Combination of a Highly Efficient Biological System and Visible-Light Photocatalysis Pretreatment System for the Removal of Phthalate Esters from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of I-Doped TiO2
2.3. Preparation of I-Doped TiO2-Coated Beads, Design of the Photoreactor, and Photocatalysis of PAEs
2.4. Screening, Identification, and Degradation Characteristics of DEHP-Degrading Bacteria
2.5. Bioreactor (PBR) Design and Immobilization Procedure
2.6. Coupled Photobiological System Design
2.7. Chemical and Biological Analysis
3. Results and Discussion
3.1. Degradation Kinetics of PAEs and Effects of PAE Concentration in the Photoreactor on Removal Efficiency
3.2. Effects of pH, RT, and Light Intensity on PAE Removal Efficiency of the Photoreactor
3.3. Effect of Coexisting PAEs on PAE Removal in the Visible-Light Photoreactor
3.4. Analysis of the Intermediate Products in the Visible-Light Pretreatment System
3.5. Changes in the Bacterial Community of the Soil and the Degradation Characteristics of DEHP-Degrading Bacteria
3.6. PAE Mixture Removal by Using the Coupled Photobiological System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, M.T.; Kumar, S.S.; Ghosh, P.; Shah, G.; Malyan, S.K.; Bajar, S.; Thakur, I.S.; Singh, L. Remediation strategies for mitigation of phthalate pollution: Challenges and future perspectives. J. Hazard. Mater. 2021, 409, 124496. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, X.; Guo, Y.; Ma, F.; Guo, Y.; Yuan, X.; Huo, M. Simulated sunlight photodegradation of aqueous phthalate esters catalyzed by the polyoxotungstate/titania nanocomposite. J. Hazard. Mater. 2010, 178, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.V.; Wang, T.H.; Yuan, S.Y. Biodegradation of four phthalate esters in sludge. Chemosphere 2007, 69, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.R.; Chen, H.S.; Chuang, W.C. Preliminary determination of phthalates in field vegetables and fruits in Taiwan. Taiwan. J. Agric. Chem. Food. Sci. 2016, 54, 212–217. [Google Scholar]
- Lin, Z.; Zhang, W.; Zhu, X.; Wu, W.; Chen, Y.; Li, G.; Ren, L.; Luo, S.; Xie, Y.; Huang, Y.; et al. Effects of biochar pyrolysis temperature on di-2-ethylhexyl phthalate (DEHP) removal performance and microbial community structure in coastal sediments. Environ. Technol. Inno. 2021, 24, 102004. [Google Scholar] [CrossRef]
- Huang, R.; Yan, H.; Li, L.; Deng, D.; Shu, Y.; Zhang, Q. Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution. Appl. Catal. B 2011, 106, 264–271. [Google Scholar] [CrossRef]
- Radke, E.G.; Glenn, B.S.; Braun, J.M.; Cooper, G.S. Phthalate exposure and female reproductive and developmental outcomes: A systematic review of the human epidemiological evidence. Environ. Int. 2019, 130, 104580. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Shi, H.; Qian, Y. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 2000, 41, 1245–1248. [Google Scholar]
- Chen, C.Y.; Chen, C.C.; Chung, Y.C. Removal of phthalate esters by α-cyclodextrin-linked chitosan bead. Bioresour. Technol. 2007, 98, 2578–2583. [Google Scholar] [CrossRef]
- Hung, C.H.; Yuan, C.; Li, H.W. Photodegradation of diethyl phthalate with PANi/CNT/TiO2 immobilized on glass plate irradiated with visible light and simulated sunlight—effect of synthesized method and pH. J. Hazard. Mater. 2017, 322, 243–253. [Google Scholar] [CrossRef]
- Wang, X.K.; Wang, C.; Jiang, W.Q.; Guo, W.L.; Wang, J.G. Sonochemical synthesis and characterization of Cl-doped TiO2 and its application in the photodegradation of phthalate ester under visible light irradiation. Chem. Eng. J. 2012, 189, 288–294. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Drogui, P.; Seyhi, B.; Brar, S.K.; Buelna, G.; Dubé, R. Occurrence, fate and effects of di-(2-ethylhexyl) phthalate in wastewater treatment plants: A review. Environ. Pollut. 2014, 194, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Anandan, S.; Pugazhenthiran, N.; Lana-Villarreal, T.; Lee, G.J.; Wu, J.J. Catalytic degradation of a plasticizer, di-ethylhexyl phthalate, using Nx–TiO2−x nanoparticles synthesized via co-precipitation. Chem. Eng. J. 2013, 231, 182–189. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wu, P.S.; Chung, Y.C. Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water. Bioresour. Technol. 2009, 100, 4531–4534. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xia, M.; Chu, Y.; Khan, M.A.; Lei, W.; Wang, F.; Muhmood, T.; Wang, A. Adsorption and desorption of Pb (II) on l-lysine modified montmorillonite and the simulation of interlayer structure. Appl. Clay Sci. 2019, 169, 40–47. [Google Scholar] [CrossRef]
- Štengl, V.; Grygar, T.M. The simplest way to iodine-doped anatase for photocatalysts activated by visible light. Int. J. Photoenergy 2011, 2011, 685935. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Wang, Z.; Cai, W.; Lu, F.; Zhang, J.; Yang, Y.; Ma, N.; Liu, Y. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater. 2005, 17, 1548–1552. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wang, G.H.; Tseng, I.H.; Chung, Y.C. Analysis of bacterial diversity and efficiency of continuous removal of Victoria Blue R from wastewater by using packed-bed bioreactor. Chemosphere 2016, 145, 17–24. [Google Scholar] [CrossRef]
- Chung, Y.C.; Chen, C.Y. Degradation of di-(2-ethylhexyl) phthalate (DEHP) by TiO2 photocatalysis. Water Air Soil Pollut. 2009, 200, 191–198. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M.; Qu, R.; Liu, H.; Wang, L.; Wang, Z. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. Chem. Eng. J. 2016, 301, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Li, S.; Wang, L.; Huang, F.; Guan, R.; Li, J.; Jiao, Y.; Sun, J. Rapidly degradation of di-(2-ethylhexyl) phthalate by Z-scheme Bi2O3/TiO2 reduced graphene oxide driven by simulated solar radiation. Chemosphere 2021, 272, 129631. [Google Scholar] [CrossRef] [PubMed]
- Kanaujiya, D.K.; Sivashanmugam, S.; Pakshirajan, K. Biodegradation and toxicity removal of phthalate mixture by Gordonia sp. in a continuous stirred tank bioreactor system. Environ. Technol. Innov. 2022, 26, 102324. [Google Scholar] [CrossRef]
- Kaneco, S.; Katsumata, H.; Suzuki, T.; Ohta, K. Titanium Dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism. Chem. Eng. 2006, 125, 59–66. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, Z.; Liu, B.; Wang, G.; Weng, L.; Zhou, J.; Hu, H.; He, H.; Huang, Y.; Chen, J.; et al. Bioremediation of di-(2-ethylhexyl) phthalate contaminated red soil by Gordonia terrae RL-JC02: Characterization, metabolic pathway and kinetics. Sci. Total Environ. 2020, 733, 139138. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Du, H.; Feng, N.; Xiang, L.; Li, Y.; Li, H.; Cai, Q.; Mo, C. Biodegradation of di-n-butylphthalate and phthalic acid by a novel Providencia sp. 2D and its stimulation in a compost-amended soil. Biol. Fertil. Soils 2016, 52, 65–76. [Google Scholar] [CrossRef]
- Feng, N.; Yu, J.; Mo, C.; Zhao, H.; Li, Y.; Wu, B. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3. Sci. Total Environ. 2018, 616–617, 117–127. [Google Scholar] [CrossRef]
- Singh, T.; Suman, S.; Rashmi, M.; Singh, A. Biodegradation of di-(2-Ethylhexyl Phalate) by Bacillus antracis (Accession no. KJ085972.1). J. Ecophysiol. Occup. Health 2020, 20, 140–144. [Google Scholar] [CrossRef]
- Hashizume, K.; Nanya, J.; Toda, C.; Yasui, T.; Nagano, H.; Kojima, N. Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water. Biol. Pharm. Bull. 2002, 25, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Abioye, P.O.; Iroegu, V.T.; Abiodun, A.S. Biodegradation of methyl red by Staphylococcus aureus isolated from waste dump site. J. Environ. Sci. Technol. 2015, 8, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Sahasrabudhe, M.M.; Saratale, R.G.; Saratale, G.D.; Pathade, G.R. Decolorization and detoxification of sulfonated toxic diazo dye C.I. Direct Red 81 by Enterococcus faecalis YZ 66. J. Environ. Health Sci. Eng. 2014, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Bai, N.; Li, S.; Zhang, J.; Zhang, H.; Zhang, H.; Zheng, X.; Lv, W. Efficient biodegradation of DEHP by CM9 consortium and shifts in the bacterial community structure during bioremediation of contaminated soil. Environ. Pollut. 2020, 266 Pt 2, 115112. [Google Scholar] [CrossRef]
- Nshimiyimana, J.B.; Khadka, S.; Zou, P.; Adhikari, S.; Proshad, R.; Thapa, A.; Xiong, L. Study on biodegradation kinetics of di-2-ethylhexyl phthalate by newly isolated halotolerant Ochrobactrum anthropi strain L1-W. BMC Res. Notes 2020, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Cui, K.; Li, X.; Fu, J.; Sheng, G. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process. Biochem. 2004, 39, 1125–1129. [Google Scholar] [CrossRef]
- Heydarnezhad, F.; Hoodaji, M.; Shahriarinour, M.; Tahmourespour, A. Toluene degradation by free Staphylococcus gallinarum and immobilized on multi-walled carbon nanotubes. Front. J. Soc. Technol. Environ. Sci. 2021, 10, 61–73. [Google Scholar] [CrossRef]
- Peng, X.; Qu, X.; Luo, W.; Jia, X. Bioresource technology co-metabolic degradation of tetrabromobisphenol a by novel strains of Pseudomonas sp. and Streptococcus sp. Bioresour. Technol. 2014, 169, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Alam, M.Z.; Anwar, M.N. Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent. Int. Res. J. Biological Sci. 2013, 2, 27–31. [Google Scholar]
- Yang, T.; Ren, L.; Jia, Y.; Fan, S.; Wang, J.; Wang, J.; Nahurira, R.; Wang, H.; Yan, Y. Biodegradation of di-(2-ethylhexyl) phthalate by Rhodococcus ruber YC-YT1 in contaminated water and soil. Int. J. Environ. Res. Public Health 2018, 15, 964. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.J.; Bosch, R.; Gibson, M.I.; Christie-Oleza, J.A. Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization. Environ. Sci. Technol. 2020, 54, 2244–2256. [Google Scholar] [CrossRef] [Green Version]
- Pradeep, S.; Sarath Josh, M.K.; Binod, P.; Sudha Devi, R.; Balachandran, S.; Anderson, R.C.; Benjamin, S. Achromobacter denitrificans strain SP1 efficiently remediates di(2-ethylhexyl)phthalate. Ecotoxicol. Environ. Saf. 2015, 112, 114–121. [Google Scholar] [CrossRef]
- Hu, R.; Zhao, H.; Xu, X.; Wang, Z.; Yu, K.; Shu, L.; Yan, Q.; Wu, B.; Mo, C.; He, Z.; et al. Bacteria-driven phthalic acid ester biodegradation: Current status and emerging opportunities. Environ. Int. 2021, 154, 106560. [Google Scholar] [CrossRef]
- Chao, W.L.; Cheng, C.Y. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm. Chemosphere 2007, 67, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, J.; Yadav, M.P.; Li, X. Biodegradability and biodegradation pathway of di-(2-ethylhexyl) phthalate by Burkholderia pyrrocinia B1213. Chemosphere 2019, 225, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.W.; Wen, Z.D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 2016, 541, 986–1001. [Google Scholar] [CrossRef] [PubMed]
10 | 20 | 30 | 40 | 50 | |
---|---|---|---|---|---|
DEHP | 0.71 | 0.68 | 0.51 | 0.45 | 0.35 |
DBP | 0.72 | 0.7 | 0.58 | 0.51 | 0.38 |
DMP | 0.75 | 0.72 | 0.65 | 0.56 | 0.41 |
Band | Phylogeny | Closest Relatives | Relative Abundance of DGGE Bands (%) | |||
---|---|---|---|---|---|---|
Similarity (%) | 60 mg/L | 80 mg/L | 100 mg/L | |||
A | Proteobacteria | Providencia sp. | 98.5 | 0.81 | 1.08 | 0.35 |
B | Bacillota | Bacillus megaterium | 99.8 | 0.34 | 0.83 | 0.31 |
C | Bacillota | Bacillus antracis | 98.2 | 0.85 | 0.92 | 0.97 |
D | Proteobacteria | Acinetobacter iwoffii | 99.6 | 0.41 | 0.71 | 0.82 |
E | Bacillota | Staphylococcus aureus | 99.6 | 0.46 | 0.72 | 0.76 |
F | Bacillota | Staphylococcus gallinarum | 99.8 | 0.16 | 0.48 | – |
G | Bacillota | Enterococcus faecalis | 98.6 | 0.31 | 0.67 | 0.61 |
H | Bacillota | Streptococcus sp. | 99.2 | 0.26 | 0.28 | - |
I | Actinomycetota | Jonesia denitrificans | 99.6 | 0.28 | 0.21 | - |
J | Bacteroidota | Flavobacterium sp. | 99.3 | 0.42 | - | - |
K | Actinomycetota | Corynebacterium nitrilophilus | 99.5 | 0.85 | - | - |
L | Bacteroidota | Niabella ginsenosidivorans | 99.6 | 1.21 | - | - |
M | Bacteroidota | Terrimonas lutea | 99.1 | 1.32 | 1.81 | 0.28 |
N | Proteobacteria | Ochrobactrum anthropi | 99.8 | 1.40 | 1.98 | 0.26 |
O | Actinomycetota | Rhodococcus ruber | 99.2 | 0.96 | 0.84 | - |
P | Proteobacteria | Pseudomonas sp. | 98.2 | 71.80 | 73.71 | 81.32 |
Q | Proteobacteria | Burkholderia pyrrocinia | 99.5 | 1.60 | - | - |
R | Actinomycetota | Mycobacterium houstonense | 99.6 | 2.38 | 1.62 | - |
S | Proteobacteria | Achromobacter denitrificans | 98.8 | 2.58 | 1.33 | - |
T | Actinomycetota | Gordonia terrae | 99.5 | 11.60 | 12.81 | 14.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Wang, G.-H.; Chang, Y.-J.; Chen, Y.-H.; Cheng, C.-Y.; Chung, Y.-C. Combination of a Highly Efficient Biological System and Visible-Light Photocatalysis Pretreatment System for the Removal of Phthalate Esters from Wastewater. Water 2022, 14, 3139. https://doi.org/10.3390/w14193139
Chen C-Y, Wang G-H, Chang Y-J, Chen Y-H, Cheng C-Y, Chung Y-C. Combination of a Highly Efficient Biological System and Visible-Light Photocatalysis Pretreatment System for the Removal of Phthalate Esters from Wastewater. Water. 2022; 14(19):3139. https://doi.org/10.3390/w14193139
Chicago/Turabian StyleChen, Chih-Yu, Guey-Horng Wang, Yu-Jen Chang, Yi-Hui Chen, Chiu-Yu Cheng, and Ying-Chien Chung. 2022. "Combination of a Highly Efficient Biological System and Visible-Light Photocatalysis Pretreatment System for the Removal of Phthalate Esters from Wastewater" Water 14, no. 19: 3139. https://doi.org/10.3390/w14193139
APA StyleChen, C. -Y., Wang, G. -H., Chang, Y. -J., Chen, Y. -H., Cheng, C. -Y., & Chung, Y. -C. (2022). Combination of a Highly Efficient Biological System and Visible-Light Photocatalysis Pretreatment System for the Removal of Phthalate Esters from Wastewater. Water, 14(19), 3139. https://doi.org/10.3390/w14193139