Improving Estuarine Flood Risk Knowledge through Documentary Data Using Multiple Correspondence Analysis
Abstract
:1. Introduction
1.1. Case Studies: Geographic and Territorial Contexts
1.1.1. The Tagus Estuary (Portugal)
1.1.2. The Shannon Estuary (Ireland)
1.1.3. The Solent Estuary (United Kingdom)
2. Methods
2.1. From Documentary Sources to an Estuarine Flood Events Database
2.2. Information Extraction
2.3. Statistical Analysis
3. Results
3.1. Spin-Off Flood Events Database
3.2. Multiple Correspondence Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, L.M.; Coulthard, T.J.; Robins, P.E.; Lewis, M.J. Sensitivity of Estuaries to Compound Flooding. Estuaries Coast. 2021, 45, 1250–1269. [Google Scholar] [CrossRef]
- Lee, C.; Hwang, S.; Do, K.; Son, S. Increasing flood risk due to river runoff in the estuarine area during a storm landfall. Estuar. Coast. Shelf Sci. 2019, 221, 104–118. [Google Scholar] [CrossRef]
- Wu, W.; Westra, S.; Leonar, M. Estimating the probability of compound floods in estuarine regions. Hydrol. Earth Syst. Sci. 2021, 25, 2821–2841. [Google Scholar] [CrossRef]
- Del-Rosal-Salido, J.; Folgueras, P.; Bermúdez, M.; Órtega-Sanchez, M.; Losada, M.A. Flood management challenges in transitional environments: Assessing the effects of sea -level rise on compound flooding in the 21st century. Coast. Eng. 2021, 103872. [Google Scholar] [CrossRef]
- Freire, P.; Tavares, A.O.; Sá, L.; Oliveira, A.; Fortunato, A.B.; Dos Santos, P.P.; Rilo, A.; Gomes, J.L.; Rogeiro, J.; Pablo, R.; et al. A local scale approach to estuarine flood risk management. Nat. Hazards 2016, 84, 1705–1739. [Google Scholar] [CrossRef]
- Dritsas, S.E. The effect of sea level rise on coastal populations: The case of Gironde (estuaries of Gironde). Econ. Anal. Policy 2020, 66, 41–50. [Google Scholar] [CrossRef]
- Rodrigues, C.; Fidélis, T. Distinctive features of spatial planning nearby estuaries—An exploratory analysis of water-related rules in municipal master plans in Portugal. Estuar. Coast. Shelf Sci. 2021, 107352. [Google Scholar] [CrossRef]
- Ruocco, A.; Nicholls, R.J.; Haigh, I.D.; Wadey, M.P. Reconstructing coastal flood occurrence combining sea level media sources: A case study of the Solent, UK since 1935. Nat. Hazards 2011, 59, 1773–1796. [Google Scholar] [CrossRef]
- Baart, F.; Bakker, M.A.J.; van Dongeren, A.; den Heijer, C.; van Hateren, S.; Smit, M.W.J.; van Koningsveld, M.; Pool, A. Using 18th century storm-surge data from the Dutch coast to improve the confidence in flood risk estimates. Nat. Hazard. Earth Syst. Sci. 2011, 11, 2791–2801. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, T.; Macdonald, N.; Lang, M.; Mediero, L.; Albuquerque, T.; Bogdanowicz, E.; Brázdil, R.; Castellarin, A.; David, V.; Fleig, A.; et al. Documentary evidence of past floods in Europe and their utility in flood frequency estimation. J. Hydrol. 2014, 17, 963–973. [Google Scholar] [CrossRef]
- Taylor, F.E.; Malamud, B.D.; Freeborough, K.; Demeritt, D. Enriching Great Britain’s National Landslide Database by searching newspaper archives. Geomorphology 2015, 249, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Zêzere, J.L.; Pereira, S.; Tavares, A.O.; Bateira, C.; Trigo, R.M.; Quaresma, I.; Santos, P.P.; Santos, M.; Verde, J. DISASTER: A GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards 2014, 72, 503–532. [Google Scholar] [CrossRef]
- Escobar, M.P.; Vinogradova, M.; Demeritt, D. Using Newspapers as a Source of Data to Assess Flood Impacts: Methodology Note; Department of Geography, Kings College: London, UK, 2016; Available online: http://www.naturalhazardspartnership.org.uk/wp-content/uploads/2016/10/Methodology-note-on-impact-scoring-final.pdf (accessed on 18 June 2022).
- Llasat, M.C.; Llasat-Botija, M.; López, L. A press database on natural risks and its application in the study of floods in Northeastern Spain. Nat. Hazards Earth Syst. Sci. 2009, 9, 2049–2061. [Google Scholar] [CrossRef] [Green Version]
- Hilker, N.; Badoux, A.; Hegg, C. The Swiss flood and landslide damage database 1972–2007. Nat. Hazards Earth Syst. Sci. 2009, 9, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.P.; Tavares, A.O.; Zêzere, J.L. Risk analysis for local management from hydro-geomorphologic disaster databases. Environ. Sci. Policy 2014, 40, 85–100. [Google Scholar] [CrossRef]
- ETC-CCA Towards a Potential European Flood Impact Database; EEA–JRC–ETC/CCA Joint Technical Paper. Version: 5.0.; ETC/CCA: Bologna, Italy, 2013; 41p, Available online: https://www.eionet.europa.eu/etcs/etc-cca/products/etc-cca-reports/eea_jrc_etc-cca-20jtp (accessed on 18 June 2022).
- Ibsen, M.L.; Brunsden, D. The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 1996, 15, 241–258. [Google Scholar] [CrossRef]
- Romão, X.; Paupério, E. A framework to assess quality and uncertainty in disaster loss data. Nat. Hazards 2016, 83, 1077–1102. [Google Scholar] [CrossRef] [Green Version]
- Rilo, A.; Tavares, A.; Freire, P.; Santos, P.P.; Zêzere, J.L. The contributions of historical information to flood risk management in the Tagus estuary. Int. J. Disaster Risk Reduct. 2017, 25, 22–35. [Google Scholar] [CrossRef]
- Marôco, J. Statistical Analysis Using SPSS, 6th ed.; ReportNumber: Pêro Pinheiro, Portugal, 2014; 990p. (In Portuguese) [Google Scholar]
- Carvalho, H. Multivariate Analysis of Qualitative Data. Using Multiple Correspondence Analysis with SPSS, 2nd ed.; Edições Sílabo: Lisboa, Portugal, 2017; 260p. (In Portuguese) [Google Scholar]
- Ali, F.; Dissanayake, D.; Bell, M.; Farrow, M. Investigating car users attitudes to climate change using multiple correspondence analysis. J. Transp. Geogr. 2018, 72, 237–247. [Google Scholar] [CrossRef]
- Ayala, D.H.F.; Alberton, A.; Ersoy, A. Urban living labs: Pathways of sustainability transitions towards innovative city systems from a circular economy perspective. Sustainability 2022, 14, 9831. [Google Scholar] [CrossRef]
- Silva, S.A.; Carvalho, H.; Oliveira, M.J.; Fialho, T.; Guedes Soares, C.; Jacinto, C. Organizational practices for learning with work accidents throughout their information cycle. Saf. Sci. 2017, 99, 102–114. [Google Scholar] [CrossRef]
- Rilo, A.; Tavares, A.; Freire, P.; Zêzere, J.L. Dealing with Multisource Information for Estuarine Flood Risk Appraisal in Two Western European Coastal Areas. Int. J. Disaster Risk Sci. 2022, 13, 199–213. [Google Scholar] [CrossRef]
- Haigh, I.D.; Ozsoy, O.; Wadey, M.P.; Nicholls, R.; Gallop, S.L.; Wahl, T.; Brown, J. An improved database of coastal flooding in the United Kingdom from 1915 to 2016. Sci. Data 2017, 4, 170100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, D.W. What is an estuary: Physical viewpoint. In Estuaries; Lauff., G.H., Ed.; American Association for the Advancement of Science Publication: Washington, DC, USA, 1967; Volume 83, pp. 3–5. [Google Scholar]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies model: Conceptual basis and stratigraphic implications. J. Sediment. Petrol. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Dyer, K.R. Estuaries—A Physical Introduction, 2nd ed.; Wiley: Chichester, UK, 1997; 195p. [Google Scholar]
- Davidson, N.C.; Laffoley, D.A.; Doody, J.P.; Way, L.S.; Gordon, J.; Key, R.; Pienkowsky, M.W.; Mitchell, R.; Duff, K. Nature Conservations and Estuaries in Great Britain, 1st ed.; Joint Nature Conservation Committee: Peterborough, UK, 1991; 422p. [Google Scholar]
- Fortunato, A.; Li, K.; Bertin, X.; Rodrigues, M.; Miguez, B.M. Determination of extreme sea levels along the Iberian Atlantic coast. Ocean Eng. 2016, 111, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, M.; Fortunato, A.B.; Freire, P.; Rilo, A.; Taborda, R.; Freitas, M.C.; Andrade, C.; Silva, T.; Rodrigues, M.; Bertin, X.; et al. Evolution of the hydrodynamics of the Tagus estuary (Portugal) in the 21st century. Revista de Gestão Costeira Integrada. J. Integr. Coast. Zone Manag. 2015, 15, 65–80. [Google Scholar] [CrossRef]
- Freire, P.; Andrade, C. Wind-induced sand transport in Tagus estuarine beaches–First results. Aquat. Ecol. 1999, 33, 25–233. [Google Scholar] [CrossRef]
- Vargas, C.I.C.; Oliveira, F.S.B.F.; Oliveira, A.; Charneca, N. Análise da vulnerabilidade de uma praia estuarina à inundação: Aplicação à restinga do Alfeite (estuário do Tejo). Rev. Gestão Costeira Integr. J. Integr. Coast. Zone Manag. 2008, 8, 25–43. [Google Scholar] [CrossRef] [Green Version]
- INE (National Statistics Institute). Área Metropolitana de Lisboa in figures–2017; INE: Lisboa, Portugal, 2019; pp. 13–14. Available online: https://www.ine.pt/ine_novidades/RN2017/lisboa/2/ (accessed on 18 June 2022)(In Portuguese and English).
- Muir-Wood, R. The 1941 February 15th Windstorm in the Iberian Peninsula. Treból 2011, 56, 4–13. Available online: https://app.mapfre.com/mapfrere/docs/html/revistas/trebol/n56/docs/Articulo1en.pdf (accessed on 18 June 2022).
- Rilo, A.; Tavares, A.O.; Freire, P.; Zêzere, J.L.; Haigh, I.D. Enhancing estuarine flood risk management: Comparative analysis of three estuarine systems. J. Coast Res. 2020, 95, 935–939. [Google Scholar] [CrossRef]
- MacClenahan, P.; McKenna, J.; Cooper, A.; O’Kane, O. Identification of highest magnitude coastal storm events over western Ireland on the basis of wind speed and duration thresholds. Int. J. Climatol. 2001, 21, 829–842. [Google Scholar] [CrossRef]
- O’Brien, L.; Renzi, E.; Dudley, J.M.; Clancy, C.; Dias, F. Catalogue of extreme wave events in Ireland: Revised and updated for 14680 BP to 2017. Nat. Hazards Earth Syst. Sci. 2018, 18, 729–758. [Google Scholar] [CrossRef] [Green Version]
- Healy, M. The Shannon estuary wetlands complex, Western Ireland: Conservation and conflicts. In Proceedings of the Littoral 2002, 6th International Symposium Proceedings: A Multi-disciplinary Symposium on Coastal Zone Research, Management and Planning, Porto, Portugal, 22–26 September 2002; Gomes, F.V., Taveira Pinto, F., das Neves, L., Eds.; EUCC/EUROCOAST: Porto, Portugal, 2002; Volume 2, pp. 229–233. [Google Scholar]
- Wheeler, A.; Healy., M. Coastal landscapes and environmental change in the Shannon estuary. In Foragers, Farmers and Fishers in a Coastal Landscape: An Intertidal Archaeological Survey of the Shannon Estuary, 1st ed.; O’Sullivan, A., Ed.; The Royal Irish Academy: Dublin, Ireland, 2001; pp. 40–54. [Google Scholar]
- Sheehan, T.L.; Healy, M.G. Sub-recent changes in annual average water level in the Shannon estuary, Western Ireland. J. Coast Res. 2006, 39, 193–197. Available online: https://www.jstor.org/stable/25741560 (accessed on 18 June 2022).
- CSO (Central Statistics Office). Census 2016 Summary Results—Part 1. In Central Statistics Office, Ireland; 2017; 107p., Available online: https://www.cso.ie/en/media/csoie/newsevents/documents/census2016summaryresultspart1/Census2016SummaryPart1.pdf (accessed on 18 June 2022).
- Fletcher, S.; Johnson, D.; Hewett, T. Coastal management in the Solent: An introduction. Mar. Policy 2007, 31, 585–590. [Google Scholar] [CrossRef]
- Ozsoy, O.; Haigh, I.; Wadey, M.; Nicholls, R.J.; Wells, N.C. High-frequency Sea level variations and implications for coastal flooding: A case study of the Solent. Cont. Shelf Res. 2016, 122, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wadey, M.P.; Nicholls, R.J.; Haigh, I. Understanding a coastal flood event. The 10th March 2008 storm surge event in the Solent, UK. Nat. Hazards 2013, 67, 829–854. [Google Scholar] [CrossRef]
- Webber, N.B. Hydrography and water circulation in the Solent. In The Solent Estuarine System: An Assessment of Present Knowledge; NERC, The Natural Environment Research Council: Swindon, UK, 1980. [Google Scholar]
- Foster, N.M.; Hudson, M.D.; Bray, S.; Nicholls, R.J. Research, policy and practice for the conservation and sustainable use of intertidal mudflats and saltmarshes in the Solent from 1800–2016. Environ. Sci. Policy 2014, 38, 59–71. [Google Scholar] [CrossRef]
- Bowen, G.A.; Rowley, J.; Healy, M.; Perry, C. Document Analysis as a Qualitative Research Method. Qual. Res. J. 2009, 9, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Haltas, I.; Yildirim, E.; Oztas, F.; Demir, I. A comprehensive flood event specification and inventory: 1930-2020. Turkey case study. Int. J. Disaster Risk Reduct. 2021, 56, 102086. [Google Scholar] [CrossRef]
- OPWs National Flood Information Portal, Providing Location Specific Access to Flood Risk and Flood Management Information. 2022. Available online: http://www.floodinfo.ie/ (accessed on 18 June 2022).
- Rilo, A.; Freire, P.; Nogueira Mendes, R.; Ceia, R.; Catalão, J.; Taborda, R.; Melo, R.; Caçador, M.I.; Freitas, M.C.; Fortunato, A.B.; et al. Methodological framework for the definition and demarcation of the highest astronomical tide line in estuaries: The case of Tagus Estuary (Portugal). Rev. Gestão Costeira Integr. J. Integr. Coast. Zone Manag. 2014, 14, 95–107. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- JACOBS. Unit of Management 24: Shannon Estuary South. Flood History and Key Environmental Issues. Strategic Environmental Assessment–Scoping Report [Consultation Draft]–Annex II. Ireland: Office of Public Works. 2012. Available online: https://s3-eu-west-1.amazonaws.com/docs.floodinfo.opw/floodinfo_docs/Shannon_CFRAM/UOM24/10_SEAStatement/SEAS_Final2018_RiverBasin_24.pdf (accessed on 22 June 2022).
- JACOBS. Unit of Management 25–26: Shannon Estuary Upper & Lower. Flood History and Key Environmental Issues. Strategic Environmental Assessment–Scoping Report [Consultation Draft]–Annex III. Ireland: Office of Public Works. 2012. Available online: http://shannoncframstudy.jacobs.com/docs/sea/TD_ENVT_0317_V1_C_JAC_Env_Scoping_AnnexIII_UoM25-26_120919.pdf (accessed on 22 June 2022).
- JACOBS. Unit of Management 27–28: Shannon Estuary North and Mal Bay. Flood History and Key Environmental Issues. Strategic Environmental Assessment–Scoping Report [Consultation Draft]–Annex IV. Ireland: Office of Public Works. 2012. Available online: http://shannoncframstudy.jacobs.com/docs/sea/TD_ENVT_0318_V1_C_JAC_EnvScopingAnnexIV_UoM27-28_120919.pdf (accessed on 22 June 2022).
- New Forest District Council 2012 Update of Carter, D., Bray, M., & Hooke, J., 2004 SCOPAC Sediment Transport Study. 2017. Available online: https://www.scopac.org.uk/sts/ (accessed on 22 June 2022).
- Chun, D. The River Hamble: A History, 2nd ed.; The History Press: Gloucestershire, UK, 2014; 128p. [Google Scholar]
- NRA National Rivers Authority. River Test Catchment Management Plan Phase 1; NRA Southern 17; NRA National Rivers Authority Southern Region: Bristol, UK, 1991; 133p.
- CEFAS Centre for Environment Fisheries & Aquaculture Science. Review of the Beaulieu River 2009 Sanitary Survey. In Cefas Report on behalf of the Food Standards Agency, to Demonstrate Compliance with the Requirements for Classification of Bivalve Mollusc Production Areas in England and Wales under EC Regulation No. 854/2004; CEFAS: Lowestoft, UK, 2015; 49p, Available online: https://www.cefas.co.uk/media/2lbf22m3/beaulieu-river-sanitary-survey-review-2015-final-table-issue-dj.pdf (accessed on 23 June 2021).
- CEFAS Centre for Environment Fisheries & Aquaculture Science. Sanitary Survey of Lymington Estuary. In Cefas Report on behalf of the Food Standards Agency, to Demonstrate Compliance with the Requirements for Classification of Bivalve Mollusc Production Areas in England and Wales under EC regulation No. 854/2004; CEFAS: Lowestoft, UK, 2013; 83p, Available online: https://www.cefas.co.uk/media/iajibg2w/lymington-sanitary-survey-report-final-passed-dj.pdf (accessed on 23 June 2021).
- Bardin, L. Content Analysis, 4th ed.; Edições 70: Lisboa, Portugal, 2020; 279p. (In Portuguese) [Google Scholar]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology, 2nd ed.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Nunnaly, J.C. Psychometric Theory, 2nd ed.; MacGraw-Hill: New York, NY, USA, 1978; 700p. [Google Scholar]
- Kaplan, R.D.; Saccuzzo, D.P. Psychological Testing: Principles, Applications and Issues; Brooks/Cole Publishing Company: Monterey, CA, USA, 1982. [Google Scholar]
- Williams, A.; Archer, D. The use of historical information in the English midlands to improve risk assessment. Hydrol. Sci. J. 2002, 47, 67–76. [Google Scholar] [CrossRef]
- Hall, J.; Blöschl, G. Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci. 2018, 22, 3883–3901. [Google Scholar] [CrossRef]
- Ramos, C.; Reis, E. Floods in southern Portugal: Their physical and human causes, impacts and human response. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Varino, F.; Ramos, A.M.; Valente, M.A.; Zêzere, J.L.; Vaquero, J.M.; Gouveia, C.M.; Russo, A. The record precipitation and flood event in Iberia in December 1876: Description and synoptic analysis. Front. Earth Sci. 2014, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, M.A.; Almeida, M.C.; Brito, R.S.; Beceiro, P. Modelação integrada da drenagem urbana em zonas estuarinas: Avaliação da inundação para cenários climatéricos. In Proceedings of the 10th Encontro Nacional de Entidades Gestoras de Água e Saneamento, Porto, Portugal, 1–4 December 2015. (In Portuguese). [Google Scholar]
- Hendry, A.; Haigh, I.; Nicholls, R.; Winter, H.; Neal, R.; Wahl, T.; Joly-Laugel, A.; Darby, S. Assessing the characteristics and drivers of compound flooding events around the UK coast. Hydrol. Earth Syst. Sci. 2019, 23, 3117–3139. [Google Scholar] [CrossRef] [Green Version]
- Haigh, I.D.; Wadey, M.P.; Gallop, S.; Loehr, H.; Nicholls, R.; Horsburgh, K.; Brown, J.; Bradshaw, E. A user-friendly database of coastal flooding in the United Kingdom from 1915–2014. Sci. Data 2015, 2, 150021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, L.; Dudley, M.J.; Dias, F. Extreme wave events in Ireland: 14680 BP–2012. Nat. Hazards Earth Syst. Sci. 2013, 13, 625–648. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, A.B.; Freire, P.; Bertin, X.; Rodrigues, M.; Ferreira, J.; Liberato, M.L.R. A numerical study of the February 15, 1941 storm in the Tagus estuary. Cont. Shelf Res. 2017, 144, 50–64. [Google Scholar] [CrossRef]
- Macdonald, N. An Underutilized Resource: Historical Flood Chronologies a Valuable Resource in Determining Periods of Hydro-Geomorphic Change. In Proceedings of the IAHS/ICCE International Symposium on Sediment Dynamic and the Hydromorphology of Fluvial Systems, Dundee, Scotland, 3–7 July 2006; Dundee University: Dundee, Scotland, 2006; Volume 306, pp. 120–126. Available online: https://iahs.info/uploads/dms/13541.19-120-126-25-306-Macdonald.pdf (accessed on 18 June 2022).
- Macdonald, N.; Black, A.R. Reassessment of flood frequency using historical information for the river ouse at York, UK (1200-2000). Hydrol. Sci. J. 2010, 55, 1152–1162. [Google Scholar] [CrossRef]
Estuarine System | Data Source Providers | Source Typology | Events (n) | Temporal Period (Years) |
---|---|---|---|---|
Tagus | DISASTER project; National Authority for Emergency and Civil Protection (ANEPC); Lisbon Port Authority | Mainly national newspapers; photographs; ANEPC database | 44 | 1865–2013 |
Shannon | Irish National Flood Hazard Mapping Website (www.floodmaps.ie, accessed on 18 June 2022), OPW site | Reports, newspapers, minute meetings, photographs, letters/institutional correspondence | 28 | 1927–2014 |
Solent | SURGEWATCH database (https://www.surgewatch.org/, accessed on 18 June 2022) | Soft data: articles, newspapers, reports Hard data: tide gauge data | 77 | 1916–2016 |
Location | Criteria |
---|---|
Tagus Estuary | Geographic constraint: area between Oeiras and Vila Franca de Xira (upstream limit of the salt intrusion) and between the highest astronomical tide line [53] the upper limit of the intertidal domain and 20 m above mean sea level [20]. |
Shannon Estuary | First step: we removed documents that were not related to estuarine floods. This extraction was performed using additional documentary proxies [54,55,56] and the OPW website (http://www.floodinfo.ie/map/floodmaps/) accessed on 18 June 2022. Geographic constraint: area between Loop Head and the city of Limerick (tidal limit), whose description is clearly connected with estuarine flooding. |
Solent estuarine system | Geographic constraint: area between Hurst Spit and Selsey Bill, including Southampton Water and the north coast of the Isle of Wight. Were considered inland limits as the locations near the tidal limit of the major rivers that discharge into Solent, namely: River Itchen—Woodlmill bridge [57]; River Hamble—Botley [58]; River Test—Testwood [59]; River Beaulieu—Beaulieu village [60]; and river Lymington—tidal gates at Lymington [61]. |
Group | Variables | Description |
---|---|---|
Documentary sources and geographic information | ID | Unique identifier |
Date | Day, month, and year when available. Other options include month and year | |
Source typology | Newspaper, report, letter, minute meeting, photograph, scientific article, book | |
Source name | Newspaper name, title of report/minute meeting or letter | |
City/village/location name | Specify the location referenced in the sources | |
County or municipality | Specify the county or municipality | |
Trigger information | Low pressure | Specify whether the source refers to low pressure or a storm surge during the event. It is assumed that, if there is a storm surge, low pressure conditions must exist |
Wind/waves | Specify whether the source refers to strong wind or waves during the event (e.g., gale force winds, severe gusts, wave action) | |
Rainfall | Specify whether the source refers to rainfall occurrence prior or during the event. | |
Fluvial discharge | Specify whether the source refers to fluvial discharge prior to or during the event | |
High tide | Specify whether the source refers to high tides during the event | |
Urban drainage and other anthropogenic factors | Specify whether the source refers to deficient urban drainage during the event. (e.g., sewer failure) or other factors, such as breaking walls | |
Damage information | Physical damages | Specify whether the source refers to damage to built infrastructure (e.g., houses, garages, walls, sidewalks, etc.) |
Economic losses | Specify whether the source refers to direct economic costs in euros or another currency | |
Human damages | Specify whether the sources refers to human damage (human damage typology: deceased, missing people, injured, evacuated, displaced, confined and homeless) | |
Circulation interruption | Specify whether the source refers to any typology of circulation interruption (e.g., roads, railways, boat, airports) | |
Functions disruption | Specify whether the source refers to any social function interruption (e.g., roads closed, power failures, telephone wires down, schools or public services closed) | |
Environmental degradation | Specify whether the source refers to environmental degradation left by the event, namely, gravel, sand, debris, wreckage | |
Institutional involvement | Specify whether the source refers to institutional involvement during or after the event (e.g., fire brigades, civil protection services, municipalities) |
Nomenclature in MCA | Description | Characterization |
---|---|---|
Objects | Objects are the database entries, in this case, the flood events | 149 objects |
Variables | Variables correspond to the database fields (e.g., low pressure, wind/waves, rainfall, physical damages, human damages, etc.) | 13 variables |
Categories | Correspond to the presence or absence of certain information | The 2 categories are YES if present/NULL if absent |
Model Summary | ||||
---|---|---|---|---|
Dimensions | Cronbach’s Alpha | Variance Accounted for | ||
Total (Eigenvalue) | Inertia | % of Variance | ||
1 | 0.843 | 4.146 | 0.415 | 41.461 |
2 | 0.534 | 1.924 | 0.192 | 19.244 |
Total | 6.071 | 0.607 | ||
Mean | 0.745a | 3.035 | 0.304 | 30.353 |
a. Mean Cronbach’s alpha is based on the mean eigenvalue. | ||||
Discrimination Measures | ||||
Dimension | Mean | |||
1 | 2 | |||
Rainfall | 0.625 | 0.132 | 0.378 | |
Wind/waves | 0.214 | 0.316 | 0.265 | |
Low pressure | 0.120 | 0.233 | 0.177 | |
Fluvial discharge | 0.598 | 0.164 | 0.381 | |
Urban & others | 0.547 | 0.076 | 0.312 | |
Physical damages | 0.407 | 0.219 | 0.313 | |
Economic losses | 0.092 | 0.544 | 0.318 | |
Human damages | 0.476 | 0.004 | 0.240 | |
Function disruption | 0.486 | 0.080 | 0.283 | |
Institutional involvement | 0.581 | 0.156 | 0.369 | |
Total active | 4.146 | 1.924 | 3.035 | |
% of variance | 41.461 | 19.244 | 30.353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rilo, A.; Tavares, A.O.; Freire, P.; Zêzere, J.L.; Haigh, I.D. Improving Estuarine Flood Risk Knowledge through Documentary Data Using Multiple Correspondence Analysis. Water 2022, 14, 3161. https://doi.org/10.3390/w14193161
Rilo A, Tavares AO, Freire P, Zêzere JL, Haigh ID. Improving Estuarine Flood Risk Knowledge through Documentary Data Using Multiple Correspondence Analysis. Water. 2022; 14(19):3161. https://doi.org/10.3390/w14193161
Chicago/Turabian StyleRilo, Ana, Alexandre Oliveira Tavares, Paula Freire, José Luís Zêzere, and Ivan D. Haigh. 2022. "Improving Estuarine Flood Risk Knowledge through Documentary Data Using Multiple Correspondence Analysis" Water 14, no. 19: 3161. https://doi.org/10.3390/w14193161
APA StyleRilo, A., Tavares, A. O., Freire, P., Zêzere, J. L., & Haigh, I. D. (2022). Improving Estuarine Flood Risk Knowledge through Documentary Data Using Multiple Correspondence Analysis. Water, 14(19), 3161. https://doi.org/10.3390/w14193161