Low Pressure UV Photolysis of the Pharmaceutical Compounds Acetaminophen, Atenolol, Bezafibrate, Diclofenac and Ibuprofen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Equipment and Procedures
2.2.1. pKa
2.2.2. Molar Absorption Coefficients
2.2.3. Photolysis Experiments
2.3. Analyses
2.3.1. UV-Visible Spectrophotometry
2.3.2. TOC
2.3.3. High-Performance Liquid Chromatography (HPLC)
2.3.4. Toxicity Assays
3. Results
3.1. pKa Measurements
3.2. Photolysis Experiments
3.3. Toxicity Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanakaraju, D.; Glass, B.D.; Oelgemoller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sarmah, A.K.; Padhye, L.P. Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train. J. Environ. Manag. 2019, 233, 649–659. [Google Scholar] [CrossRef]
- Pena-Guzman, C.; Ulloa-Sanchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzon, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Utrilla, J.; Sanchez-Polo, M.; Ferro-Garcia, M.A.; Prados-Joya, G.; Ocampo-Perez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- Satyro, S.; Saggioro, E.M.; Verissimo, F.; Buss, D.F.; Magalhaes, D.D.; Oliveira, A. Triclocarban: UV photolysis, wastewater disinfection, and ecotoxicity assessment using molecular biomarkers. Environ. Sci. Pollut. Res. 2017, 24, 16077–16085. [Google Scholar] [CrossRef]
- Bosio, M.; Satyro, S.; Bassin, J.; Saggioro, E.; Dezotti, M. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes. Environ. Sci. Pollut. Res. 2019, 26, 4288–4299. [Google Scholar] [CrossRef] [PubMed]
- Kummerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Dong, Z.; Senn, D.B.; Moran, R.E.; Shine, J.P. Prioritizing environmental risk of prescription pharmaceuticals. Regul. Toxicol. Pharmacol. 2013, 65, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Lester, Y.; Sharpless, C.M.; Mamane, H.; Linden, K.G. Production of Photo-oxidants by Dissolved Organic Matter During UV Water Treatment. Environ. Sci. Technol. 2013, 47, 11726–11733. [Google Scholar] [CrossRef]
- Mascolo, G.; Balest, L.; Cassano, D.; Laera, G.; Lopez, A.; Pollice, A.; Salerno, C. Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment. Bioresour. Technol. 2010, 101, 2585–2591. [Google Scholar] [CrossRef]
- Almeida, G.A.; Weber, R.R. Fármacos na Represa Billings. Rev. Saúde Ambiente 2005, 6, 7–12. [Google Scholar]
- da Silva, C.G.A.; Collins, C.H. Applications of high performance liquid chromatography for the study of emerging organic pollutants. Quim. Nova 2011, 34, 665–676. [Google Scholar]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New perspectives for Advanced Oxidation Processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Rosales, E.; Pazos, M.; Sanroman, M.A. Advances in the Electro-Fenton Process for Remediation of Recalcitrant Organic Compounds. Chem. Eng. Technol. 2012, 35, 609–617. [Google Scholar] [CrossRef]
- Oppenländer, T. Photochemical Purification of Water and Air Weinheim; John Wiley & Sons: Hoboken, NJ, USA, 2003; 383p. [Google Scholar]
- Feng, S.X.; Zhang, X.; Liu, Y.X. New insights into the primary phototransformation of acetaminophen by UV/H2O2: Photo-Fries rearrangement versus hydroxyl radical induced hydroxylation. Water Res. 2015, 86, 35–45. [Google Scholar] [CrossRef]
- Ioannou, L.A.; Hapeshi, E.; Vasquez, M.I.; Mantzavinos, D.; Fatta-Kassinos, D. Solar/TiO2 photocatalytic decomposition of beta-blockers atenolol and propranolol in water and wastewater. Sol. Energy 2011, 85, 1915–1926. [Google Scholar] [CrossRef]
- Rivas, J.; Gimeno, O.; Borralho, T.; Sagasti, J. UV-C and UV-C/peroxide elimination of selected pharmaceuticals in secondary effluents. Desalination 2011, 279, 115–120. [Google Scholar] [CrossRef]
- Salgado, R.; Pereira, V.J.; Carvalho, G.; Soeiro, R.; Gaffney, V.; Almeida, C.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Ternes, T.A.; et al. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J. Hazard. Mater. 2013, 244, 516–527. [Google Scholar] [CrossRef]
- Su, C.C.; Bellotindos, L.M.; Chang, A.T.; Lu, M.C. Degradation of acetaminophen in an aerated Fenton reactor. J. Taiwan Inst. Chem. Eng. 2013, 44, 310–316. [Google Scholar] [CrossRef]
- Parsons, S. Advanced Oxidation Processes for Water and Wastewater Treatment; IWA Publishing: London, UK, 2005. [Google Scholar]
- Deschamps, E.; Vasconcelos, O.; Lange, L.; Donnici, C.L.; da Silva, M.C.; Sales, J.A. Management of effluents and waste from pharmaceutical industry in Minas Gerais, Brazil. Braz. J. Pharm. Sci. 2012, 48, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Qi, P.S.; Liu, Y.Z. A Review on Advanced Treatment of Pharmaceutical Wastewater. In Proceedings of the International Conference on Environmental and Energy Engineering (IC3E), Suzhou, China, 22–24 March 2017; IOP Conference Series-Earth and Environmental Science. IOP Publishing Ltd.: Suzhou, China, 2017. [Google Scholar]
- Melero, J.A.; Martinez, F.; Botas, J.A.; Molina, R.; Pariente, M.I. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water Res. 2009, 43, 4010–4018. [Google Scholar] [CrossRef] [PubMed]
- ABNT—Brazilian Association of Technical Standards. Ecotoxicologia Aquática—Determinação do Efeito Inibitório de Amostras de Água Sobre a Emissão de luz de Vibrio Fischeri (Ensaio de Bactéria Luminescente). Parte 3: Método Utilizando Bactérias Liofilizadas; ABNT: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Lorphensri, O.; Intravijit, J.; Sabatini, D.A.; Kibbey, T.C.G.; Osathaphan, K.; Saiwan, C. Sorption of acetaminophen, 17 alpha-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium. Water Res. 2006, 40, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Maguregui, M.I.; Jimenez, R.M.; Alonso, R.M. Determination of the pK(a) values of beta-blockers by automated potentiometric titrations. J. Pharm. Biomed. Anal. 2000, 23, 459–468. [Google Scholar] [CrossRef]
- Kujawa-Roeleveld, K.; Schuman, E.; Grotenhuis, T.; Kragić, D.; Mels, A.; Zeeman, G. Biodegradability of human pharmaceutically active compounds (PhAC) in biological systems treating source separated wastewater streams. In Proceedings of the Third SWITCH Scientific Meeting, Belo Horizonte, Brazil, 21 May 2008. [Google Scholar]
- Serrano, D.; Suarez, S.; Lema, J.M.; Omil, F. Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor. Water Res. 2011, 45, 5323–5333. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Hu, C.; Hu, X.X.; Qu, J.H.; Yang, M. Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Res. 2009, 43, 1766–1774. [Google Scholar] [CrossRef]
- Perez-Estrada, L.A.; Malato, S.; Gernjak, W.; Aguera, A.; Thurman, E.M.; Ferrer, I.; Fernandez-Alba, A.R. Photo-fenton degradation of diclofenac: Identification of main intermediates and degradation pathway. Environ. Sci. Technol. 2005, 39, 8300–8306. [Google Scholar] [CrossRef]
- Radjenovic, J.; Sirtori, C.; Petrovic, M.; Barcelo, D.; Malato, S. Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: Kinetics and characterization of major intermediate products. Appl. Catal. B Environ. 2009, 89, 255–264. [Google Scholar] [CrossRef]
- Yu, T.H.; Lin, A.Y.C.; Panchangam, S.C.; Hong, P.K.A.; Yang, P.Y.; Lin, C.F. Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere 2011, 84, 1216–1222. [Google Scholar] [CrossRef]
- Zeng, C.; Ji, Y.F.; Zhou, L.; Zhang, Y.; Yang, X. The role of dissolved organic matters in the aquatic photodegradation of atenolol. J. Hazard. Mater. 2012, 239, 340–347. [Google Scholar] [CrossRef]
- Tonkes, M.; de Graaf, P.J.F.; Graansma, J. Assessment of complex industrial effluents in the Netherlands using a whole effluent toxicity (or wet) approach. Water Sci. Technol. 1999, 39, 55–61. [Google Scholar] [CrossRef]
PhACs (CAS-Number) | Purity | Molecular Formula (Molar Weight) | Structural Formula |
---|---|---|---|
Acetaminophen (103-90-2) | ≥99% | C8H9NO2 (151.16 g mol−1) | |
Atenolol (29122-68-7) | ≥98% | C14H22N2O3 (266.34 g mol−1) | |
Bezafibrate (41859-67-0) | ≥98% | C19H20NClO4 (361.82 g mol−1) | |
Diclofenac (15307-79-6) | ≥99% | C14H10NNaCl2O2 (318.13 g mol−1) | |
Ibuprofen (15687-27-1) | ≥98% | C13H18O2 (206.28 g mol−1) |
Time (min) | Phase A | Phase B |
---|---|---|
0.01 | 90 | 10 |
7 | 90 | 10 |
10 | 20 | 80 |
30 | 20 | 80 |
32 | 90 | 10 |
35 | 90 | 10 |
PhAC | ε (L mol−1 cm−1) |
---|---|
ACT | 8989 |
ATL | 724 |
BZF | 7403 |
DIC | 5374 |
IBU | 1022 |
Isolated PhACs (5 mg L−1) | Mixed PhACs (5 mg L−1) | |||||||
---|---|---|---|---|---|---|---|---|
k (min−1) | t1/2 (min) | Removal % | R2 | k (min−1) | t1/2 (min) | Removal % | R2 | |
ACT | 0.013 | 53 | 62% | 0.99 | 0.022 | 32 | 85% | 0.98 |
ATL | 0.012 | 58 | 54% | 0.96 | 0.005 | 134 | 32% | 0.99 |
BZF | 0.103 | 6 | 93% | 0.96 | 0.099 | 7 | 99% | 0.98 |
DIC | 0.518 | 1 | 99% | 0.99 | 0.460 | 2 | 99% | 0.99 |
IBU | 0.014 | 47 | 57% | 0.99 | 0.013 | 54 | 38% | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsumata, C.P.; Parizi, M.P.S.; Lastre-Acosta, A.M.; Teixeira, A.C.S.C. Low Pressure UV Photolysis of the Pharmaceutical Compounds Acetaminophen, Atenolol, Bezafibrate, Diclofenac and Ibuprofen. Water 2022, 14, 3165. https://doi.org/10.3390/w14193165
Katsumata CP, Parizi MPS, Lastre-Acosta AM, Teixeira ACSC. Low Pressure UV Photolysis of the Pharmaceutical Compounds Acetaminophen, Atenolol, Bezafibrate, Diclofenac and Ibuprofen. Water. 2022; 14(19):3165. https://doi.org/10.3390/w14193165
Chicago/Turabian StyleKatsumata, Caroline Pereira, Marcela Prado Silva Parizi, Arlen Mabel Lastre-Acosta, and Antonio Carlos Silva Costa Teixeira. 2022. "Low Pressure UV Photolysis of the Pharmaceutical Compounds Acetaminophen, Atenolol, Bezafibrate, Diclofenac and Ibuprofen" Water 14, no. 19: 3165. https://doi.org/10.3390/w14193165
APA StyleKatsumata, C. P., Parizi, M. P. S., Lastre-Acosta, A. M., & Teixeira, A. C. S. C. (2022). Low Pressure UV Photolysis of the Pharmaceutical Compounds Acetaminophen, Atenolol, Bezafibrate, Diclofenac and Ibuprofen. Water, 14(19), 3165. https://doi.org/10.3390/w14193165