Thermal-Hydraulic Characteristics of the Liquid-Based Battery Thermal Management System with Intersected Serpentine Channels
Abstract
:1. Introduction
2. Physical Problem
3. Numerical Methodology
3.1. Governing Equations
3.2. Data Reduction
3.3. Numerical Details
4. Results
4.1. Effects of Flow Direction and Intersecting Channels
4.2. Effects of Inlet and Outlet Distribution
4.3. Comparison with Existing Literature
5. Conclusions
- (1)
- The addition of intersecting channels may worsen the battery temperature when the given flow velocity is low, but at high inlet velocities, the battery temperature is improved;
- (2)
- The integrated bypass could distribute the incoming coolant into branches, thus dramatically decreasing the viscous pressure drop across the flow channel and the corresponding power consumption;
- (3)
- The case with a widthwise flow direction reduces the battery temperature of the intersected serpentine channel case with a longitudinal flow direction for all the investigated flow velocities, although the power cost is increased slightly;
- (4)
- Considering both the heat transfer performance and friction loss, the j/f factor is remarkably improved by the addition of intersecting channels; the change of flow direction from longitudinal to widthwise could further enhance the thermal-hydraulic characteristics for intersected designs, but for conventional serpentine channels, the longitudinal flow direction presents better performance;
- (5)
- The inlet and outlet distributions have a negligible impact on the thermal–hydraulic performance for conventional serpentine channels, while for intersected channel designs, better performance is achieved when the inlet and outlet are distributed on the opposite sides.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schleussner, C.-F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and Policy Characteristics of the Paris Agreement Temperature Goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.H.; Mathews, J.A.; Rask, M. Integrating Private Transport into Renewable Energy Policy: The Strategy of Creating Intelligent Recharging Grids for Electric Vehicles. Energy Policy 2009, 37, 2481–2486. [Google Scholar] [CrossRef]
- Santos, G. Road Transport and CO2 Emissions: What Are the Challenges? Transp. Policy 2017, 59, 71–74. [Google Scholar] [CrossRef]
- Kumar, R.R.; Alok, K. Adoption of Electric Vehicle: A Literature Review and Prospects for Sustainability. J. Clean. Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- Haxhiu, A.; Abdelhakim, A.; Kanerva, S.; Bogen, J. Electric Power Integration Schemes of the Hybrid Fuel Cells and Batteries-Fed Marine Vessels—An Overview. IEEE Trans. Transp. Electrif. 2022, 8, 1885–1905. [Google Scholar] [CrossRef]
- Trends and Developments in Electric Vehicle Markets—Global EV Outlook 2021—Analysis. Available online: https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets (accessed on 15 November 2021).
- Zuo, H.; Zhang, B.; Huang, Z.; Wei, K.; Zhu, H.; Tan, J. Effect Analysis on SOC Values of the Power Lithium Manganate Battery during Discharging Process and Its Intelligent Estimation. Energy 2022, 238, 121854. [Google Scholar] [CrossRef]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal Issues about Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery Thermal Models for Hybrid Vehicle Simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.; Pecht, M. Mitigation Strategies for Li-Ion Battery Thermal Runaway: A Review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
- Zhao, C.; Sousa, A.C.M.; Jiang, F. Minimization of Thermal Non-Uniformity in Lithium-Ion Battery Pack Cooled by Channeled Liquid Flow. Int. J. Heat Mass Transf. 2019, 129, 660–670. [Google Scholar] [CrossRef]
- Lin, J.; Liu, X.; Li, S.; Zhang, C.; Yang, S. A Review on Recent Progress, Challenges and Perspective of Battery Thermal Management System. Int. J. Heat Mass Transf. 2021, 167, 120834. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Li, B.; Yan, Y. A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles. Renew. Sustain. Energy Rev. 2016, 64, 106–128. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A Review of Air-Cooling Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, Y.; Yuan, W.; Fang, G.; Yang, Y.; Zhang, X.; Wu, Y.; Yuan, Y.; Wang, C.; Li, J. Challenges and Recent Progress in Thermal Management with Heat Pipes for Lithium-Ion Power Batteries in Electric Vehicles. Sci. China Technol. Sci. 2021, 64, 919–956. [Google Scholar] [CrossRef]
- Luo, J.; Zou, D.; Wang, Y.; Wang, S.; Huang, L. Battery Thermal Management Systems (BTMs) Based on Phase Change Material (PCM): A Comprehensive Review. Chem. Eng. J. 2022, 430, 132741. [Google Scholar] [CrossRef]
- Subramanian, M.; Hoang, A.T.; Kalidasan, B.; Nižetić, S.; Solomon, J.M.; Balasubramanian, D.; Subramaniyan, C.; Thenmozhi, G.; Metghalchi, H.; Nguyen, X.P. A Technical Review on Composite Phase Change Material Based Secondary Assisted Battery Thermal Management System for Electric Vehicles. J. Clean. Prod. 2021, 322, 129079. [Google Scholar] [CrossRef]
- An, Z.; Jia, L.; Ding, Y.; Dang, C.; Li, X. A Review on Lithium-Ion Power Battery Thermal Management Technologies and Thermal Safety. J. Therm. Sci. 2017, 26, 391–412. [Google Scholar] [CrossRef]
- Saffarian, M.R.; Moravej, M.; Doranehgard, M.H. Heat Transfer Enhancement in a Flat Plate Solar Collector with Different Flow Path Shapes Using Nanofluid. Renew. Energy 2020, 146, 2316–2329. [Google Scholar] [CrossRef]
- Sarchami, A.; Najafi, M.; Imam, A.; Houshfar, E. Experimental Study of Thermal Management System for Cylindrical Li-Ion Battery Pack Based on Nanofluid Cooling and Copper Sheath. Int. J. Therm. Sci. 2022, 171, 107244. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, J.; Rao, Z. Thermal Performance Enhancement and Prediction of Narrow Liquid Cooling Channel for Battery Thermal Management. Int. J. Therm. Sci. 2022, 171, 107250. [Google Scholar] [CrossRef]
- Liu, H.; Ahmad, S.; Shi, Y.; Zhao, J. A Parametric Study of a Hybrid Battery Thermal Management System That Couples PCM/Copper Foam Composite with Helical Liquid Channel Cooling. Energy 2021, 231, 120869. [Google Scholar] [CrossRef]
- Liu, H.; Chika, E.; Zhao, J. Investigation into the Effectiveness of Nanofluids on the Mini-Channel Thermal Management for High Power Lithium Ion Battery. Appl. Therm. Eng. 2018, 142, 511–523. [Google Scholar] [CrossRef]
- Mo, X.; Zhi, H.; Xiao, Y.; Hua, H.; He, L. Topology Optimization of Cooling Plates for Battery Thermal Management. Int. J. Heat Mass Transf. 2021, 178, 121612. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, Y.; Jiaqiang, E.; Li, J.; Li, Q.; Zhang, G. Performance Comparison between Single S-Channel and Double S-Channel Cold Plate for Thermal Management of a Prismatic LiFePO4 Battery. Renew. Energy 2022, 192, 46–57. [Google Scholar] [CrossRef]
- Kong, W.; Zhu, K.; Lu, X.; Jin, J.; Ni, M. Enhancement of Lithium-Ion Battery Thermal Management with the Divergent-Shaped Channel Cold Plate. J. Energy Storage 2021, 42, 103027. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Zhang, G.; Yang, X. A Novel Strategy to Optimize the Liquid Cooling Plates for Battery Thermal Management by Precisely Tailoring the Internal Structure of the Flow Channels. Int. J. Therm. Sci. 2023, 184, 107877. [Google Scholar] [CrossRef]
- Sheng, L.; Su, L.; Zhang, H.; Li, K.; Fang, Y.; Ye, W.; Fang, Y. Numerical Investigation on a Lithium Ion Battery Thermal Management Utilizing a Serpentine-Channel Liquid Cooling Plate Exchanger. Int. J. Heat Mass Transf. 2019, 141, 658–668. [Google Scholar] [CrossRef]
- Kedam, N.; Dmitry, A.U.; Evgeniy, V.B.; Alexey, A.G. Heat Transfer Factor j and Friction Factor f Correlations for Offset Strip Fin and Wavy Fin of Compact Plate-Fin Heat-Exchangers. Case Stud. Therm. Eng. 2021, 28, 101552. [Google Scholar] [CrossRef]
- Imran, A.A.; Mahmoud, N.S.; Jaffal, H.M. Numerical and Experimental Investigation of Heat Transfer in Liquid Cooling Serpentine Mini-Channel Heat Sink with Different New Configuration Models. Therm. Sci. Eng. Prog. 2018, 6, 128–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, W.; Jiaqiang, E.; Li, J.; Li, Q.; Sun, K.; Zhou, K.; Zhang, G. Performance Comparison between Straight Channel Cold Plate and Inclined Channel Cold Plate for Thermal Management of a Prismatic LiFePO4 Battery. Energy 2022, 248, 123637. [Google Scholar] [CrossRef]
- Monika, K.; Chakraborty, C.; Roy, S.; Dinda, S.; Singh, S.A.; Datta, S.P. An Improved Mini-Channel Based Liquid Cooling Strategy of Prismatic LiFePO4 Batteries for Electric or Hybrid Vehicles. J. Energy Storage 2021, 35, 102301. [Google Scholar] [CrossRef]
Component | Density (kg·m−3) | Specific Heat Capacity (J·kg−1·K−1) | Thermal Conductivity (W·m−1·K−1) | Dynamic Viscosity (kg·m−1·s−1) |
---|---|---|---|---|
Battery | 1969.6 | 1305 | 2.6 | |
Cold plate | 2719 | 871 | 202.4 | |
Water | 998 | 4200 | 0.6 | 0.001003 |
Case No. | wint (mm) | θ (°) | D (mm) | ws (mm) |
---|---|---|---|---|
1 | 4.5 | |||
2 | 2 | 45 | 15 | 4.5 |
3 | 5.5 | |||
4 | 2 | 45 | 8.5 | 5.5 |
5 | 3.7 | |||
6 | 2 | 45 | 8.5 | 3.7 |
(kW/m3) | |||||||
---|---|---|---|---|---|---|---|
3C | 41.0 | −304.4 | 1659.1 | −4680.6 | 6952.1 | −5159.3 | 1508.1 |
5C | 103.7 | −974.8 | 5809.6 | −16714.2 | 24662.9 | −17955.2 | 5109.9 |
7C | 217.1 | −2328.3 | 14668.5 | −44043.1 | 67368.9 | −50759.4 | 14947.9 |
9C | 319.6 | −2719.0 | 15148.5 | −43018.3 | 63645.5 | −46817.9 | 13527.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Gao, X.; Niu, D.; Yu, M.; Ji, Y. Thermal-Hydraulic Characteristics of the Liquid-Based Battery Thermal Management System with Intersected Serpentine Channels. Water 2022, 14, 3148. https://doi.org/10.3390/w14193148
Liu H, Gao X, Niu D, Yu M, Ji Y. Thermal-Hydraulic Characteristics of the Liquid-Based Battery Thermal Management System with Intersected Serpentine Channels. Water. 2022; 14(19):3148. https://doi.org/10.3390/w14193148
Chicago/Turabian StyleLiu, Huaqiang, Xiangcheng Gao, Dong Niu, Minghao Yu, and Yulong Ji. 2022. "Thermal-Hydraulic Characteristics of the Liquid-Based Battery Thermal Management System with Intersected Serpentine Channels" Water 14, no. 19: 3148. https://doi.org/10.3390/w14193148
APA StyleLiu, H., Gao, X., Niu, D., Yu, M., & Ji, Y. (2022). Thermal-Hydraulic Characteristics of the Liquid-Based Battery Thermal Management System with Intersected Serpentine Channels. Water, 14(19), 3148. https://doi.org/10.3390/w14193148