Modelling the Effects of Dam Reservoir Backwater Fluctuations on the Hydrodynamics of a Small Mountain Stream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
Scenario Number and Description | 1 Small Flood No Backwater | 2 Small Flood Maximal Backwater | 3 Medium Flood No Backwater | 4 Medium Flood Maximal Backwater | 5 Large Flood No Backwater | 6 Large Flood Maximal Backwater |
---|---|---|---|---|---|---|
River discharge [m3 s−1] | 1.8 | 1.8 | 24.5 | 24.5 | 89.5 | 89.5 |
Recurrence interval of discharge [%, year] | 100 (1-year flood) | 100 (1-year flood) | 50 (2-year flood) | 50 (2-year flood) | 5 (2-year flood) | 5 (2-year flood) |
Reservoir water level [m asl] | 265 | 270 | 265 | 270 | 265 | 270 |
2.2. Methods
2.2.1. Study Design
2.2.2. Field Data Collection and Mesh Construction
2.2.3. Description of the Two-Dimensional Hydrodynamic Model
2.2.4. Limitations of the Hydrodynamic Model
2.2.5. Data Analysis
3. Results
Channel Hydrodynamics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dynesius, M.; Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 1994, 266, 753–762. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2018, 12, 7–21. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Knighton, D. Fluvial Forms and Processes; A New Perspectives; Arnold: New York, NY, USA, 1998; p. 383. [Google Scholar]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Petts, G.E.; Gurnell, A.M. Dams and geomorphology: Research progress and future directions. Geomorphology 2005, 71, 27–47. [Google Scholar] [CrossRef]
- Grant, G.E. The geomorphic response of gravel-bed rivers to dams: Perspectives and prospects. In Gravel-Bed Rivers: Processes, Tools, Environments; Church, M., Biron, P.M., Roy, A., Eds.; Wiley: Chichester, UK, 2012; pp. 165–181. [Google Scholar] [CrossRef]
- Williams, G.P.; Wolman, M.G. Downstream effects of dams on alluvial rivers. Geol. Surv. Prof. Pap. 1984, 1286, 1–83. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Shi, C. The river channel pattern change as influenced by the floodplain geoecosystem: An example from the Hongshan Reservoir. Z. Geomorphol. 1997, 41, 97–113. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, P.; He, X. The water-level fluctuation zone of Three Gorges Reservoir—A unique geomorphological unit. Earth Sci. Rev. 2015, 150, 14–24. [Google Scholar] [CrossRef]
- Maselli, V.; Pellegrini, C.; Del Bianco, F.; Mercorella, A.; Nones, M.; Crose, L.; Guerrero, M.; Nittrouer, J. River morphodynamic evolution under dam-induced backwater: An example from the Po River (Italy). J. Sed. Res. 2018, 88, 1190–1204. [Google Scholar] [CrossRef]
- Volke, M.A.; Scott, M.L.; Johnson, W.C.; Dixon, M.D. The ecological significance of emerging deltas in regulated rivers. BioScience 2015, 65, 598–611. [Google Scholar] [CrossRef] [Green Version]
- Volke, M.A.; Johnson, W.C.; Dixon, M.D.; Scott, M.L. Emerging reservoir delta backwaters: Biophysical dynamics and riparian biodiversity. Ecol. Monogr. 2019, 89, e01363. [Google Scholar] [CrossRef] [Green Version]
- Hanks, R.D. Dams: Anthrome Enablers. Ref. Modul. Earth Syst. Environ. Sci. 2020. [Google Scholar] [CrossRef]
- Łajczak, A. Deltas in dam-retained lakes in the Carpathian part of the Vistula drainage basin. Pr. Geol. 2006, 116, 99–109. [Google Scholar]
- Liro, M. Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: A review focused on gravel-bed rivers. Sci. Total Environ. 2019, 651, 2899–2912. [Google Scholar] [CrossRef]
- Liro, M.; Ruiz-Villanueva, V.; Mikuś, P.; Wyżga, B.; Castellet, E.B. Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater. Sci. Total Environ. 2020, 744, 140555. [Google Scholar] [CrossRef]
- Zheng, S.; Edmonds, D.A.; Wu, B.; Han, S. Backwater controls on the evolution and avulsion of the Qingshuigou channel on the Yellow River Delta. Geomorphology 2019, 333, 137–151. [Google Scholar] [CrossRef]
- Lamb, M.P.; Nittrouer, J.A.; Mohrig, D.; Shaw, J. Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio-deltaic morphodynamics. J. Geop. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Nittrouer, J.A.; Shaw, J.; Lamb, M.P.; Mohrig, D. Spatial and temporal trends for water-flow velocity and bed-material sediment transport in the lower Mississippi River. Bulletin 2012, 124, 400–414. [Google Scholar] [CrossRef]
- Ganti, V.; Chadwick, A.J.; Hassenruck-Gudipati, H.J.; Lamb, M.P. Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta. J. Geop. Res. Earth Surf. 2016, 121, 1651–1675. [Google Scholar] [CrossRef] [Green Version]
- Batalla, R.J.; Gibbins, C.N.; Alcázar, A.; Brasington, J.; Buendia, C.; Garcia, C.; Llena, M.; López, R.; Palau, A.; Rennie, C.; et al. Hydropeaked rivers need attention. Environ. Res. Lett. 2021, 16, 021001. [Google Scholar] [CrossRef]
- Luo, M.; Yu., H.; Huang, E.; Ding, R.; Lu, X. Two-dimensional numerical simulation study on bed-load transport in the fluctuating backwater area: A case-study reservoir in China. Water 2018, 10, 1425. [Google Scholar] [CrossRef] [Green Version]
- Książek, L.; Michalik, A.; Nowak, J.; Połoska-Wróbel, A. Ocena zmian warunków hydrodynamicznych na uregulowanym odcinku potoku Smolnik. Inf. Ekol. Ter. Wiej. 2010, 8, 93–104. (In Polish) [Google Scholar]
- Liro, M. Dam-induced base-level rise effects on the gravel-bed channel planform. Catena 2017, 153, 143–156. [Google Scholar] [CrossRef]
- Sroczyński, W. Jeziora zaporowe w krajobrazie Karpat (Barrier lakes in the Carpathians-selected problems in spatial organization). In Przemiany Krajobrazu Kulturowego Karpat; Wybrane, aspekty; Myga-Piątek, U., Ed.; Komisja Krajobrazu Kulturowego PTG: Sosnowiec, Poland, 2004; pp. 87–98. (In Polish) [Google Scholar]
- Tekielak, T.; Michalik, A.; Bąk, Ł.; Książek, Ł. Wpływ wezbrań na intensywność procesów fluwialnych na przykładzie koryta potoku Smolnik. Inf. Ekol. Ter. Wiej. 2007, 4, 167–178. (In Polish) [Google Scholar]
- iRIC Software. Mflow_02 Solver Manual; iRIC Software: USA, 2014. Available online: https://i-ric.org/en/solvers/mflow02/ (accessed on 7 July 2022).
- Nelson, J.M.; Shimizu, Y.; Abe, T.; Asahi, K.; Gamou, M.; Inoue, T.; Iwasaki, T.; Kakinuma, T.; Kawamura, S.; Kimura, I.; et al. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Adv. Water Resour. 2016, 93, 62–74. [Google Scholar] [CrossRef]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959; p. 680. [Google Scholar]
- Nezu, I.; Nakagawa, H. Turbulence in Open-Channel Flow; IAHR Monograph, Belkema: Rotterdam, The Netherlands, 1993. [Google Scholar]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32–74. (In German) [Google Scholar] [CrossRef]
- Leviandier, T.; Alber, A.; Le Ber, F.; Piégay, H. Comparison of statistical algorithms for detecting homogeneous river reaches along a longitudinal continuum. Geomorphology 2012, 138, 130–144. [Google Scholar] [CrossRef] [Green Version]
- Orlowsky, B. iki.dataclim. R Package, Version 1.0; 2014. Available online: https://cran.rproject.org/web/packages/iki.dataclim/iki.dataclim.pdf (accessed on 10 July 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org (accessed on 10 July 2021).
- Li, X.; Liu, B.; Wang, Y.; Yang, Y.; Liang, R.; Peng, F.; Xu, S.; Zhu, Z.; Li, K. Hydrodynamic and environmental characteristics of a tributary bay influenced by backwater jacking and intrusions from a main reservoir. Hydrol. Earth Syst. Sci. 2020, 24, 5057–5076. [Google Scholar] [CrossRef]
- Meade, R.H.; Rayol, J.M.; Da Conceicão, S.C.; Natividade, J.R. Backwater effects in the Amazon River basin of Brazil. Environ. Geol. Water Sci. 1991, 18, 105–114. [Google Scholar] [CrossRef]
- Xu, J. Adjustment of mainstream-tributary relation upstream from a reservoir: An example from the Laohahe River, China. Z. Geomorphol. 2001, 45, 359–372. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Stoffel, M.; Kaczka, R.J.; Wyżga, B.; Niedźwiedź, T.; Pińskwar, I.; Ruiz Villanueva, V.; Łupikasza, E.; Czajka, B.; Ballesteros-Canovas, J.A.; et al. Floods at the northern foothills of the Tatra Mountains—A Polish–Swiss research project. Acta Geophys. 2014, 62, 620–641. [Google Scholar] [CrossRef]
- ISOK, Flood Risk Map for Poland. Map Sheet Accessed on line. 2009. Available online: https://wody.isok.gov.pl/pdf/M34078/M34078Cd3_ZG_10_2019v1.pdf (accessed on 1 June 2022).
- Xiao, Y.; Yang, F.S.; Su, L.; Li, J.W. Fluvial sedimentation of the permanent backwater zone in the Three Gorges Reservoir, China. Lake Reserv. Manag. 2015, 31, 324–338. [Google Scholar] [CrossRef]
- Beall, C.C.; Dixon, M.D.; Illeperuma, N.D.; Sweeney, M.R.; Johnson, W.C. Expansion of woody vegetation on a Missouri River reservoir delta-backwater. Ecohydrology 2022, 15, e2357. [Google Scholar] [CrossRef]
- Hosseiny, H.; Smith, V. Two dimensional model for backwater geomorphology: Darby Creek, PA. Water 2019, 11, 2204. [Google Scholar] [CrossRef]
Roughness Homogenous Unit | Roughness Coefficient | |||
---|---|---|---|---|
Name | Description | Minimum | Maximum | Final |
Low-flow channel | Gravel riverbed submerged at base flow | 0.02 | 0.08 | 0.03 |
Gravel bars | Gravel bars without vegetation | 0.05 | 0.09 | 0.06 |
Alluvial forest | Dense stand of willows and alder | 0.10 | 0.15 | 0.12 |
Sparse woody vegetation | Cleared land with some tree stumps | 0.07 | 0.10 | 0.09 |
Agricultural land | Grassland and crops | 0.01 | 0.04 | 0.02 |
Low-flow channel | Gravelly riverbed submerged at base flow | 0.02 | 0.08 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liro, M.; Nones, M.; Mikuś, P.; Plesiński, K. Modelling the Effects of Dam Reservoir Backwater Fluctuations on the Hydrodynamics of a Small Mountain Stream. Water 2022, 14, 3166. https://doi.org/10.3390/w14193166
Liro M, Nones M, Mikuś P, Plesiński K. Modelling the Effects of Dam Reservoir Backwater Fluctuations on the Hydrodynamics of a Small Mountain Stream. Water. 2022; 14(19):3166. https://doi.org/10.3390/w14193166
Chicago/Turabian StyleLiro, Maciej, Michael Nones, Paweł Mikuś, and Karol Plesiński. 2022. "Modelling the Effects of Dam Reservoir Backwater Fluctuations on the Hydrodynamics of a Small Mountain Stream" Water 14, no. 19: 3166. https://doi.org/10.3390/w14193166
APA StyleLiro, M., Nones, M., Mikuś, P., & Plesiński, K. (2022). Modelling the Effects of Dam Reservoir Backwater Fluctuations on the Hydrodynamics of a Small Mountain Stream. Water, 14(19), 3166. https://doi.org/10.3390/w14193166