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Abstract: Upwelling, a common oceanographic event, can make great contributions, directly or indi-
rectly, to deep ocean carbon sequestration. However, the extent of its contribution indirectly depends
on the composition of microbial communities and the interactions between bacterioplankton and
other microorganisms. This study provides insights into the influence of upwelling on bacterioplank-
ton at the whole community level and predicts their potential functional profiles. The α diversity of
the bacterial community exhibited no significant differences between the upwelling area and non-
upwelling area, while the community composition varied clearly in different habitats. Proteobacteria,
Cyanobacteria, Bacteroidota, Firmicutes, and Actinobacteria were the five dominant phyla in all
of the habitats. The proportions of members of Firmicutes were increased whereas Cyanobacteria
were reduced in upwelling water. However, the percentage of Cyanobacteria was enhanced in the
upwelling deep water. Functional genes that are involved in signal transductions, which belong to
environmental information processing, were more active in upwelling surface water than in the other
habitats. Closer and more complex relationships between bacterioplankton and microbial eukaryotes
were found in the upwelling area, which altered with the variation of the external environmental
conditions. Cyanobacteria showed a positive correlation with microbial eukaryotes in upwelling
deep water. Combined with the high proportions of Cyanobacteria in upwelling deep water, this
might be strong evidence that Cyanobacteria contribute to a deep ocean carbon sink. Overall, our
study reveals the impacts of upwelling on the bacterial community composition, metabolic functions,
and microbial interactions, which are significant to further understanding the carbon sink effects
of upwelling.

Keywords: upwelling; bacterioplankton; signaling function; interactions; carbon sequestration

1. Introduction

Rising CO2 concentration in the atmosphere resulting from rapid industrial develop-
ment has caused catastrophic climate changes [1]. Nowadays, to alleviate these environ-
mental and climatic consequences, reburying the CO2 in the atmosphere back underground
has been considered one of the most effective approaches. Through CO2 fixation and sub-
sequent particulate organic carbon (POC) exportation, which is known as the “biological
pump”, the ocean absorbs 39% of industrial-age fossil carbon emissions and modulates the
growth rate of atmospheric CO2 significantly [2–5]. Therefore, several geological engineer-
ing measures (e.g., ocean iron fertilization and artificial upwelling) have been proposed
to increase the carbon storage of the ocean [6–8]. Particularly, artificial upwelling, which
simulates natural upwelling and transports the surplus nutrients from the deep ocean to the
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surface water, is considered to be an effective countermeasure to promote primary produc-
tion and consequently, increase the biological pump efficiency in exporting organic carbon
to the deep sea [8,9]. Thus far, it has been successfully tested in several sea trials [10–13].

Although artificial upwelling has bright prospects for healing the Earth, there are
still great difficulties with its large-scale application [4,11,14]. For example, it is difficult
to control the intensity and application mode of artificial upwelling, and the potential
disturbances of artificial upwelling to the natural ecosystem cannot be ignored [4,8,11].
These questions were essentially attributed to the limited exploration of the carbon seques-
tration mechanism, the efficiency, and the spatiotemporal fluctuation in natural upwelling.
Upwelling can act as a carbon sink as well as a carbon source [15–18], largely depending
on the microbial community structure and metabolic activities in upwelling [19]. Microbial
processes modify the rates of the microbial carbon pump, which transforms the labile
dissolved organic carbon into recalcitrant dissolved organic carbon. Therefore, a full un-
derstanding of the microbial community structure, metabolic function, and interactions in
the natural upwelling system is crucial for the successful development of geoengineering
projects in the future.

It has been reported that the community structure and metabolism of bacterioplankton
are altered by upwelling [20–23]. According to a study of the South China Sea, genes
that are involved in the membrane transport, photosynthesis, and metabolism of lipid,
nitrogen, and sulfur from predicted metagenomes are increased in the upwelling area,
which indicates that the upwelling can increase the nutrient exchange and transformation
ability of bacterioplankton [21]. Motility genes are also enriched in the upwelling area,
suggesting that upwelling may have an important effect on bacterial chemotaxis [21]. Our
previous research identified that the abundance of bacterioplankton is much higher in the
upwelling region than in the non-upwelling region [24], therefore we speculate that the
metabolic function of the bacterial community in the upwelling area will also be changed
dramatically. Furthermore, the succession of microbial communities could control the
particulate organic carbon export [19]. For instance, as the upwelling intensity transforms
from strong to weak, the phytoplankton community changes from diatom-dominated
to cyanobacteria-dominated. At the same time, the microbial carbon pump becomes
the prevailing mechanism for carbon sequestration instead of the biological pump [19].
Furthermore, the community compositions of microeukaryotes are found to change under
the influence of upwelling, so we infer that the interactions between microbial eukaryotes
and bacterioplankton may profoundly affect the carbon sink effect of upwelling.

The existence of Qiongdong upwelling provides a unique natural condition for study-
ing the role and mechanism of upwelling in the carbon sink. In this study, we analyzed the
diversity and structural changes of the bacterial communities and predicted the function
of the whole bacterial community in the upwelling areas and non-upwelling areas. In
addition, the interactions between microeukaryotes and bacterioplankton were explored.
This study aims to contribute to the understanding of microbial community dynamics and
the carbon sink effect of upwelling.

2. Materials and Methods
2.1. Sampling and Metadata

The sampling information has been described in our previous publication [24]. Briefly,
the samples were collected from six stations along the east coast of Hainan Island in the
South China Sea during June 2020. Stations 1, 2, and 3 were nearshore stations that are
affected by the coastal upwelling, whereas stations 4, 5, and 6 were offshore stations with no
upwelling (Figure 1a). For each station, the seawater samples were taken from the surface
layer (3 m) and the deep layer (bottom water). The location, sampling depth, temperature,
and salinity data of each station were obtained using the CTD sensors (Sea-Bird Electronics,
Bellevue, WA, USA) and they are listed in Table S1.
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Figure 1. (a) Map of the sampling stations in the South China Sea. The shipping route is shown in 
black dotted arrows. Stations 1, 2, and 3 were in the upwelling area, whereas stations 4, 5, and 6 
were in the non-upwelling area. (b) PCoA plot based on unweighted UniFrac distance among the 
bacterial communities from different habitats. The non-upwelling deep water, non-upwelling sur-
face water, upwelling deep water, and upwelling surface water are represented by non-deep, non-
surf, up-deep, and up-surf, respectively. S and D indicate surface water and deep water, respec-
tively. The number following S or D indicates the sampling station. 

Figure 1. (a) Map of the sampling stations in the South China Sea. The shipping route is shown in
black dotted arrows. Stations 1, 2, and 3 were in the upwelling area, whereas stations 4, 5, and 6 were
in the non-upwelling area. (b) PCoA plot based on unweighted UniFrac distance among the bacterial
communities from different habitats. The non-upwelling deep water, non-upwelling surface water,
upwelling deep water, and upwelling surface water are represented by non-deep, non-surf, up-deep,
and up-surf, respectively. S and D indicate surface water and deep water, respectively. The number
following S or D indicates the sampling station.

About 2 L seawater was retrieved using the Sea-Bird CTD rosette sampler (Sea-Bird
Electronics, Bellevue, WA, USA), which was then filtered through 0.22 µm polycarbonate
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filters (Millipore, USA) and the filters were stored at −80 ◦C until the DNA extraction was
performed. Another 0.1 L seawater was collected in a polyethylene bottle (i-Quip, Aladdin,
China) and stored at−20 ◦C for the determination of its nutrients, including nitrate nitrogen
(NO3

−), ammonium nitrogen (NH4
+), nitrite nitrogen (NO2

−), total nitrogen (TN), total
phosphorus (TP), phosphate (PO4

3−), and silicate (SiO3
2−). The concentrations of these

nutrients were measured according to the methods that were described previously [25].

2.2. DNA Extraction and Amplicon Sequencing

The total DNA was extracted from the filters by using the E.Z.N.ATM Water DNA kit
(OMEGA, USA) according to the manufacturer’s instructions. Briefly, cell lysis was per-
formed in tubes containing beads and buffer. The contaminants were subsequently removed
after a heat-freeze step was performed. A HiBind®DNA Mini Column was then used to
adsorb the DNA. Rapid wash steps were finally carried out to elute the DNA. The extracted
DNA was PCR amplified using primers sets 341F (5′-CCTACGGGNGGCWGCAG-3′) and
805R (5′-GACTACHVGGGTATCTAATCC-3′), which targeted the V3-V4 region of the bac-
terial 16S rRNA gene [26]. The PCR reaction mix contained 12.5 µL Phusion® Hot Start
Flex 2X Master Mix (NEB, Ipswich, MA, USA), 2.5 µL (1 µM) of each of the forward and
reverse primers, 50 ng of DNA template, and 25 µL of ddH2O. A PCR was performed
with an initial denaturation at 98 ◦C for 30 s, followed by 35 cycles of 98 ◦C for 10 s, 54
◦C for 30 s, and 72 ◦C for 45 s, and a final extension at 72 ◦C for 10 min. The size of
the PCR product was ~469 bp. The PCR product was purified using TIAN quick Midi
Purification Kit (Tiangen, Beijing, China) and adequately pooled before the sequencing
was performed. The paired-end sequencing of the PCR product was performed using an
Illumina Novaseq 6000 sequencer (Illumina, Santiago, CA, USA) at a commercial company
(LC-Bio, Hangzhou, China). Briefly, the binding sites of the sequencing primers were added
to the connectors at both ends after constructing the DNA library. The template of the first
sequencing was removed after the first sequencing run, and the paired-end module was
used to guide the complementary strand to regenerate and amplify in the original position.
The second complementary strand was then synthesized and sequenced.

2.3. Processing of Paired-End Sequences and Function Prediction

The barcodes from the raw sequencing data were removed using Cutadapt software
(version 1.9) [27]. The paired-end reads were merged with a default error matching rate
of 0.25 using FLASH software (version 1.2.8) [28]. The low-quality paired-end reads
and chimeras were removed using fqtrim (version 0.94) and VSEARCH (version 2.3.4),
respectively, with their default parameters [29]. All of the downstream analyses of the
sequencing data were carried out by QIIME 2.0 software [30]. The dada2 plugin [31] of
QIIME 2.0 was used to denoise the filtered sequencing data. Singletons were removed, and
each sample was rarefied at a sequencing depth of 7419, the lowest among the samples.
Taxonomy assignments of the ASVs (amplicon sequence variants) were performed against
the SILVA database using the BLAST+ consensus taxonomy classifier [32]. The 16S rRNA
sequence data were used to predict the potential functions of the bacterial communities in
different samples using the PICRUSt2 tool [33].

2.4. Statistical Analyses

To visualize the differences between the bacterial communities in different habitats, a
principal coordinate analysis (PCoA) that was based on the unweighted UniFrac distance
was performed using the diversity plugin in QIIME 2.0. The α-diversity indexes including
Shannon diversity, ASV richness, and Pielou’s evenness were calculated using the vegan
package in R (version 3.4.3). Correlation analysis and visualization were performed using
the OmicStudio tools. The Mantel test was used to examine the correlations between the
five dominant phyla and the environmental factors. A redundancy analysis (RDA) was
implemented at the simple effects level and conditional effects level using Canoco5 to
reveal the potential environmental factors regulating the bacterial community composition.
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The output of the PICRUSt2 analysis displaying the gene family and metabolic pathway
abundances in different samples was visualized and statistically analyzed using the STAMP
tools [34]. For the association network analysis between the bacterioplankton and the
microbial eukaryotes, we used freely available public data. Person’s rank correlations
between the bacterioplankton and the microbial eukaryotes were calculated in R 3.6.3 and
visualized using the igraph package (version 1.2.6). Only the strong correlations (rho > 0.8
and p < 0.05) between the bacterioplankton and the microbial eukaryotes were considered
to be valid co-occurrences.

3. Results
3.1. Variations of Bacterioplankton Communities

The downstream processing of the raw sequencing reads provided a total of 2148
ASVs from 12 samples. The number of ASVs that were recovered from each sample ranged
from 92 to 557, with the minimum and maximum values being in the deep waters of the
upwelling area and non-upwelling area, respectively. The PCoA technique clustered the
bacterioplankton communities into four groups (R = 0.8637, p = 0.001) (Figure 1b), which
indicated that there were substantial differences among the habitats. Particularly, the
samples from the upwelling surface water (S1, S2, S3) and the non-upwelling surface water
(S4, S5, S6) were separated into two distinct clusters, which suggests that upwelling has a
significant impact on the community composition of bacterioplankton. Furthermore, the
Shannon diversity and richness of bacterioplankton in the deep water of the upwelling
area was lower than that of the deep water of the non-upwelling area (Figure S1). However,
the bacterioplankton diversity of the surface waters did not differ between the upwelling
and non-upwelling areas.

Proteobacteria, Cyanobacteria, Bacteroidota, Firmicutes, and Actinobacteriota, which
accounted for more than 90% of the total sequences, were the five most abundant phyla
(Figure 2). The relative abundance of these phyla varied dramatically in each sample.
Proteobacteria was the most abundant phylum in all of the samples, and it accounted for
over 40% of the sequences in each sample (Figure 2a). Most Cyanobacteria were detected
in surface water rather than in deep water, especially in non-upwelling surface water. The
abundance of Cyanobacteria in upwelling surface water was decreased, indicating that
upwelling may not be suitable for the growth of Cyanobacteria. However, Cyanobacteria
were also found in upwelling deep water (Figure 2a). Some taxa were almost solely detected
in the deep water, such as Nitrospinota, Chloroflexi, Planctomycetota, SAR324, and SAR406.
Firmicutes, which usually account for a large proportion of the species in deep water [35],
were more abundant in the upwelling surface water than they were in non-upwelling
surface water (Figure 2a). At the class level, Bacilli (phylum Firmicutes) was promoted
under the influence of upwelling (Figure 2b). Cyanobacteria (phylum Cyanobacteria)
were found to decrease in upwelling surface water, but they increased in upwelling deep
water (Figure 2b). Bacteroidia (phylum Bacteroidota) and Gammaproteobacteria (phylum
Proteobacteria) also increased in upwelling surface water (Figure 2b).
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the importance of temperature for the shaping of microbial eukaryotic communities [24], 
the influence of depth on bacterial communities indicates that there are more complex 

Figure 2. Relative abundance of bacteria at the phylum level (a) and class level (b). S and D
indicate surface water and deep water, respectively. The number following S or D indicates the
sampling station.

3.2. Relationship between Environmental Factors and Bacterioplankton Community Composition

To reveal the relationship between the bacterial community composition and the envi-
ronmental factors, correlation tests were carried out and the results were visualized in a
heatmap (Figure S2). Most of the bacterial phyla exhibited a strong positive relationship
with depth, such as Actinobacteriota, NB1-j, Nitrospinota, SAR324, SAR406, and Chlo-
roflexi. These results were consistent with the distribution pattern of these phyla, and they
only appeared in deep water rather than surface water. To eliminate the interference of
autocorrelation between the different environmental factors, further correlations between
the five dominant phyla and the biogeochemical parameters were analyzed by the Mantel
test (Figure 3). The results showed that Acidobacteriota and Cyanobacteria had significant
correlations with depth and temperature, whereas the other three phyla showed few sig-
nificant correlations with certain environmental factors. Furthermore, the RDA revealed
that depth was the most important factor in terms of a conditional effect (Table S2). Unlike
the importance of temperature for the shaping of microbial eukaryotic communities [24],
the influence of depth on bacterial communities indicates that there are more complex
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mechanisms for the structuring of bacterial communities in different environments because
depth is a proxy for pressure, light, and other factors, unlike temperature.
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Figure 3. Correlations between bacterial community composition (phylum level) and biogeochemical
parameters. The width of grey lines indicates the r-value of the Mantel test; the color of lines
indicates the p-value. Asterisks indicate p < 0.05 and the color bar is based on the scale of Spearman’s
correlation coefficient.

3.3. Functional Differences of the Bacterioplankton Communities

A PCA plot that was based on the KEGG pathways showed that there are significant
differences between the surface water and the deep water, which is reflected in the profound
impacts of depth on the bacterial community composition as well as metabolic functions
(Figure S3). The functional pathway genes that are involved in amino acid metabolism
(average 10.55%), membrane transport (average 10.26%), carbohydrate metabolism (aver-
age 8.95%), and replication and repair (average 8.16%) represented dominant functions in
all 12 of the stations. However, these gene families in upwelling surface samples (espe-
cially S1 and S3) were significantly higher than those in non-upwelling areas (Figure 4a),
which indicated that the nutrient exchanges and metabolic activities in the upwelling area
were increased.

To explore the variations in community functions caused by upwelling, the other
three habitats (i.e., upwelling deep, non-upwelling deep, and non-upwelling surface) were
pooled together as one group and analyzed at the KEGG level 3 against the upwelling
surface samples. The results showed that the functional genes that are related to signaling
such as two-component systems, signal transduction mechanisms, and other ion-coupled
transporters, were increased in the upwelling surface area (Figure 4b). All of the functional
genes that were enhanced by upwelling were classified as Environmental Information
Processing (KEGG level 1), which indicated that the bacteria have a strong and positive re-
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sponse to the environmental disturbances caused by upwelling. Furthermore, the increases
in signaling genes probably imply the close connections as well as interactions between the
bacterial communities and other microbes.
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showing the absolute abundance of the major gene families at KEGG level 2, and (b) extended error
bar plot showing the significant dissimilarity of the metabolic pathways at KEGG level 3 between
the up-surf area and all other samples. Surface water and deep water are represented by S and D,
respectively. The number following S or D indicates the sampling station.
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3.4. Interactions between Bacterioplankton and Microbial Eukaryotes

We speculated that there would be close interactions between bacteria and the other
microbial communities because upwelling promoted the prosperity of genes that are related
to signal transduction (see Figure 4). To test this conjecture, a network analysis between
the bacterioplankton and the microbial eukaryotes was conducted Figures 5 and S4). The
resulting network showed that the associations between the bacterioplankton and the
microbial eukaryotes at the phyla level were significantly closer in the upwelling area
than they were in the non-upwelling area (18 nodes, 11 edges in upwelling surface area;
22 nodes, 19 edges in upwelling deep area; 9 nodes, 8 edges in non-upwelling surface area;
11 nodes, 7 edges in the non-upwelling deep area, respectively, Figure S4).
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Figure 5. Network analysis of associations between bacterioplankton and microbial eukaryotes in
(a) surface water and (b) deep water. The different bacterioplankton genus and microbial eukaryote
phyla are represented by circles and triangles with distinctive colors, respectively. The size of the
nodes represented the relative abundances of each microbe. The blue and red lines between the
nodes represent positive or negative correlations, respectively. The thickness of the line represents
the strength of correlation.
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To further explore the impact of upwelling on the relationships between the bacte-
rioplankton and the microeukaryotes, we chose the samples from an upwelling surface
area and an upwelling deep area for the subsequent analyses. We also refined the bacterial
populations to the genus level. On the whole, the interaction networks take microeukary-
otes as cores, and then, they radiate to various bacterial genera. As the most abundant
bacterial phylum in the South China sea, Proteobacteria took plenty of nodes both in up-
welling surface water as well as upwelling deep water and it had positive correlations with
microbial eukaryotes, such as Choanoflagellida, Bacillariophyta, Cercozoa, Metazoa. In the
surface water, SAR11_clade (Clade_I_X and Clade_Ib) and SAR324_clade were negatively
correlated with Sagenista, which were mainly composed of Labyrinthulomycetes. Accord-
ing to our previous study, Labyrinthulomycetes, known as “left-over scavengers”, was
marked as a biomarker in upwelling areas. Considering that there are overlaps between
the niches of Labyrinthulomycetes and bacterioplankton, the negative correlations between
those two may reflect competition between them. Interestingly, Radiolaria showed pos-
itive correlations with Salinicola, Alteromonas, and Pseudomonas in the upwelling surface
water, while exhibiting negative correlations with multiple genera of Proteobacteria in
the upwelling deep water (Figure 5), which indicates that bacterioplankton and microbial
eukaryotes might change their interaction modes to respond to the changing environ-
ment. More importantly, two Cyanobacteria genera, namely Prochlorococcus_MIT9313 and
Synechococcus_CC9902, showed positive correlations with several microbial eukaryotes,
including Alveolata, Stramenopiles, Rhizaria, and Opisthokonta in upwelling deep wa-
ter. The survival strategies of photosynthetic organisms such as Cyanobacteria under
the aphotic environment may largely depend on their cooperative symbiosis with other
microorganisms. The migration of Cyanobacteria might be an important way to transport
organic carbon that is fixed by photosynthesis from the euphotic layer to the deep sea and
make contributions to the microbial carbon sink.

4. Discussion
4.1. Response of Bacterioplankton Communities to the Upwelling

Upwelling has been reported to have significant influences on the abundance and
community composition of bacterioplankton [20,36,37]. The research on the succession
of bacterial assemblages in aging, upwelled water of the Benguela upwelling found that
the shift of the bacterial community during the upwelling period is closely related to the
succession periods of phytoplankton bloom [22]. In our previous study, we discovered
that some phytoplankton such as diatoms and green algae proliferate under the influence
of upwelling [24]. In this research, several bacterial classes such as Bacilli, Bacteroidia,
and Gammaproteobacteria were increased during the diatom bloom period (Figure 2b),
which is consistent with other reports [38–40]. Contrary to the diatom blooms, the relative
abundance of Cyanobacteria decreased more in the upwelling surface water than it did
in the non-upwelling surface water (Figure 2a), which might be due to diatoms having
faster capabilities of nutrient uptake and storage [41]. The intensity of upwelling, more
precisely, the supply of nutrients, plays a vital role in the succession of these microbial
communities. Conversely, the alteration of microbial communities deeply affects the inten-
sity and exportation rates of the microbial carbon pump. It has been reported that in the
upwelling area of the western South China Sea, the phytoplankton community shifts from
being composed of diatoms to picoplankton (such as Prochlorococcus and Synechococcus) as
the upwelling intensities shift from initial intensification to the later weakness periods [19].
Considering that our sampling time was during a strong period of upwelling, the rapid
response of the diatoms to nutrients made it a competitive rival to Cyanobacteria, and
this led to the reduction of Cyanobacteria abundance. Studies have shown that Cyanobac-
teria make outstanding contributions to primary productivity, especially in oligotrophic
areas [42,43]. Therefore, although the abundance of Cyanobacteria decreased in the early
stage of upwelling, it might dominate the phytoplankton community in the late period of
upwelling and absorb large amounts of CO2 to then become the major carbon export to the
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deep sea [19]. We found that Cyanobacteria accounted for a high proportion in the deep
water of the upwelling area (13.3% and 7.1% of total sequences in D1 and D2, respectively),
which might be strong evidence that Cyanobacteria can migrate downward to transport
carbon to the deep sea and promote long-term carbon sequestration.

The relative abundance of Bacilli, which belong to the Firmicutes phylum, was in-
creased by upwelling (Figure 2b). Firmicutes include many different species of Bacilli with
an efficient denitrification capacity [35,44], and they are usually detected in deep water
or sediments [45–47]. Bacilli have strong adaptability to different environmental stressors.
For example, the activation of the SigB-controlled general stress response can provide
significant cross-protection for Bacillus subtilis to deal with lethal oxidative stress [48]. In
addition, under the conditions wherein diatoms and green algae prevail and compete for a
large number of nutrients, Bacilli might use refractory macromolecular carbon compounds
to avoid direct competition with the diatoms and thereby, improve its survival compet-
itiveness. It has been reported that the members of Firmicutes can use biphenyl as the
sole carbon and energy source, which suggests the potential of bioremediation by those
highly adaptable organisms [49]. The highly resilient ability and utilization potential of
special carbon sources are likely strategies that are employed by the Firmicutes to survive
in fluctuating upwelling environments.

4.2. Upregulated Signaling Function in Upwelling and Potential Contribution of Bacterioplankton
to Carbon Sequestration

The resilience ability of bacterioplankton is known to allow them to survive during
constantly changing conditions [50]. According to our previous study, we found that the
abundances of bacterioplankton are increased by upwelling and thus, we speculated that
bacterioplankton communities enact rapid and direct response mechanisms to engage
with the fluctuating environment [24]. Hence, we predicted the impacts of upwelling on
functional genes, subsequently, in this research. The results showed that functional genes
that are involved in signal transduction were promoted, which confirmed the preceding
speculation and demonstrated that bacterial communities have active response strategies to
upwelling [37]. Upwelling usually brings abundant nutrients with low-temperature stress
synchronously, which sometimes, could be a selection pressure and eventually decrease
the microbial diversity [51–53]. The temperature is identified as the most important factor
that shapes the microbial eukaryotic communities in the upwelling region [24]. Similar to
the microbial eukaryotic communities, the major bacterial groups were found to have close
correlations with depth and temperature (Figure 3). Therefore, how bacterioplankton sense
and adapt to low temperatures has become the key point for them surviving successfully,
which primarily depends on the ability of a sensor to sense changes in the temperature [54].
In the present study, the functional genes that are involved in the two-component system
were increased (Figure 4b). The two-component system is reported to be a major strategy
in connecting variations in input signals to variations in cellular physiological output [55].
Previous studies have shown that the decreased membrane fluidity serves as a primary
signal for cold temperature perception, and then, a two-component signal transduction
pathway consisting of a membrane-associated sensor and a cytoplasmic response regulator
is involved in triggering the cold-responsive mechanisms [56–59]. As a consequence,
inducible proteins accumulate to repair the damage that is caused by cold stress [54].
In addition to regulating the temperature stress system, the two-component system is
reported to help bacterioplankton cope with various environmental stresses, including
high-salt stress, high-light stress, and high-temperature stress [60,61], and it even helps
in regulating the growth and cell cycle progression of bacteria [62,63]. Active signal
transduction systems are likely to be effective ways for bacterial communities to adapt to
the fluctuating environment.

Studies have shown that the cell-to-cell signaling of bacteria has an important influence
on bacteria-host interactions [64,65]. Thus, we hypothesize that the signal transduction
system can not only make bacterial communities adapt to the adverse environment easier,
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but also probably adjust the interactions between bacterioplankton and microeukaryotes.
Indeed, more complex networks at the phyla level between bacterioplankton and microbial
eukaryotes were revealed in the upwelling areas than in non-upwelling areas (Figure S4),
which might make a potential contribution to downward carbon export and sequestration.
For example, although Cyanobacteria are vital carbon dioxide fixers, the contribution of
planktonic Cyanobacteria to the burial of organic carbon in deep-sea sediments has been
considered negligible due to their slow sinking rate [66,67]. However, research has shown
that the physical aggregation of Cyanobacteria and eukaryotes can be one important way
to enhance sinking rates in the deep ocean because it increases the effective size of the small
cells [68]. Some eukaryotes can secrete extracellular polysaccharides and even use ectoplas-
mic nets to attach to detritus as well as living microbes, and then speed up the formation
of large fast-sinking particles [69,70]. This phenomenon can be reflected in the complex
network between microbial eukaryotes and bacterioplankton (Figure 5). Cyanobacteria,
especially the members of the genus Synechococcus, are an important component of these
particulate organic aggregations, which are known as marine snow, and are even detected
in the guts of zooplankton, frequently [71–73], which might explain the high proportion
of Cyanobacteria in upwelling deep water (Figure 2a). In addition, previous research has
shown that Cyanobacteria perform no alkaline phosphatase activity in marine snow, which
is unlike the other dense populations of bacterioplankton [74]. Therefore, phosphorus that
is released by other bacterioplankton or microeukaryotes may support the proliferation of
Cyanobacteria in marine snow. Overall, the complex relationship between bacterioplankton
and microbial eukaryotes can benefit both their survival in changeful habitats and provide
a useful mode to strengthen the deep ocean carbon sink.

5. Conclusions

Figuring out the dynamic changes and alterations in the metabolic functions of bac-
terial communities in an upwelling habitat is a prerequisite for accurately evaluating the
carbon sink contribution and ecological functions of upwelling. Here, we used a 16S
rRNA high-throughput sequencing approach to investigate the bacterial communities in
upwelling and non-upwelling areas. Our results showed that the bacterial community
composition varied between the upwelling and non-upwelling areas. Members of Firmi-
cutes were more abundant in the upwelling than non-upwelling water areas, while the
members of Cyanobacteria presented the opposite pattern. Active signal transduction
systems, such as the two-component systems and signal transduction mechanisms, are
the crucial survival mechanisms of bacterioplankton when they are facing an adverse
environment, and they may also regulate the interactions between bacterial communities
and other microorganisms. The relationships between bacterioplankton and microbial eu-
karyotes showed more complicated correlations in upwelling, and the positive correlations
between Cyanobacteria and microbial eukaryotes revealed the potential contribution of
Cyanobacteria to the carbon sink. More direct analyses of their metabolism and function,
such as studies of metagenomics and metatranscriptomics, should be employed in future
research to accurately reflect the dynamics of microbial communities in upwelling. In
addition, the application of isotope tracer technology can make a more accurate assessment
and quantification of the microbial contribution to carbon sequestration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14193097/s1. Figure S1: Shannon (a), Richness (b), and Evenness
(c) for the bacterial communities from different habitats. Labels “non-deep”, “non-surf”, “up-deep”
and “up-surf” represent non-upwelling deep water, non-upwelling surface water, upwelling deep
water, and upwelling surface water, respectively. The boxes represent the ranges of the first and
third quartiles, the line and small square inside each box represent the median and mean values,
and the ends of the whiskers represent the lowest and highest datums (mean ± 1.5 SD); Figure S2:
Correlations between environmental parameters and bacterial phyla. Asterisks indicate P < 0.05 and
the color bar is based on the scale of Pearson’s correlation coefficients; Figure S3: Principal component
analysis based on the predicted KEGG pathways. Labels “non-deep”, “non-surf”, “up-deep” and
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“up-surf” represent non-upwelling deep water, non-upwelling surface water, upwelling deep water,
and upwelling surface water, respectively; Figure S4: A network analysis of associations between
bacterioplankton and microbial eukaryotes in (a) upwelling surface water, (b) non-upwelling surface
water, (c) upwelling deep water, and (d) non-upwelling deep water. The bacterioplankton phyla
and microbial eukaryotes phyla are represented by circles with distinctive colors. The size of the
nodes represented the relative abundances of each microbe. The blue and red lines between the
nodes represent positive or negative correlations, respectively. The thickness of the line represents the
strength of correlation. Table S1: Location, depth, temperature, and salinity of environmental samples;
Table S2: Potential environmental factors for the bacterial phyla composition revealed by RDA.
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