Methane Promotion of Waste Sludge Anaerobic Digestion: Effect of Typical Metal Meshes on Community Evolution and Electron Transfer
Abstract
:1. Introduction
2. Materials and Methods
2.1. WAS Characteristics and Pretreatment
2.2. Reactor Construction and Operation
2.3. Analysis and Calculation Methods
2.3.1. Chemical Analysis Method
2.3.2. Next-Generation Sequencing and Analysis
3. Results and Discussion
3.1. Methane Production Performance
3.2. Soluble Organic Matter Variation
3.3. Effects of Metal Meshes on the Microbial Community
3.4. Analysis of the Potential DIET and Synergistic Methanogenesis Process Mediated by Metal Mesh
3.5. Mechanism Analysis of Metal Mesh Promoting Methane Production
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WAS | Waste activated sludge | DIET | Direct electron transfer process |
AD | Anaerobic digestion | WWTPs | Wastewater treatment plants |
CMs | Conductive materials | EAB | Electrochemically active bacteria |
VFAs | Volatile fatty acids | VSS | Volatile suspended solids |
TSS | Total suspended solids | COD | Chemical oxygen demand |
SS | Stainless steel | PCoA | Principal component analysis |
PBS | Phosphate buffered saline | LCFAs | Long-chain fatty acids |
SAO | Synergistic acetic acid oxidative |
References
- He, Z.W.; Zou, Z.S.; Sun, Q.; Jin, H.Y.; Yao, X.Y.; Yang, W.J.; Tang, C.C.; Zhou, A.J.; Liu, W.Z.; Ren, Y.X.; et al. Freezing-low temperature treatment facilitates short-chain fatty acids production from waste activated sludge with short-term fermentation. Bioresour. Technol. 2022, 347, 126337. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.L.; Jiao, Q.Q.; An, L.; Yang, T.; He, J.G.; Xie, B.H.; Yan, Z.S.; Lu, J.S. New insight into selective Na+ stress on acidogenic fermentation of waste activated sludge from microbial perspective: Hydrolase secretion, fermentative bacteria screening, and metabolism modification. Chem. Eng. J. 2022, 442, 136098. [Google Scholar] [CrossRef]
- Xie, S.H.; Li, X.; Wang, C.D.; Kulandaivelu, J.; Jiang, G.M. Enhanced anaerobic digestion of primary sludge with additives: Performance and mechanisms. Bioresour. Technol. 2020, 316, 123970. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Y.; Yun, S.N.; Wang, Z.Q.; Zhang, Y.W.; Zhang, X.M.; Wang, K.J. Recent advances in bio-based carbon materials for anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2021, 135, 110378. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, H.J.; Park, K.H.; Park, H.D. Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications. Bioresour. Technol. 2018, 254, 300–311. [Google Scholar] [CrossRef]
- Yin, Q.D.; Gu, M.Q.; Wu, G.X. Inhibition mitigation of methanogenesis processes by conductive materials: A critical review. Bioresour. Technol. 2020, 317, 123977. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, S.H.; Lim, T.G.; Park, J.H.; Kim, B.; Buffiere, P.; Park, H.D. Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective. Bioresour. Technol. 2021, 322, 124587. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Liang, D.H.; Li, N. Conductive materials in anaerobic digestion: From mechanism to application. Bioresour. Technol. 2020, 298, 122403. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 2017, 120, 842–853. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers. Manag. 2017, 141, 108–119. [Google Scholar] [CrossRef]
- Ajay, C.M.; Mohan, S.; Dinesha, P.; Rosen, M.A. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel 2020, 277, 118234. [Google Scholar] [CrossRef]
- Amen, T.W.M.; Eljamal, O.; Khalil, A.M.E.; Matsunaga, N. Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions. J. Environ. Chem. Eng. 2017, 5, 5002–5013. [Google Scholar] [CrossRef]
- Amen, T.W.M.; Eljamal, O.; Khalil, A.M.E.; Sugihara, Y.; Matsunaga, N. Methane yield enhancement by the addition of new novel of iron and copper-iron bimetallic nanoparticles. Chem. Eng. Process. Process Intensif. 2018, 130, 253–261. [Google Scholar] [CrossRef]
- Liu, H.Y.; Xu, Y.; Li, L.; Dai, X.H.; Dai, L.L. A review on application of single and composite conductive additives for anaerobic digestion: Advances, challenges and prospects. Resour. Conserv. Recycl. 2021, 174, 105844. [Google Scholar] [CrossRef]
- Pang, H.L.; Jiao, Q.Q.; He, J.G.; Zhang, Z.Q.; Wang, L.; Yan, Z.S.; Lu, J.S. Enhanced short-chain fatty acids production through a short-term anaerobic fermentation of waste activated sludge: Synergistic pretreatment of alkali and alkaline hydrolase blend. J. Clean. Prod. 2022, 342, 130954. [Google Scholar] [CrossRef]
- Pang, H.L.; He, J.G.; Ma, Y.Q.; Pan, X.L.; Zheng, Y.S.; Yu, H.R.; Yan, Z.S.; Nan, J. Enhancing volatile fatty acids production from waste activated sludge by a novel cation-exchange resin assistant strategy. J. Clean. Prod. 2021, 278, 123236. [Google Scholar] [CrossRef]
- Wang, L.; He, Z.W.; Guo, Z.C.; Sangeetha, T.; Yang, C.X.; Gao, L.; Wang, A.J.; Liu, W.Z. Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system. J. Power Sources 2019, 444, 227306. [Google Scholar] [CrossRef]
- Wang, A.J.; Shi, K.; Ning, D.L.; Cheng, H.Y.; Wang, H.C.; Liu, W.Z.; Gao, S.H.; Li, Z.L.; Han, J.L.; Liang, B.; et al. Electrical selection for planktonic sludge microbial community function and assembly. Water Res. 2021, 206, 117744. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.Z.; Haider, M.R.; Ju, F.; Yu, Z.; Shi, Y.J.; Cai, W.W.; Wang, A.J. Waste activated sludge lysate treatment: Resource recovery and refractory organics degradation. J. Hazard. Mater. 2021, 416, 126206. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.Z.; Zhang, Y.F.; Wang, A.J. Natural solar intermittent-powered electromethanogenesis towards green carbon reduction. Chem. Eng. J. 2022, 432, 134369. [Google Scholar] [CrossRef]
- Yang, C.X.; Zhao, S.; Guo, Z.C.; Liu, W.Z.; Wang, L.; Yu, S.P.; Liu, B.L.; Cong, X. Alkaline aided thermophiles pretreatment of waste activated sludge to increase short chain fatty acids production: Microbial community evolution by alkaline on hydrolysis and fermentation. Environ. Res. 2020, 186, 109503. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.Q.; Li, Z.L.; Liang, B.; Zhai, H.L.; Cai, W.W.; Nan, J.; Wang, A.J. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Res. 2019, 162, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Shi, X.; Guo, G.; Zhao, A.; Zhao, Y. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): Abatement of odor and improvement of biogas production. J. Mater. Cycles Waste Manag. 2013, 15, 461–468. [Google Scholar] [CrossRef]
- Tsapekos, P.; Alvarado-Morales, M.; Tong, J.; Angelidaki, I. Nickel spiking to improve the methane yield of sewage sludge. Bioresour. Technol. 2018, 270, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, A.; Naresh Kumar, A.; Lansing, S. Impact of electro-conductive nanoparticles additives on anaerobic digestion performance—A review. Bioresour. Technol. 2021, 342, 126023. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, W.Z.; Shi, Y.J.; Wang, B.; Huang, C.; Liu, C.S.; Wang, A.J. Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion. Sci. Total Environ. 2021, 767, 144344. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Rossi, R.; Saikaly, P.E.; Logan, B.E. The impact of different types of high surface area brush fibers with different electrical conductivity and biocompatibility on the rates of methane generation in anaerobic digestion. Sci. Total Environ. 2021, 787, 147683. [Google Scholar] [CrossRef] [PubMed]
- Nakasaki, K.; Koyama, M.; Maekawa, T.; Fujita, J. Changes in the microbial community during the acclimation process of anaerobic digestion for treatment of synthetic lipid-rich wastewater. J. Biotechnol. 2019, 306, 32–37. [Google Scholar] [CrossRef]
- Lv, Z.P.; Chen, Z.B.; Chen, X.; Liang, J.Z.; Jiang, J.H.; Loake, G.J. Effects of various feedstocks on isotope fractionation of biogas and microbial community structure during anaerobic digestion. Waste Manag. 2019, 84, 211–219. [Google Scholar] [CrossRef]
- Zamorano-Lopez, N.; Borras, L.; Seco, A.; Aguado, D. Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems. Sci. Total Environ. 2020, 699, 134365. [Google Scholar] [CrossRef]
- Yamada, T.; Imachi, H.; Ohashi, A.; Harada, H.; Hanada, S.; Kamagata, Y.; Sekiguchi, Y. Bellilinea caldifistulae gen. nov., sp nov and Longilinea arvoryzae gen. nov., sp nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 2007, 57, 2299–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.J.; Shen, J.Y.; Shi, H.F.; Su, G.Y.; Jiang, X.B.; Li, J.S.; Liu, X.D.; Mu, Y.; Wang, L.J. Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. Environ. Int. 2019, 131, 105020. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Wust, P.K.; Geppert, A.; Foesel, B.U.; Huber, K.J.; Overmann, J. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst. Appl. Microbiol. 2015, 38, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.Y.; Li, W.G.; Zheng, Z.J.; Li, D.H.; Zhang, N. Exogenous acyl-homoserine lactones adjust community structures of bacteria and methanogens to ameliorate the performance of anaerobic granular sludge. J. Hazard. Mater. 2018, 354, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zhang, Y.D.; Zhang, L.; Zhou, Y.; Liu, Y. RNA-based spatial community analysis revealed intra-reactor variation and expanded collection of direct interspecies electron transfer microorganisms in anaerobic digestion. Bioresour. Technol. 2020, 298, 122534. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.M.; Xu, X.H.; Guo, R.B.; Fan, X.L.; Zhao, X.X. Accelerated methanogenesis from effluents of hydrogen-producing stage in anaerobic digestion by mixed cultures enriched with acetate and nano-sized magnetite particles. Bioresour. Technol. 2015, 190, 132–139. [Google Scholar] [CrossRef]
- Xing, L.Z.; Wang, Z.F.; Gu, M.Q.; Yin, Q.D.; Wu, G.X. Coupled effects of ferroferric oxide supplement and ethanol co-metabolism on the methanogenic oxidation of propionate. Sci. Total Environ. 2020, 723, 137992. [Google Scholar] [CrossRef]
- Zhao, Z.S.; Li, Y.; Yu, Q.L.; Zhang, Y.B. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion. Bioresour. Technol. 2018, 250, 79–85. [Google Scholar] [CrossRef]
- Poirier, S.; Dejean, S.; Chapleur, O. Support media can steer methanogenesis in the presence of phenol through biotic and abiotic effects. Water Res. 2018, 140, 24–33. [Google Scholar] [CrossRef]
- Wang, C.Q.; Liu, Y.; Jin, S.; Chen, H.; Xu, X.Y.; Wang, Z.R.; Xing, B.; Zhu, L. Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition. Bioresour. Technol. 2019, 272, 162–170. [Google Scholar] [CrossRef]
Family | Relative Abundance (%) | |||||
---|---|---|---|---|---|---|
Control | SS-Sludge | Ni-Sludge | Cu-Sludge | Ni-Surface | Cu-Surface | |
Methanosaetaceae | 0.63 | 0.14 | 1.96 | 2.82 | 4.53 | 4.29 |
Methanobacteriaceae | 0.35 | 0.43 | 0.91 | 0.96 | 1.41 | 1.37 |
Methanosarcinaceae | 0.12 | 0.05 | 0.57 | 0.51 | 0.17 | 0.21 |
Methanospirillaceae | 0.06 | 0.02 | 0.05 | 0.21 | 0.70 | 0.82 |
Syntrophomonadaceae | 0.74 | 0.41 | 0.48 | 0.58 | 1.27 | 1.43 |
Syntrophaceae | 0.04 | 0.01 | 0.04 | 0.03 | 0.90 | 0.93 |
Pseudomonadaceae | 0.04 | 0.02 | 0.10 | 0.03 | 1.01 | 0.74 |
Anaerolineaceae | 1.79 | 1.60 | 8.27 | 4.39 | 8.18 | 6.28 |
Synergistaceae | 0.53 | 3.78 | 1.31 | 1.74 | 1.13 | 1.29 |
Rhodocyclaceae | 0.30 | 0.42 | 0.27 | 0.45 | 2.64 | 0.72 |
Spirochaetaceae | 0.23 | 0.09 | 0.20 | 0.32 | 1.43 | 1.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, C.; Fan, X.; Yang, C.; Zhou, X.; Guo, Z. Methane Promotion of Waste Sludge Anaerobic Digestion: Effect of Typical Metal Meshes on Community Evolution and Electron Transfer. Water 2022, 14, 3129. https://doi.org/10.3390/w14193129
Wang L, Liu C, Fan X, Yang C, Zhou X, Guo Z. Methane Promotion of Waste Sludge Anaerobic Digestion: Effect of Typical Metal Meshes on Community Evolution and Electron Transfer. Water. 2022; 14(19):3129. https://doi.org/10.3390/w14193129
Chicago/Turabian StyleWang, Ling, Chang Liu, Xing Fan, Chunxue Yang, Xiaolin Zhou, and Zechong Guo. 2022. "Methane Promotion of Waste Sludge Anaerobic Digestion: Effect of Typical Metal Meshes on Community Evolution and Electron Transfer" Water 14, no. 19: 3129. https://doi.org/10.3390/w14193129
APA StyleWang, L., Liu, C., Fan, X., Yang, C., Zhou, X., & Guo, Z. (2022). Methane Promotion of Waste Sludge Anaerobic Digestion: Effect of Typical Metal Meshes on Community Evolution and Electron Transfer. Water, 14(19), 3129. https://doi.org/10.3390/w14193129