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Abstract: Debris flows often cause local damage to engineering structures by exerting destructive
impact forces. The debris-flow–deformable-barrier interaction is a significant issue in engineering
design. In this study, a large physical flume model test device was independently designed to
repeatedly reproduce the flow and impact process of debris flow. Three physical flume tests were
performed to investigate the effect of barrier stiffness on the debris flow impact. The flow kinematics
of debris flow with three barrier stiffness values are essentially consistent with the process of impact–
run-up–falling–pile-up. The development of a dead zone provided a cushion to diminish the impact
of the follow-up debris flow on the barrier. The peak impact forces were attenuated as the barrier
stiffness decreased. The slight deflections of a deformable barrier were sufficiently effective for peak
load attenuation by up to 30%. It showed that the decrease of the barrier stiffness had a buffer effect
on the debris flow impact and attenuated the peak impact force. And with the decrease of the barrier
stiffness, when the barrier was impacted by the same soil types, the recoverable elastic strain will be
larger, and the strain peak will be more obvious.

Keywords: deformable barrier; debris flow; flume tests; impact

1. Introduction

Flow-like landslides are differentiated from landslides by the pervasive, fluid-like
deformation of the mobilized material [1]; in addition, they typically contain high energy,
can move with high velocity (>5 m/s), and travel relatively long distances [2]. It is difficult
to classify those that present highly concentrated mixtures of water and solid material.
Examples of flow-like landslides are rock avalanches, debris flow, sensitive clay flowslides
and mud flows, and so on [3]. Moreover, such disasters often occur in mountainous terrain,
and particularly in areas with steep terrain such as deep valleys and ravines. In China,
mountainous and hilly areas account for approximately 65% of the land resource area.
Hence, the geological conditions are complicated, and flow-like landslide disasters occur
frequently and cause economic losses and casualties, often at a catastrophic scale [4]. For
instance, the flow-like landslide that occurred in Maoxian, Sichuan, China, in June 2017,
instantly destroyed the Xinmo village at the foot of the slope, demolishing 64 houses and
resulting in 10 deaths. This landslide had a maximum speed of 74.6 m/s and traveled at
a distance of 2.5 km [5]. In August 2010, a catastrophic debris flow occurred in Zhouqu,
Gansu, China, and destroyed almost 5500 houses [6]. Protective structures are effective
measures for mitigating debris flows. Prevention and control measures for flow-like
landslides can be divided into active measures and passive ones (Huebl et al., 2005). Active
measures, such as disaster assessment, early warning systems, land planning, etc., lack a
consideration of disaster mechanisms and are insufficient to reduce risk. Passive measures
are engineering structures which are made of concrete, such as barriers, deflecting/catching
dams, nets, and baffle piles [7–20]. Among them, rigid walls, such as check dams, are
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commonly used to resist the impact of granular flows [8,11,21]. However, these protective
measures are commonly destroyed by geo-flows and cause even more hazardous disasters
owing to the large dynamic impact forces, which is the main damaging factor based
on the statistical analysis of the failure types attributed to debris flow [21]. Hence, it is
very important to investigate the dynamic impact of flow–structure interactions to design
effective hazard mitigation structures.

Several physical modeling and numerical approaches have been proposed to evaluate
the impact forces of geo-flows with satisfactory accuracy. Conducting laboratory experi-
ments is an effective method for elucidating the dynamic impact characteristics of granular-
flow–structure interactions because this method has high-repeatability and low-cost, in
contrast to field-scale experiments. Nevertheless, the scaling problem is an unavoidable key
consideration [22,23] when modelling debris flow in the flume test. Moreover, numerical
simulations, such as the Moving Particles Semi-implicit Method [24], the Element-Free
Galerkin Method [25], and the Finite Point Method [26], have been commonly implemented
to investigate the impact dynamics of debris flow and assist in industrial design, owing
to their advantage of wide applicability. Among them, the Smoothed Particle Hydrody-
namics method (SPH) is robust and reliable for debris flows simulation [21,27–31]. For the
reservoir considered in this study, the dynamics of debris flow impact on a deformable
barrier were investigated through laboratory flume tests and numerical simulations. The
authors focused on the analysis of the dynamics of debris flow impact on a deformable
barrier based on laboratory experiments. The analysis of the impact dynamics based on the
SPH method is presented in an accompanying paper [32].

Many laboratory experiments have been conducted to investigate the impact effect of
debris flow on rigid barriers, baffles, and bent structures. Moriguchi et al. [1] investigated
the effect of debris flow impact on a rigid baffle by conducting a flume test, and obtained
the overall stress time history curve of the rigid baffle. Scheidl et al. [33] measured the time-
history curve of the debris flow impact force exerted on rigid baffles by conducting a chute
test, and investigated the relationship between the peak velocity and impact force. Many
studies have extensively investigated the calculation of the soil flow impact force through
laboratory experiments. Currently, the most critical step in barrier design is the estimation
of the impact force, which is mostly based on simplified empirical models that can be
categorized into two main types, namely, hydrostatic models and hydrodynamic models,
according to fluid mechanics theory [34–36]. However, the empirical factors of these models
have always been controversial and vary within a wide range. Moreover, these empirical
models cannot reflect the complex interaction between actual granular flows and structures.
For example, according to the study of Kwan et al. [37], the value of the dynamic empirical
factors ranges from 0.6 to 2.0 for flexible barriers and from 2.5 to 5.0 for rigid barriers. Most
existing studies have focused on the role of the properties of the granular materials in
the impact characteristics for modeling structures considered as rigid bodies, whereas the
influence of the deformable barrier stiffness on the impact characteristics has attracted little
attention. The stiffness of structures plays an important part in dynamic impact. Based on
elastoplastic theory, He et al. [38] proposed the theoretical calculation of the impact force of
several common types of debris flow prevention structures in combination with tests, and
found that the impact force of debris flows decreases with the retaining structure stiffness,
which is similar to the simulated results obtained by Ashwood and Hungr [39]. In general,
the effects of barrier stiffness on the impact force and structural deformation response still
need to be further explored, and there is still a need for effective experimental means to
capture the debris flow impact kinematics.

In this study, a large physical flume model testing device was independently designed
to repeatedly reproduce the flow and impact process of debris flow. Three flume tests were
conducted to investigate the effects of deformable barriers with different stiffness on the
impact forces of debris flows. First, the flume tests and measurement devices are introduced.
As is known, debris flows are multi-phase materials with complicated impact mechanisms.
Sand can be used to simulate a simple case of debris flow so as to elucidate the fundamental
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mechanisms of debris flow impact on deformable barriers. In this study, flume tests were
carried out to investigate the effects of barrier stiffness on the flow kinematics and impact
forces, and a flume model is proposed to analyze the dynamics of debris flow impact on
deformable barriers. The proposed model can be used as a reference by similar studies.

2. Laboratory Flume Test
2.1. Flume Modelling

To investigate the impact characteristics, the complex debris-flow–deformable-barrier
interaction was analyzed through tests on a prototype of the proposed flume model with a
scale of 1:25. Figure 1 shows a photograph of the side view of the flume model. The physical
model was made of steel with dimensions 4000 × 400 × 1500 mm (length ×width × height),
and mainly comprised three parts as shown in Figure 1.
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Figure 1. (a) Photograph of physical flume modelling instrumentation; (b) fixing bolts at the bottom
of the barrier.

A hopper with stored sliding sand was used, and its release was controlled by an
automatic gate, which was opened sufficiently fast to avoid affecting the initial flow
characteristics of the sliding sand.

The sliding surface was made of wooden boards whose inclination angle was fixed
at 45◦, which effectively reduced the friction coefficient between the sliding sand and the
sliding bed to assist in obtaining results with stronger impact dynamics, and the connection
area between the acceleration plane and the run-out plane was made with silicone glue to
ensure a smooth transition.

A barrier located at the bottom of the model was used to investigate the model’s
dynamic response under the impact of sand flow and under different stiffness conditions.
The barrier (398 mm width) bolted to the run-out plane had a small gap between the two
sides of the boundary (400 mm width) to ensure that the structure can freely deform under
the action of debris flow to minimize the boundary effect (Figure 1b).

Since this test aims to explore the general impact characteristics of debris flow on
barrier, and there is no definite landslide example as the prototype, the size similarity ratio
is determined to be 25. Because that the model test was carried out in the conventional
gravity environment, the acceleration similarity ratio is 1. In the experiment, materials with
density similar to that of the landslide site were used, so the density similarity ratio was 1.
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At the same time, in order to ensure that the landslide movement driven by gravity meets
the dynamic similarity, the Froude similarity [40] was used in this paper and set as 1.

2.2. Parameters of Barrier Design

The barrier design mainly considered the height, thickness, and elastic modulus. The
barrier height was set to 300 mm to consider the structural response characteristics under
non-overflow conditions. Moreover, the barrier was bolted to the run-out plane and buried
at sufficient depth (180 mm) to resist the sand flow and ensure that the barrier could not be
swept away. According to “Design and Construction of landslide prevention engineering”
(DZ/T 0219-2006), when rubble concrete or plain concrete is used to construct a gravity
retaining wall, the top width of rubble concrete or regular concrete barrier should not be
less than 0.6 m. To obtain the frontal impact force of the sliding body, a retaining wall
type with a rectangular section and thickness of 45 mm was adopted in this study. The
barrier dimensions were 398 × 45 × 480 mm (length × width × height). The characteristics
of barrier are listed in Table 1. In the experiment, polypropylene (PP) was selected to
simulate a barrier with an elastic modulus of 1.0 GPa. Moreover, low-density polyethylene
(LDPE) and high-density polyethylene (HDPE) plates were used to simulate barriers with
different stiffness, and their elastic modulus was 0.6 GPa and 0.8 GPa, respectively. The
HDPE material has higher rigidity and toughness, as well as higher strength and hardness
compared with LDPE. The PP material has high crystallinity, complete structure, and higher
mechanical properties; the tensile strength, hardness, and elasticity are higher compared
with HDPE.

Table 1. Characteristics of barrier.

Barrier Materials Barrier Height
(H: mm)

Young’s Modulus
(E: GPa)

Poisson’s Ratio
(υ: \) Test ID

Low-density
polyethylene (LDPE) 300 0.6 0.30 S_6

High-density
polyethylene (HDPE) 300 0.8 0.30 S_8

Polypropylene (PP) 300 1.0 0.30 S_10

2.3. Instrumentation

To measure the loading and deformation, six sensors for measuring the impact force
and six groups of strain gates, named L1, L2, L3, L4, L5, and L6, and S1, S2, S3, S4 S5, and
S6 from bottom to top, respectively, were installed along the upstream wall of the barrier,
as shown in Figure 2a. The high-speed camera was i-Speed 716 (Figure 2b), with functions
including fast multiple sampling of high-speed targets in very short time, real-time target
capture, fast image recording, instant playback, and intuitive and clear images. The high-
speed camera was i-Speed 716 (Figure 2b), with functions including fast multiple sampling
of high-speed targets in very short time, real-time target capture, fast image recording,
instant playback, and intuitive and clear images. The following described the parameters
of the high-speed camera:

• High resolution pixel sensor: 2048 × 1536
• 7540 fps @ 1080 p
• Ultra-high speed 16 GP/sec data bandwidth
• Maximum frame rate: 500,000 fps
• Frame synchronization: 24 Hz–500 kHz

The full resolution capability of the camera used in this test is 2048 × 1536 pixels and
its sampling frequency is up to 1000 frames per second. The high-speed camera has its own
video capture system, i-Speed Software Suite 2.0 (see Figure 2b), which can control high-
speed camera through computer. The two sides of the model were made of transparent
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toughened glass to observe the flow process of the sand material, and a high-speed camera
was set on the side to capture the flow kinematics of the debris flow.
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2.4. Test Materials and Scheme

Flume tests were conducted on dry, fine sand to investigate the dynamics of debris flow
impact on a deformable barrier. Debris flows are multi-phase materials with complicated
impact mechanisms, and sand can be used to simulate a simple case of debris flow so as
to elucidate the fundamental mechanisms of debris flow impact on deformable barriers.
The experimental sand materials can be categorized into three sizes: maximum grain size
(d ≈ 1 mm), medium grain size (d ≈ 0.5 mm), and minimum grain size (d ≈ 0.25 mm). The
tested sand had fine grain size, that is, D10 = 0.3 mm and D60 = 0.7 mm, and a coefficient
of uniformity of 2.3. The grain size curve of the material was shown in Figure 3. The
maximum, minimum, and bulk dry density obtained through density tests was 1.53 g/cm3,
1.32 g/cm3, and 1.40 g/cm3, respectively. Inclining tests and direct shear tests revealed that
the internal friction angle of sand was 34◦. The cohesion of sand was c = 0 Pa. Additionally,
it was ensured that the hopper could be filled with sand until the same horizontal position
to obtain the same initial conditions each time. Three test cases were considered and
analyzed to obtain fundamental insights regarding the impact dynamics of debris flow
under different barrier stiffness. The key parameters of dry sand are summarized in Table 2.

Table 2. Key parameters of dry sand.

Material Property Parameters

Maximum grain size d (mm) 1.00
Medium grain size d (mm) 0.50

Minimum grain size d (mm) 0.25
Coefficient of uniformity 2.3

Maximum dry density γmax (g/cm3) 1.53
Minimum dry density γmin (g/cm3) 1.32

Bulk density γ (g/cm3) 1.40
Cohesion c (kPa) 0.0

Angle of internal friction ϕ (◦) 34
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3. Debris Flow Velocity Measurements and Impact Signal Processing

Particle Image Velocimetry (PIV) technology, which was first introduced into geotech-
nical testing by White et al. [41,42], is a velocity measurement technique that can help in
recognizing the individual tracer debris particles and analyzing their flow paths and veloc-
ity during the evolution of debris flow through the analysis of images with high resolution
and picture quality. The debris flow analysis used in PIVlab [43,44] typically measures
the flow velocity by identifying the distance travelled from the features of two images
(X and Y) at different time periods (t0 and t0 + ∆t). The images provided by PIVlab contain
all positions P (x,y), speed, and displacement of debris particles. Particularly, to increase
the texture characteristics of debris particles and distinguish different test windows, the
sand was partially dyed red before the test, and mixed with another part of the test sand
after drying.

Only the images pertaining to the analysis of flow velocity and the recognition of
the position of debris particles were processed by PIVlab. The dynamic impact forces
and structural response strain were obtained using the previously mentioned sensors for
measuring the impact force and strain gauge, respectively. However, the impact signal
of debris flow is a typical non-stationary signal, and all signals collected by the sensors
include noise. This study used the wavelet de-noising method to deal with the collected
impact signals. After performing several analyses on the test results, the Daubechie (dbN)
wavelet [45] was selected to conduct 4-layer one-dimensional multi-scale denoising on the
collected signals to obtain data representing the actual signal without the noise.

4. Interpretation of Test Results
4.1. Observed Debris Flow Impact Kinematics

In all results, time t began as the granular flow hit the barrier. Figure 4 shows the
velocity field of the flows through the PIV [41,42] for test ID: S_6 at several instances. At
time t = 0.0 s, a wedge-like flow approached the barrier with a maximum frontal velocity of
approximately 3.1 m/s. At 0.11 s, the flow front impacted the barrier and the maximum
velocity decreased by approximately 20% to 2.7 m/s. A dead zone gradually formed near
the wall, and the loading of the barrier gradually reached the peak. Then, the subsequent
flow overtopped the dead-zone, which exerted the effect of a cushion layer, and then
began to run up along the surface of the barrier and fell back after reaching the top. The
development of the dead zone provided a cushion that diminished the impact of the
follow-up debris flow on the barrier. At t = 0.50 s, the maximum velocity was 1.6 m/s,
the size of the dead zone increased and piled up behind the barrier and progressively
reached static equilibrium. At t = 1.16 s, the frontal velocity of the debris flow dropped



Water 2022, 14, 177 7 of 13

to 0.0 m/s and reached the state of static pile up. The debris flow kinematics under the
barrier stiffness of 0.8 GPa and 1.0 GPa (test ID: S_8 and test ID: S_10, respectively) are
essentially consistent with those obtained in test ID: S_6, that is, they are consistent with
the impact–run-up–falling–pile-up process.

4.2. Effects of Barrier Stiffness on Peak Impact

Figure 5a,b shows the evolution of the total impact forces (summed through L1, L2,
L3, L4, L5, and L6) and strain (S1, S2, S3, S4, S5, and S6) of the barrier when the peak
impact occurred under three different stiffness values, respectively. Figure 5a showed that
the impact forces of each barrier obviously peaked at approximately t = 0.1 s and then
decreased to static states that generated static earth pressure at approximately t = 0.5 s,
which corresponds to the observation in Section 4.1. The comparison of the peak pressure
between the impact time histories of different barriers reveals the existence of attenuation
with the decrease of the barrier stiffness. As shown in Figure 5, the respective peak impact
force strongly evolved with the barrier stiffness. The peak impact forces obtained for the
barrier were 11.7 kPa, 17.3 kPa, and 20.4 kPa with E = 0.6 GPa, E = 0.8 GPa, and E = 1.0
GPa, respectively. Lower stiffness attenuated the peak load by approximately 30% for
fine sand flow. Intuitively, from the hydrodynamic equation F = αρv2hL [46] (where α
represents the dynamic impact coefficient; ρ represents the debris flow density [kg/m3]; v
represents the frontal velocity before impact; and h and L represent the debris flow depth
and barrier width [m], respectively), the sand flow has a thick flow depth h with large
velocity v (Figure 4), which induces a large frontal impact force. The peak impact load was
three times larger than the static load, which left sufficient space for deflection by the barrier.
In turn, the deformation of the barrier played a buffer role in the flow–barrier interaction.

At t = 0.11 s, the barrier strained when the peak pressure occurred, owing to the frontal
flow, as shown in Figure 5b. The maximum deformation occurred near the base of the
maximum impact force. Almost no deformation was observed with a barrier height less
than twice the flow depth before impact. However, peak deflection was clearly observed
for the minimum barrier stiffness and became slighter as the structural stiffness increased
(Figure 5b). Upon impact, the peak impact force carried larger kinetic energy, which
increased the deflection of the barrier until the static state. Moreover, an obvious peak value
of 188 µε was observed under the barrier stiffness of 0.6 GPa, and became less apparent as
the barrier stiffness increased. As sand was gradually deposited behind the flexible barrier
during impact, the elastic rebound of the barrier mobilized the shear energy consumption
of the flow layer and dead zone, and caused peak impact load attenuation. Song et al. [46]
considered that the deformable barrier can substantially attenuate the impact loads only
when the deflection approaches the flow depth. Nevertheless, in this study, a strain increase
of only 90 µε (Figure 5c) could attenuate up to 30% of the peak impact force with a barrier
stiffness of 1.0 GPa (peak impact force 20.4 Kpa, test S_10) to 0.6 GPa (peak impact force
11.7 Kpa, test S_6). This implies that the slight deflections of the deformable barrier were
sufficient for peak load attenuation, which is consistent with the study of Ng et al. [47].
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peak impact force occurred; and (c) total strain time history curve of different stiffness of barrier.

5. Discussion

This paper only addresses some of the fundamental aspects of the effects of barrier
stiffness on debris flow dynamic impact. Due to the complex unsteady flow characteristics
of debris flow, there is still a need for a lot of field test data and the numerical simulation
method of high performance to further exploration.

In this study, only dry, fine sand was used. However, flow-like landslides in the
natural state present mixtures of water, air and solid grains with different size [3], which
may play a crucial role in flow–structure interaction process [48]. Jiang et al. [49] used
three kinds of natural soil materials to study the influence of internal friction angle and
particle size on impact characteristics, and the results showed that particle characteristics
have a great influence on impact force. Song et al. [50] studied the impact characteristics
of debris flow entrained pebbles on rigid structures in the centrifuge model, and found
that with the increase of pebble particle size, the impact signals pulse. The increase of
coarse particles leads to the enhancement of debris flow impact damage. Moreover, the
viscous effect of interstitial fluid in real debris flow will affect the flow impact characteris-
tics [17,51–53] revealed that different rheology behavior of viscous flow and frictional flow
would exhibit totally different impact mechanism even with identical Froude characteristics.
Song et al. [17] investigated the influence of solid fraction on debris flow impact mecha-
nism and found that the flow mobility will be enhanced by interstitial fluid. Therefore, the
impact characteristics of different particle sizes and different flow behavior on different
stiffness structures and the dynamic response characteristics of structures themselves need
further experimental and numerical research.

6. Conclusions

The investigation of the dynamic impact behavior of flow–structure interactions is
very important for the design of hazard mitigation structures. This study quantitatively
analyzed the effects of barrier stiffness on impact dynamics based on self-designed flume
test equipment. The main conclusions drawn from this study are as follows:
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(1) The flow kinematics of debris flow observed under three barrier stiffness values are
essentially consistent with the impact–run-up–falling–pile-up process. The develop-
ment of a dead zone provided a cushion that diminished the impact of the follow-up
debris flow on the barrier.

(2) The respective peak impact force evolved strongly with the barrier stiffness. The peak
impact forces attenuated with the decrease of the barrier stiffness, which is attributed
to the barrier deformation playing a buffer role in flow–structure interaction with
lower stiffness.

(3) Notably, even the slight deflections of the deformable barrier were sufficient for peak
load attenuation by up to 30%. As the barrier stiffness decreased, the recoverable
elastic strain became larger and the strain peak was more obvious when the debris
flow made impact.
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