficients increased from the seedling to the branch and flowering–podding stages
and decreased from the flowering–podding stage to the maturity stage. The variation in
the correlation coefficient during the growth stages can be explained in combination with
soybean growth characteristics. At the seedling stage, soybean roots are short [31] therefore,
water from groundwater evaporation cannot be easily obtained, and the ratio of water
from groundwater is low. As a result, the correlation coefficient was low. With the growth
of the soybeans, the leaf area increased, and the water demand of soybeans increased in
the branch and flowering–podding stages. The soybean roots became longer, and water
was more easily obtained from groundwater. Therefore, the ratio of water from ground-
water was larger, and the correlation coefficient between the groundwater contribution
and soybean evapotranspiration was larger in the branch and flowering–podding stages.
However, during the mature stage, soybean growth slowed, soybean water demand was
low, and soybean evapotranspiration was primarily due to surface soil evaporation. As
a result, the correlation coefficient between the groundwater contribution and soybean
evapotranspiration was low in the mature stage.

The variation law of the correlation coefficient between shallow groundwater con-
tribution and soybean evapotranspiration was different from that in deep groundwater.
The main difference was that the correlation coefficient in the mature stage was larger
than that in the flowering–podding stage in deep groundwater, whereas the correlation
coefficient in the mature stage was smaller than that in the flowering–podding stage in
shallow groundwater. This phenomenon is due to temperature. The seedling, branch,
and flowering–podding stages occurred from June to August, there was no tendency for
temperature variation, and there was no relationship between crop evapotranspiration
and deep groundwater contribution. However, the mature stage occurred in September,
and when the temperature gradually decreased, crop evapotranspiration also decreased.
Meanwhile, the groundwater temperature at a depth of 1.5 m also decreased and the
groundwater contribution decreased. As the variation trends of crop evapotranspiration
and groundwater contribution were the same, the correlation coefficient between crop
evapotranspiration and deep groundwater contribution was larger.

To show the variation trend in the groundwater contribution with an increase in
soybean evapotranspiration and groundwater depth from a three-dimensional perspective,
three-dimensional scatter diagrams were drawn (Figure 6). With increasing groundwater
depth, soybean evapotranspiration and groundwater contribution decreased gradually.
When the groundwater depth increased to 2.5 m, the groundwater contribution was ap-
proximately zero. Therefore, Hmax in Equations (7)–(9) is equal to 2.5 m.
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Figure 6. Three-dimensional scatter diagrams of groundwater depth, crop evapotranspiration, and
the groundwater contribution of soybean in different growth periods.

3.2. Error Comparison between the Machine Learning and Formula Methods
3.2.1. Fitting Errors

The scatter plots in Figure 6 were fitted using the machine learning and formula
methods. In the machine learning method, soybean evapotranspiration and groundwater
depth data from 1991 to 2002 were the inputs to the neural network, and groundwater
contribution from 1991 to 2002 was the output of the neural network. The number of nodes
and the total number of hidden layers were optimized using the GA, and the parameters
of the weights and the bias in each layer were trained using the Levenberg–Marquardt
algorithm. The fitting errors of the trained neural network are listed in Table 3. In the for-
mula method, combined with the data on groundwater depth, soybean evapotranspiration,
and groundwater contribution from 1991 to 2002, the parameters of Equations (7)–(9) were
optimized using an accelerated genetic algorithm (AGA) [26] and objective Function (5).
The optimized parameters were fed into Equations (7)–(9), the simulated groundwater
contribution was obtained using the three formulas, and the fitting errors were calculated
based on Formulas (10)–(12).

The relative mean error (RME), root mean square percentage error (RMSPE), and cor-
relation coefficient (R) ranks for the different methods are shown in Table 4 after comparing
the statistical indices in Table 3.
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Table 3. Results and fitting errors of the machine learning and formula methods.

Methods Parameters Seedling Stage Branch Stage Flowering–Podding Stage Mature Stage Average

Machine learning
RME 0.788 1.133 1.107 1.324 1.088

RMSPE 1.637 2.116 2.568 2.337 2.165
R 0.836 0.806 0.771 0.634 0.762

Aviriyanover formula

Eg = ETc

(
1− H

Hmax

)n

n 3.534 2.312 1.506 2.354 2.426
RME 0.968 1.433 1.489 1.361 1.313

RMSPE 1.675 2.592 3.018 2.429 2.429
R 0.778 0.755 0.739 0.604 0.719

Ye Shuiting formula

Eg = ETc·e−a1
H

Hmax

a1 4.052 2.725 1.908 2.854 2.884
RME 0.984 1.599 1.748 1.450 1.445

RMSPE 1.733 2.776 3.415 2.514 2.610
R 0.775 0.755 0.736 0.612 0.719

Power function formula

Eg = a·ETc

(
H

Hmax

)−b

a 0.041 0.115 0.221 0.166 0.136
b 1.326 0.983 0.723 0.695 0.932

RME 0.752 1.490 1.818 1.523 1.396
RMSPE 1.514 2.675 3.617 2.594 2.600

R 0.848 0.768 0.718 0.611 0.736

Table 4. Analysis of the assessment indices for machine learning and formula fitting.

Assessment
Indices

Machine
Learning

Aviriyanover
Formula

Ye Shuiting
Formula

Power
Function Formula

RME 1.036 1.313 1.445 1.396
Rank of RME 1 2 4 3

RMSPE 2.092 2.429 2.61 2.6
Rank of RMSPE 1 2 4 3

R 0.763 0.719 0.719 0.736
Rank of R 1 3 3 2

Average rank 1 2.3 3.7 2.7

From Table 4, it can be seen that the average rank of the error analysis was the best for
machine learning, which indicates that its fitting effect was better than that of the formula
method. Therefore, the machine learning method is recommended to fit the scatter of
groundwater contribution, crop evapotranspiration, and groundwater depth.

3.2.2. Validation Errors

In the last section, the groundwater contribution data from 1991 to 2002 were used
to obtain the optimized formula methods and trained neural network method that were,
in turn, used to calculate the groundwater contribution from 2004 to 2005. The validation
errors for RME, RMSPE, and R are listed in Table 5, combined with the observation data.

The ranks of the different methods with respect to RME, RMSPE, and R can be obtained
in Table 6 after comparing the statistical indices in Table 5.

Table 5. Validation errors for groundwater contribution for the machine learning and formula methods.

Methods Parameters Seedling Stage Branch Stage Flowering–Podding
Stage Mature Stage Average

Machine learning
RME 0.767 1.370 0.821 1.318 1.069

RMSPE 1.582 2.902 1.817 2.241 2.136
R 0.777 0.752 0.735 0.677 0.735

Aviriyanover formula

Eg = ETc

(
1− H

3

)n

RME 0.796 1.445 1.018 1.470 1.182

RMSPE 1.472 2.860 2.467 2.639 2.360

R 0.773 0.679 0.693 0.647 0.698
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Table 5. Cont.

Methods Parameters Seedling Stage Branch Stage Flowering–Podding
Stage Mature Stage Average

Ye Shuiting formula

Eg = ETc·e−a1
H

Hmax

RME 0.852 1.482 1.096 1.518 1.237

RMSPE 1.532 2.862 2.693 2.667 2.438

R 0.768 0.680 0.686 0.651 0.696

Power function formula

Eg = a·ETc

(
H

Hmax

)−b

RME 0.766 1.475 1.154 1.478 1.218

RMSPE 1.524 3.057 2.758 2.548 2.472

R 0.768 0.720 0.671 0.666 0.706

Table 6. Analysis of the assessment indices for machine learning and formulae validation.

Assessment
Indices Machine Learning Aviriyanover

Formula
Ye Shuiting

Formula
Power

Function Formula

RME 1.036 1.182 1.237 1.218
Rank of RME 1 2 4 3

RMSPE 2.092 2.36 2.438 2.472
Rank of RMSPE 1 2 3 4

R 0.763 0.698 0.696 0.706
Rank of R 1 3 4 2

Average rank 1 2.3 3.7 3

Table 6 shows that the average rank of the error indices for the machine learning
method is excellent at 1; and the Aviriyanover, power function, and Ye Shuiting formulae
had lower ranks of error analysis. Because of its high precision, the machine learning
method is recommended to further calculate groundwater contribution.

Based on Figure 6, three-dimensional diagrams of the fitting scatter were drawn using
the machine learning method.

In Figure 7, the variation trend can be observed from an overall three-dimensional
perspective. Figure 7 shows that with an increase in soybean evapotranspiration and a
decrease in groundwater depth, the groundwater contribution increases gradually. The
fitted curved surface is inclined toward the positive direction of the axis of groundwater
contribution. To compare the fitted curved surfaces, fitting scatter diagrams for soybeans
using the Aviriyanover formula are shown in Figure 8. There is a similar trend between
fitting the curved surface using machine learning and the Aviriyanover formula method.
However, the surface in Figure 8 is smoother than that in Figure 7 because there are
more parameters in the neural network of Figure 7. The neural network, with five nodes
of one hidden layer, has 21 parameters, including 15 weight values and six bias values,
whereas the Aviriyanover formula has only one parameter. Owing to its additional param-
eters, the machine learning method can be adjusted to better fit the scatter, as shown in
Figure 7. Therefore, the precision of the machine learning method is better than that of the
formula methods.
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Figure 8. Fitting scatter diagrams for groundwater depth, crop evapotranspiration, and groundwater
contribution in each growth period for soybeans using the Aviriyanover formula method.
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Figures 7 and 8 show that the groundwater depth gradually deepened at the same
soybean evapotranspiration and groundwater contribution from the seedling to the branch-
and flowering-poding stages, but it became shallower from the flowering–podding stage to
the mature stage. The soybean roots at the seedling stage were short, and the groundwater
contribution was mainly from shallow groundwater. Subsequently, in the middle of the
growth period, the soybeans grew vigorously, their roots were long, and they could access
deeper groundwater. Therefore, with an increase in groundwater depth and a decrease in
soybean evapotranspiration, the groundwater contribution decreased slowly. However, in
the mature stage, the soybeans grew slowly, and although the roots were long, the water
demand decreased, which contributed to an abrupt decrease in groundwater contribution,
with an increase in groundwater depth and a decrease in soybean evapotranspiration.
The fitting surface is relevant to the weights and biases of the neural network method,
which indicates that the parameters of the neural network method are linked to growth
characteristics and groundwater contribution.

4. Conclusions

The main goal of the current study was to improve the modeling of groundwater
contribution and to compare groundwater contribution calculation methods, including
machine learning and the formula methods of Aviriyanover, Ye Shuiting, and the power
function. Data relating to groundwater depth, groundwater contribution, and atmospheric
data from 1991 to 2005 were collected from a test station in Xinmaqiao, China, and the rela-
tionship between groundwater contribution and soybean evapotranspiration in different
growth stages was analyzed. The errors and fitting surface characteristics of the trained
neural network method and formula methods based on AGA were also analyzed. The
conclusions are as follows.

(1) As part of soybean evapotranspiration, the groundwater contribution increased with
an increase in soybean evapotranspiration. In addition, the correlation coefficients
of soybean evapotranspiration and groundwater contribution gradually decreased
with increasing groundwater depth because of the influence of thick soil layers on the
movement of groundwater evaporation in the vertical vadose zone.

(2) The correlation coefficients between groundwater contribution and soybean evapo-
transpiration increased from the seedling to the branch and flowering–podding stages
and decreased from the flowering–podding stage to the maturity stage. The short
roots of soybeans at the seedling stage led to a low correlation coefficient of 0.68. The
longer roots and larger leaf area of soybeans at the branch and flowering–podding
stages led to high correlation coefficients of 0.78 and 0.75, respectively. Low soybean
water demand caused a low correlation coefficient of 0.57 in the mature stage.

(3) Through this study, we found that machine learning had the best performance for
fitting errors, with values for relative mean error (RME), root mean square percentage
error (RMSPE), and correlation coefficient of 1.088, 2.165, and 0.762, respectively;
in addition, for validation errors, we observed values for RME, RMSPE, and cor-
relation coefficient of 1.069, 2.136, and 0.735, respectively, compared with those of
the formula method, which can be explained by more parameters in the neural net-
work. The fitting surface of the formula method is smoother than that of the machine
learning method due to the existence of more parameters in the neural network.
The machine learning method is recommended for readers seeking to calculate the
groundwater contribution.

The recommended machine learning method can be used in hydrological and crop
growth models. Many hydrological models do not consider the influence of the groundwa-
ter contribution on the water balance equation and the water cycle. The machine learning
method can be added to the groundwater module of hydrological models, and groundwater
contribution should be added to the water balance equation for groundwater. In addition,
machine learning methods can be used in crop growth models, and there may be greater
crop transpiration.
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