Investigation of Flow and Heat Transfer Performance of Double-Layer Pin-Fin Manifold Microchannel Heat Sinks
Abstract
:1. Introduction
2. Methodology
2.1. Geometric Model of the Double-Layer Pin–Fin MMC
2.2. Governing Equations and Boundary Conditions
2.3. Data Reduction
2.4. Grid Independence Verification and Simulation Method Validation
3. Simulation Results and Discussion
3.1. Comparison of the Flow and Heat Transfer Performance of the Double-Layer and Single-Layer Pin–Fin MMC
3.2. Geometric Effects on the Flow and Heat Transfer Performance of the Double-Layer Pin–Fin MMC
3.2.1. Pin–Fin Shape
3.2.2. Pin–Fin Size
3.2.3. Height Ratio
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | heating area (m2) |
Cp | specific heat capacity at constant pressure (J/kg∙K) |
d | diameter of pin-fin (m) |
D | hydraulic diameter (m) |
f | Fanning friction factor (-) |
h | heat transfer coefficient (W/m2∙K) |
H1 | lower microchannel height (m) |
H2 | upper microchannel height (m) |
j | Colburn factor (-) |
l | length (m) |
L | length of the flow channel (m) |
Nu | Nusselt number (-) |
ΔP | pressure drop (Pa) |
Pr | Prandtl number (-) |
p | wetted perimeter (m) |
q | heat flux (W/cm2) |
Re | Reynold number (-) |
R | thermal resistance (K/W) |
S | runner wetting area (m2) |
T | temperature (K) |
ΔT | temperature difference (K) |
u | inlet velocity (m/s) |
V | liquid domain volume (m3) |
w | width (m) |
Greek symbols | |
ζ | comprehensive performance evaluation criteria (-) |
λ | thermal conductivity (W/m∙K) |
ρ | density (kg/m3) |
μ | dynamic viscosity (Pa∙s) |
α | height ratio of the upper and lower microchannel (-) |
Subscript | |
av | average |
b | base |
c | channel |
d | depth |
eff | effective |
in | inlet |
i,j | tensor index symbols |
max | maximum |
min | minimum |
out | outlet |
r | rib |
s | surface |
References
- Jahromi, P.F.; Karimi-Sabet, J.; Amini, Y.; Fadaei, H. Pressure-driven liquid-liquid separation in Y-shaped microfluidic junctions. Chem. Eng. J. 2017, 328, 1075–1086. [Google Scholar] [CrossRef]
- Marsousi, S.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem. Eng. J. 2018, 356, 492–505. [Google Scholar] [CrossRef]
- Yang, Y.; Du, J.; Li, M.; Li, W.; Wang, Q.; Wen, B.; Zhang, C.; Jin, Y.; Wang, W. Embedded microfluidic cooling with compact double H type manifold microchannels for large-area high-power chips. Int. J. Heat Mass Transf. 2022, 197, 123340. [Google Scholar] [CrossRef]
- Zhang, D.; Fu, L.; Guan, J.; Shen, C.; Tang, S. Investigation on the heat transfer and energy-saving performance of microchannel with cavities and extended surface. Int. J. Heat Mass Transf. 2022, 189, 122712. [Google Scholar] [CrossRef]
- Moore, G.E. Cramming more components onto integrated circuits. Reprinted from Electronics, Volume 38, Number 8, April 19, 1965, p. 114. IEEE Solid-State Circuits Newsl. 2006, 11, 33–35. [Google Scholar] [CrossRef]
- Mandel, R.K.; Bae, D.G.; Ohadi, M.M. Embedded Two-Phase Cooling of High Flux Electronics via Press-Fit and Bonded FEEDS Coolers. J. Electron. Packag. 2018, 140, 031003. [Google Scholar] [CrossRef] [Green Version]
- Harpole, G.M.; Eninger, J.E. Micro-channel heat exchanger optimization. In Proceedings of the Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM VI), Phoenix, AZ, USA, 12–14 February 1991; pp. 59–63. [Google Scholar]
- Li, Z.; Peng, Y.; Yang, X. The Experimental Study of the Performance of Zigzag Microchannel Exchanger. Modul. Mach. Tool Autom. Manuf. Tech. 2021, 9, 57–61. [Google Scholar]
- Zhai, Y.; Xia, G.; Cui, Z. Numerical simulation of flow and heat transfer in spaced fan-shaped cavity microchannels. J. Beijing Univ. Technol. 2014, 40, 627–633. [Google Scholar]
- Xu, S.; Guo, Z.; Qin, J.; Cai, Q.; Hu, G.; Wang, W. Bionic modeling of tree-shaped microchannel heat sink and numerical analysis of 3D heat flow characteristics. China Mech. Eng. 2014, 25, 1185–1188. [Google Scholar]
- Li, Y.; Wu, H. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink. Int. J. Heat Mass Transf. 2022, 187, 122500. [Google Scholar] [CrossRef]
- Alam, M.W.; Bhattacharyya, S.; Souayeh, B.; Dey, K.; Hammami, F.; Rahimi-Gorji, M.; Biswas, R. CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study. Int. Commun. Heat Mass Transf. 2020, 112, 104455. [Google Scholar] [CrossRef]
- Yang, D.; Yan, W.; Ding, G.; Jin, Z.; Zhao, J.; Wang, G. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations. Appl. Therm. Eng. 2017, 112, 1547–1556. [Google Scholar] [CrossRef]
- Xia, G.; Cui, Z.; Zhai, Y.; Cui, Y.; Li, J. Flow and heat transfer characteristics of heat sink with rhomboid microneedle ribs. J. China Univ. Pet. 2014, 38, 130–134. [Google Scholar]
- Ambreen, T.; Kim, M.H. Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks. Int. J. Heat Mass Transf. 2018, 126, 245–256. [Google Scholar] [CrossRef]
- Vafai, K.; Zhu, L.U. Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int. J. Heat Mass Transf. 1999, 42, 2287–2297. [Google Scholar] [CrossRef]
- Hu, N.; Wang, Q.; Liu, S.; Gu, J.; Li, L.; Lyu, J. A narrow shape double-layer microchannel heat sink (DL-MCHS) designed for high-power laser crystal. Appl. Therm. Eng. Des. Processes Equip. Econ. 2022, 211, 118456. [Google Scholar] [CrossRef]
- Lin, L.; Chen, Y.; Wang, X. Optimization of crucial parameters for double-layer microchannel heat sink. J. Eng. Thermophys. 2014, 35(3), 567–570. [Google Scholar]
- Shen, H.; Xie, G.; Wang, C.C. Thermal performance and entropy generation of novel X-structured double layered microchannel heat sinks. J. Taiwan Inst. Chem. Eng. 2020, 111, 90–104. [Google Scholar] [CrossRef]
- Chen, R.; Tang, S. Simulation of heat transfer performance of double-layer trapezoidal microchannel heat sink based on pyramidal perturbation structure. Prog. Chem. Ind. 2020, 39, 7. [Google Scholar]
- Zhang, Y.D.; Chen, M.R.; Wu, J.H.; Hung, K.-S.; Wang, C.-C. Performance Improvement of a Double-Layer Microchannel Heat Sink via Novel Fin Geometry—A Numerical Study. Energies 2021, 14, 3585. [Google Scholar] [CrossRef]
- Pan, Y.H.; Zhao, R.; Fan, X.H.; Nian, Y.-L.; Cheng, W.-L. Study on the effect of varying channel aspect ratio on heat transfer performance of manifold microchannel heat sink. Int. J. Heat Mass Transf. 2020, 163, 120461. [Google Scholar] [CrossRef]
- Gan, T.; Quan, X. Numerical simulation of flow and heat transfer characteristics in a novel orifice plate manifold microchannel. Cryogenics 2019, 5, 59–63. [Google Scholar]
- Yang, M.; Cao, B.Y. Multi-objective optimization of a hybrid microchannel heat sink combining manifold concept with secondary channels. Appl. Therm. Eng. 2020, 181, 115592. [Google Scholar] [CrossRef]
- Gilmore, N.; Menictas, C.; Timchenko, V. Open manifold microchannel heat sink for high heat flux electronic cooling with a reduced pressure drop. Int. J. Heat Mass Transf. 2020, 163, 120395. [Google Scholar] [CrossRef]
- Erp, R.V.; Soleimanzadeh, R.; Nela, L.; Kampitsis, G.; Matioli, E. Co-designing electronics with microliquidics for more sustainable cooling. Nature 2020, 585, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Hah, S.; Kim, D.; Kim, S.-M. Enhanced flow uniformity in parallel mini-channels with pin-finned inlet header. Appl. Therm. Eng. 2019, 152, 718–733. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, Z.; Cui, D.; Wang, Z.; Zhang, J.; Ji, Y. Numerical investigation on the thermal-hydraulic performance of helical twine printed circuit heat exchanger. Int. Commun. Heat Mass Transf. 2021, 128, 105596. [Google Scholar] [CrossRef]
- Drummond, K.P.; Back, D.; Sinanis, M.D.; Janes, D.B.; Peroulis, D.; Weibel, J.A.; Garimella, S.V. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. Int. J. Heat Mass Transf. 2018, 117, 319–330. [Google Scholar] [CrossRef]
- Eslami, M.; Kamali, R.; Derakhshanpour, K. Improving performance of single and double-layered microchannel heat sinks by cylindrical ribs: A numerical investigation of geometric parameters. Int. Commun. Heat Mass Transf. Rapid Commun. J. 2021, 126, 105440. [Google Scholar]
Parameter | Variable | Values |
---|---|---|
microchannel width | wc | 16 μm |
microchannel rib width | wr | 16 μm |
microchannel depth | ld | 150 μm |
chip base thickness | lb | 150 μm |
inlet width | win | 500 μm |
outlet width | wout | 250 μm |
divider width | wdiv | 250 μm |
mass flow rate | G | 1300 kg/(m2·s) |
heat flux | q | 0–75 W/cm2 |
inlet temperature | Tin | 332 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Q.; Li, M.; Ma, X.; Xiao, X.; Ji, Y. Investigation of Flow and Heat Transfer Performance of Double-Layer Pin-Fin Manifold Microchannel Heat Sinks. Water 2022, 14, 3140. https://doi.org/10.3390/w14193140
Li Y, Wang Q, Li M, Ma X, Xiao X, Ji Y. Investigation of Flow and Heat Transfer Performance of Double-Layer Pin-Fin Manifold Microchannel Heat Sinks. Water. 2022; 14(19):3140. https://doi.org/10.3390/w14193140
Chicago/Turabian StyleLi, Yantao, Qianxiang Wang, Minghan Li, Xizhen Ma, Xiu Xiao, and Yulong Ji. 2022. "Investigation of Flow and Heat Transfer Performance of Double-Layer Pin-Fin Manifold Microchannel Heat Sinks" Water 14, no. 19: 3140. https://doi.org/10.3390/w14193140
APA StyleLi, Y., Wang, Q., Li, M., Ma, X., Xiao, X., & Ji, Y. (2022). Investigation of Flow and Heat Transfer Performance of Double-Layer Pin-Fin Manifold Microchannel Heat Sinks. Water, 14(19), 3140. https://doi.org/10.3390/w14193140