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Abstract: The emergence of deep learning techniques has revolutionized the use of machine learning
algorithms to classify complicated environments, notably in remote sensing. Convolutional Neural
Networks (CNNs) have shown considerable promise in classifying challenging high-dimensional
remote sensing data, particularly in the classification of wetlands. State-of-the-art Natural Language
Processing (NLP) algorithms, on the other hand, are transformers. Despite the fact that transformers
have been utilized for a few remote sensing applications, they have not been compared to other
well-known CNN networks in complex wetland classification. As such, for the classification of
complex coastal wetlands in the study area of Saint John city, located in New Brunswick, Canada,
we modified and employed the Swin Transformer algorithm. Moreover, the developed transformer
classifier results were compared with two well-known deep CNNs of AlexNet and VGG-16. In
terms of average accuracy, the proposed Swin Transformer algorithm outperformed the AlexNet and
VGG-16 techniques by 14.3% and 44.28%, respectively. The proposed Swin Transformer classifier
obtained F-1 scores of 0.65, 0.71, 0.73, 0.78, 0.82, 0.84, and 0.84 for the recognition of coastal marsh,
shrub, bog, fen, aquatic bed, forested wetland, and freshwater marsh, respectively. The results
achieved in this study suggest the high capability of transformers over very deep CNN networks for
the classification of complex landscapes in remote sensing.

Keywords: wetland classification; swin transformer; VGG-16; AlexNet; CNN; deep convolutional
neural network; New Brunswick

1. Introduction

Wetlands are territories that have been immersed in water for long enough to generate
hydric soils and support the growth of hydrophytic or water-tolerant plants [1–3]. Wetlands
can be found practically everywhere on the planet, from the tundra to the tropics, and are
an important aspect of the natural habitat [1,4–7]. Although the importance of wetlands
for fish and animal conservation has been recognized for over a century, some of the other
benefits have only lately been discovered. Because they operate as downstream recipients
of water and waste from both natural and human sources, wetlands are sometimes referred
to as the natural environment’s kidneys [4]. They help to stabilize the water supply,
reducing the risk of flooding and drought [8,9]. It has been discovered that they can clean
polluted rivers, safeguard shorelines, and recharge groundwater aquifers. Because of the
wide food chain and diverse biodiversity that they support, wetlands have been dubbed
“nature’s supermarkets.” In ecosystem service assessments, wetlands are still considered
the most valuable aspects of our environment [4,10,11]. Wetland species, on the other
hand, account for 24% of the world’s invasive plants, despite accounting for only 6% of
global land cover [12]. Invasive species pose a serious risk to coastal wetlands since they
can form dense, monolithic stands, out-competing native species and affecting wetlands’
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structure [12]. A coastal wetland is defined as an area between the lower subtidal zone,
where sunlight can penetrate and sustain photosynthesis by benthic plant communities, and
the landward border, where the sea’s hydrologic impact is relinquished to groundwater
and atmospheric processes [13]. Considering the multiple stressors that wetlands face
from human activities, invasive species, and climate change, proper management and
monitoring methods are required to ensure wetland conservation and protection. Wetland
mapping with high spatial and thematic precision is crucial for wetland management and
monitoring. These maps aid in identifying wetlands’ vulnerabilities and pressures and
assessing the efficacy of wetland conservation strategies.

Wetland conservation programs exist in New Brunswick and numerous other Cana-
dian provinces, but their successful implementation requires an accurate and up-to-date
wetland map. The cost-effectiveness and quality of data sources, subsequent studies, and
ground-truthing are all important factors in producing reliable wetland maps [14]. Wet-
land mapping on a large scale has traditionally been problematic given the cost of data
collection and wetland ecosystems’ highly dynamic and remote nature. Long-term wetland
observation in Canada demands a significant amount of fieldwork and long-term human
commitment and financing. As a result, remote sensing data acquisition brings up hitherto
unimagined opportunities for large-scale wetland analysis [15–19]. While remote sensing,
like every instrument, has limitations when it comes to wetland mapping and monitoring, it
offers some advantages that make it a good fit for these tasks. Remote sensing, for instance,
saves money and time by eliminating the requirement for site visits while still covering
vast geographical regions [20]. Moreover, due to the temporal frequency of the images used
for classification, remote sensing-generated wetland maps can be updated on a regular
basis. Another feature of remote sensing that makes it even better for wetland mapping
applications is its ability to collect data from any area globally, including inaccessible
wetlands [20].

For accurate wetland mapping, there are several essential factors, including selecting
an appropriate classification algorithm and utilizing different satellite data sources, such as
Sentinel-1, Sentinel-2, and Landsat series images. It should be noted that there has been
extensive research on using and proposing various traditional and deep learning classifiers
for remote sensing image classification [21–25]. Currently, Convolutional Neural Networks
(CNNs) are regarded as cutting-edge classifiers in remote sensing due to their advantages,
such as their higher level of classification accuracies, automated feature engineering, and
recognizing more general patterns in remote sensing data compared to traditional classifiers,
such as Decision Tree (DT), Random Forest (RF), and Support Vector Machines (SVM). The
disadvantage of CNN models can be explained by their need for much more training data
compared to traditional classifiers. In other words, as there is a much higher number of
hyper-parameter variables in CNNs, specifically very deep CNNs, to reach a high level of
classification accuracy, there is a need for the availability of a huge amount of training data.
On the other hand, in natural language processing (NLP), transformers [26] have shown
great success and are considered state-of-the-art deep learning architectures. In ecological
mapping, specifically wetland mapping, there has been no literature on the utilization of
transformers. It is worth highlighting that there are few studies on the use of transformer
models in remote sensing [26–28].

As such, our research motivation is to investigate the efficiency of this cutting-edge
NLP method (i.e., transformers) for complex coastal wetland classification. As a result,
the objective of this paper is to assess and illustrate the Swin Transformer’s effectiveness
in the classification of coastal wetland complexes. We employed and modified the Swin
Transformer method as our wetland classifier, and the modified Swin Transformer’s classi-
fication results are compared to two well-known CNN classifiers, AlexNet, and VGG-16.
The main contribution of this research is the use and modification of this cutting-edge NLP
deep learning classifier (i.e., Swin Transformer) for the recognition of complex coastline
wetlands in New Brunswick, Canada. Based on the literature on wetland classification,
there has been no research on the use of transformers and their potential capabilities for the
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classification of complex and high-dimensional wetland data. This research fills the gap in
the possible use of cutting-edge transformer models to solve issues of ecological mapping,
specifically in wetland mapping.

2. Related Works

The selection of a suitable classification algorithm based on in-house supplies, such
as the presence of training data and computational power and the complexity and di-
mensionality of the satellite data to be classified, is another essential factor for accurate
wetland classification using remotely sensed data techniques. For example, the maximum
likelihood algorithm [19] is often unable to identify multi-dimensional remote sensing data
correctly. For the classification of high-dimensional data, algorithms such as DT [29–31],
RF [29,30,32], and SVM [33–35] performed better. Considering the success of these classifi-
cation models for remote sensing image classification, deep learning approaches for remote
sensing image classification have attracted great attention [36–39]. CNN deep learning
techniques have outperformed classification algorithms, such as RF, in remote sensing
applications. Traditionally, CNNs have dominated computer vision modeling, particularly
image classification. CNN designs have gained power as a result of increasing size [40],
more expanded connections [41], and more complex convolutions [42] since the debut of
AlexNet [43] and its ground-breaking success on the ImageNet image classification problem.
On the other hand, transformers are presently the most extensively used architecture in
NLP [44]. The transformer is known for its ability to model long-range patterns in data
using an attention mechanism. Transformers were created to aid with sequence modeling
and transduction. Because of its huge success in the language domain, researchers are now
looking into its applicability in computer vision. It has recently demonstrated success in
several tasks, including a few remote sensing scene classifications [26–28].

For improving wetland mapping in Canada, with the utilization of different data
sources and techniques, there has been extensive research by different research groups [45,46].
For instance, Jamali et al. [47] used Sentinel-1 and Sentinel-2 data for the classification of
five wetlands of bog, fen, marsh, swamp, and shallow water in Newfoundland, Canada,
with the use of very deep CNN networks and the Generative Adversarial Network
(GAN) [48–51], reaching a high average accuracy of 92.30%. In their research, creating
synthetic samples of Sentinel-1 and Sentinel-2 data significantly improved the classification
accuracy of wetland mapping. With the use of Sentinel-1, Sentinel-2, and digital elevation
data, Granger et al. [52] created a wetland inventory of areas surrounding the Conne River
watershed, Newfoundland. An object-based RF method was used to classify bog, fen,
swamp, marsh, and open water wetlands, obtaining an overall accuracy of 92%. More-
over, with the utilization of an RF classifier and different data sources, including Landsat
8 OLI, ALOS-1 PALSAR, Sentinel-1, and LiDAR-derived topographic metrics, LaRocque
et al. [14] classified various wetlands, including open bog, treed bog, shrub bog, open
fen, freshwater marsh, shrub fen, coastal marsh, shrub marsh, forested wetland, shrub
wetland, and aquatic bed, in New Brunswick, Canada, reaching a high overall accuracy of
97.67%. Based on the literature, traditional classifiers, specifically RF, are highly capable of
complex wetland classification [8,15,52]. The advantage of the traditional classifiers over
deep learning methods, such as CNNs, is their need for lower training data and the fact that
CNNs are like black-boxes (i.e., results of CNNs cannot be fully understood and explained).
The advantage of a deep learning classifier is that over time and with their advancement,
they become more capable of complex scene classification with less training data. For
example, synthetic wetland training data can be produced by GAN networks [47,48] to
overcome the biggest disadvantage of deep learning methods. Moreover, multi-model deep
learning classifiers can be developed to obtain higher classification accuracies [53,54].
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3. Methods
3.1. Study Area and Satellite Data

The research area is in Saint John, New Brunswick, Canada, in the province’s south-
central region (see Figure 1). Saint John, located on the Bay of Fundy, has a population
of over 71,000 people and covers an area of around 326 km2. The city is separated by the
south-flowing river, while the east side is traversed by the Kennebecasis River, which flows
into the Saint John River near Grand Bay. Saint John harbor, located at the junction of the
two rivers and the Bay of Fundy, is a deep-water harbor with no ice throughout the year. A
humid continental climate prevails throughout the city.
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We classified seven types of wetlands using Sentinel-1, Sentinel-2, and LiDAR data,
including aquatic bed, bog, coastal marsh, fen, forested wetlands, freshwater marsh, and
shrub wetland. Wetland ground truth data was obtained from New Brunswick’s 2021 wet-
land inventory (http://www.snb.ca/geonb1/e/DC/catalogue-E.asp, accessed on 8 De-
cember 2021) (see Figure 2). We manually extracted four additional non-wetland classes of
water, urban, grass, and crop through visual interpretation of very high-resolution imagery
of Google Earth to avoid over-classification of wetlands in the study area. Table 1 shows
the total number of training and test data.
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Table 1. The number of training and test pixels for the wetland and non-wetlands in the pilot site of
Saint John, New Brunswick, Canada.

Class Training (Pixels) Test (Pixels)

Aquatic bed 6476 2776
Bog 3833 1643

Coastal marsh 851 364
Fen 15,836 6787

Forested wetland 32,521 13,937
Freshwater marsh 7403 3173

Shrub wetland 15,793 6769
Water 7086 3037
Urban 11,378 4876
Grass 1005 431
Crop 1975 846

http://www.snb.ca/geonb1/e/DC/catalogue-E.asp
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Sentinel-1 and Sentinel-2 imagery features, such as normalized backscattering co-
efficients, spectral bands, and indices, were created in the Google Earth Engine (GEE)
code editor (https://code.earthengine.google.com/, accessed on 8 December 2021) as
shown in Table 2. As satellite images are pre-processed in GEE, we did not perform
any image pre-processing for Sentinel-1 and Sentinel-2 imagery. We used Las Tools
(https://rapidlasso.com/lastools/, accessed on 8 December 2021) with QGIS 3.16.7 soft-
ware to produce a DEM from LiDAR data to increase the coastal wetland classification
accuracy in the Saint John pilot site. The DEM was resampled into 10 m before being
stacked with Sentinel-1 and Sentinel-2 images with the use of the raster calculator in QGIS
3.16.7 software. It is worth noting that the LiDAR data had a point density of six points per
square meter.

Table 2. The normalized backscattering coefficients, spectral bands, and indices used in this study
(NDVI = Normalized Difference Vegetation Index, NDBI = Normalized Difference Build-up Index).

Data Normalized Backscattering Coefficients/Spectral Bands Spectral Indices

Sentinel-1 σ0
VV , σ0

VH , σ0
HH , σ0

HV

Sentinel-2 B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12
NDVI = (NIR−R)

(NIR+R)

NDBI = (SWIR−NIR)
(SWIR+NIR)

3.2. Methods

The flowchart of this research is shown in Figure 2. As seen in Figure 2, Sentinel-1 and
Sentinel-2 features are extracted from GEE, while DEM is generated from LiDAR data with
the use of QGIS 3.16.7 software and the LAS tool. Afterward, extracted features are stacked
using the MATLAB programming language. Then, the Python programming language
is used to develop deep learning classifiers of Swin Transformer, AlexNet, and VGG-16,
followed by classification map presentation in QGIS 3.16.7 software.

3.2.1. VGG-16

As seen in Figure 3, this 16-layer network with about 138 million parameters was
trained and tested on the ImageNet dataset by the University of Oxford’s Visual Geometry
Group. The original VGG-16 model architecture is made up of 3 by 3 kernel-sized filters
that allow the network to learn increasingly complicated features by increasing the depth of
the network [55]. There are 13 convolutional and 3 fully connected layers in the architecture
of the VGG-16 DCNN network, as seen in Figure 3. It is worth highlighting that there are
five max-pooling layers in the VGG-16 network.

3.2.2. AlexNet

Krizhevsky [56] introduced AlexNet as a classic and better-performing network struc-
ture of CNNs in a recognizing duty competition called ImageNet. Introducing the activation
function of ReLU and revolutionary dropout procedures helped avoid the over-fitting issue.
The goal was to improve AlexNet’s validation accuracy, as well as its generalization capa-
bilities. AlexNet’s concept offered ample space for engineering scientific research while
also opening up a new window for upcoming artificial intelligence technology. Figure 4
depicts the AlexNet architecture. There are six convolutional layers in AlexNet architecture.
The first and second convolutional layers have kernel sizes of 11 by 11 and 5 by 5, while the
remaining convolutional layers have kernel sizes of 3 by 3. In the architecture of AlexNet,
there are three fully connected layers, as seen in Figure 4.

https://code.earthengine.google.com/
https://rapidlasso.com/lastools/
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3.2.3. Proposed Swin Transformer Classifier

Differences between language and vision, such as large differences in the scale of
visual entities and the high resolution of pixels in images compared to words in texts,
make it difficult to apply transformer models from language to vision. However, the Swin
Transformer presented a hierarchical transformer whose representation is computed using
shifted windows [57] (see Figure 5). The shifted windowing technique enhances efficiency
by limiting self-attention computation to non-overlapping local windows while allowing
for cross-window connectivity. This hierarchical architecture has a linear computing
complexity as image size increases and can predict at different scales. The properties of the
Swin Trans-former make it suited for a wide range of vision applications, including remote
sensing image classification.
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Figure 5. (a) The architecture of a Swin Transformer and (b) two successive Swin Transformer Blocks.
SW-MSA and W-MSA are multi-head self-attention modules with shifted windowing and regular
settings, respectively [57].

Because it introduces links between neighboring non-overlapping windows in the pre-
vious layer, the shifted window partitioning technique is successful in image classification,
object detection, and semantic segmentation (see Figure 6) (for more information, refer to
Liu et al. [57]).
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Instead of using two multi-head self-attention modules, we experimentally used four
consecutive Swin Transformers in the modified version of the proposed complex wetland
classification algorithm. The four Swin Transformer blocks are computed consecutively
using the shifting window partitioning method (see Equations (1)–(8)):

ẑl = WMSA
(

LN(zl−1)
)
+ zl−1 (1)

zl = MLP
(

LN(ẑl)
)
+ ẑl (2)

ẑl+1 = SWMSA
(

LN(zl)
)
+ zl (3)

zl+1 = MLP
(

LN(ẑl+1)
)
+ ẑl+1 (4)

ẑl+2 = WMSA2
(

LN(zl+1)
)
+ zl+1 (5)

zl+2 = MLP
(

LN(ẑl+2)
)
+ ẑl+2 (6)

ẑl+3 = SWMSA2
(

LN(zl+2)
)
+ zl+2 (7)

zl+3 = MLP
(

LN(ẑl+3)
)
+ ẑl+3 (8)
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where ẑl and zl present the outputs of (S)W-MSA(2) and MLP module of block l, respectively.
SW-MSA(2) and W-MSA(2) are multi-head self-attention modules with shifted windowing
and regular settings, respectively.

The architecture of the proposed Swin Transformer model for complex coastline
classification is presented in Figure 7. It is worth noting that the Swin Transformer model’s
first two layers (random crop and random flip) are data augmentation approaches. In
the patch extract layer, image patches of 2 by 2 were taken from input images and turned
into linear features of size 68 (17× 4 ), yielding an output feature of 16 by 68. The output
feature in the patch embedding layer was features of size 16 by 64 because we used an
embedding dimension of 64. Image patches are converted (i.e., translated) into vector data
at the embedding layer, which is then employed in transformers. The output vectors are
then sent through the Swin Transformers. The Swin Transformer’s output features are then
merged using a patch merging layer, yielding an output feature of 4 by 128, which is then
followed by a 1-D global average pooling with a size of 128. The last layer is a dense layer
with a size of 11.
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In the Swin Transformer, we used patch size, dropout rate, number of attention heads,
embedding dimension, number of multi-layer perceptrons, and shift size of 2× 2, 0.04, 8,
64, 256, and 1, respectively.

3.2.4. Accuracy Assessment

Coastal wetland classification results were quantitatively assessed in terms of the aver-
age accuracy, recall, precision, F1-score, and overall accuracy metrics (Equations (9)–(13)).

Precision =
True positive

(True positive + False positive)
(9)

Recall =
True positive

(True positive + False negative)
(10)

Ovrall Accuracy =
(True positive + True Negative)

Total number of pixels
× 100 (11)

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(12)

Average Accuracy =
∑n

i=1 Recalli
n

(13)

Precision, recall, and F1-score metrics are statistical metrics that present the perfor-
mance of each classifier for the recognition of wetlands and non-wetlands per class. Average
accuracy is the mean of recalls, while overall accuracy is the most used overall performance
of machine learning classifiers for the classification of different remote sensing features.
The issue with the overall accuracy metric is that in wetland classification tasks, there
are much higher ground truth data for non-wetlands than wetland classes [47], resulting
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in a high level of overall accuracy even though per-class accuracies in wetlands can be
much lower than in non-wetlands. It is worth highlighting that we divided our ground
truth data into 70 percent training and 30 percent test samples using a stratified random
sampling technique implemented in Python programming language with the use of the
sklearn library.

4. Results
4.1. Statistical Comparison of Developed Models

Comparison results of the complex coastal wetland classification using the modified
Swin Transformer, AlexNet, and VGG-16 are shown in Table 3. Based on the achieved
results, the proposed classifier had the best performance over both deep CNN networks of
AlexNet and VGG-16. In terms of average accuracy, the proposed Swin Transformer algo-
rithm outperformed the AlexNet and VGG-16 techniques by 14.3% and 44.28%, respectively.
The proposed classifier obtained F1-scores of 0.65, 0.71, 0.73, 0.78, 0.82, 0.84, and 0.84 to
recognize coastal marsh, shrub, bog, fen, aquatic bed, forested wetland, and freshwater
marsh, respectively. The VGG-16 deep CNN classifier obtained the least performance.
The very deep structure of VGG-16 and its higher number of hyper-parameters over the
AlexNet and the proposed Swin Transformer network can be explained as the possible
reasons behind the lower performance of the VGG-16 network. The Swin Transformer
improved the F1-scores of wetland classes of bog, shrub, fen, coastal marsh, forested
wetland, freshwater marsh, and aquatic bed by 36%, 25%, 16%, 14%, 12%, 10%, and 3%,
respectively, compared to the AlexNet classifier. On the other hand, the F1-scores of shrub,
bog, coastal marsh, fen, aquatic bed, freshwater marsh, and forested wetlands obtained by
the VGG-16 DCNN algorithm were improved by 70%, 68%, 64%, 63%, 38%, 23%, and 18%,
respectively, by the proposed Swin Transformer classifier (see Table 3).

Table 3. Results of the proposed multi-model compared to other classifiers in terms of average
accuracy, precision, F1-score, and recall (AB = Aquatic bed, BO = Bog, CM = Coastal marsh, FE = Fen,
FM = Freshwater marsh, FW = Forested wetland, SB = Shrub wetland, W = Water, U = Urban,
G = Grass, C = Crop, AA = Average accuracy, OA = Overall accuracy).

Model AB BO CM FE FW FM SB W U G C AA (%) OA (%)

Swin Transformer 81.48 82.52
Precision 0.85 0.72 0.87 0.80 0.82 0.81 0.75 0.94 0.93 0.73 0.89

Recall 0.80 0.75 0.52 0.75 0.86 0.87 0.68 0.99 0.95 0.93 0.87
F-1 score 0.82 0.73 0.65 0.78 0.84 0.84 0.71 0.97 0.94 0.82 0.88
AlexNet 67.18 68.81
Precision 0.73 0.28 0.61 0.55 0.86 0.71 0.54 0.98 0.76 0.59 0.88

Recall 0.86 0.55 0.44 0.72 0.62 0.78 0.40 1 0.99 0.50 0.52
F-1 score 0.79 0.37 0.51 0.62 0.72 0.74 0.46 0.99 0.86 0.54 0.66
VGG-16 37.20 54.48
Precision 0.41 0.21 0.12 0.68 0.50 0.47 0.35 1 0.99 0.96 0.54

Recall 0.48 0.03 0.0 0.08 0.97 0.88 0.09 0.52 0.76 0.26 0.02
F-1 score 0.44 0.05 0.01 0.15 0.66 0.61 0.14 0.68 0.86 0.41 0.03

As seen in Tables 4–6, the proposed Swin Transformer classifier showed the least
confusion between wetlands and non-wetlands classes. The highest confusion was between
coastal marsh and freshwater marsh. The reason can be attributed to the similar vegetation
structure between these two wetland classes. Based on the Swin Transformer algorithm
results, there was a high level of confusion between forested wetlands and shrub wetlands.
Their similar vegetation types can explain this high level of confusion between these two
wetland classes. For instance, forested wetland regions may have woody shrubs, resulting
in similar spectral reflectance to shrub wetlands. It should be noted that wetlands have no
clear-cut boundaries, and as they may have a common vegetation type, they have similar
spectral reflectance in satellite imagery, specifically optical satellite images.
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Table 4. Confusion matrix of the VGG-16 (AB = Aquatic bed, BO = Bog, CM = Coastal marsh, FE = Fen,
FM = Freshwater marsh, FW = Forested wetland, SB = Shrub wetland, W = Water, U = Urban,
G = Grass, C = Crop).

Model AB BO CM FE FW FM SB W U G C

VGG-16
AB 1329 0 0 229 90 1054 70 0 3 1 0
BO 0 49 0 16 1348 129 101 0 0 0 0
CM 32 0 1 0 0 323 8 0 0 0 0
FE 19 0 0 574 5722 194 278 0 0 0 0
FW 0 1 0 0 13,571 118 241 0 6 0 0
FM 11 1 0 9 295 2778 79 0 0 0 0
SB 8 139 0 1 5460 545 604 0 12 0 0
W 1458 0 0 0 9 0 0 1570 0 0 0
U 55 33 0 21 389 449 214 0 3715 0 0
G 126 0 7 0 17 62 92 0 2 113 12
C 232 11 0 0 218 288 63 0 16 4 14

Table 5. Confusion matrix of the AlexNet (AB = Aquatic bed, BO = Bog, CM = Coastal marsh,
FE = Fen, FM = Freshwater marsh, FW = Forested wetland, SB = Shrub wetland, W = Water,
U = Urban, G = Grass, C = Crop).

Model AB BO CM FE FW FM SB W U G C

AlexNet
AB 2398 1 12 138 1 154 8 24 40 0 0
BO 58 899 0 314 85 101 100 0 86 0 0
CM 76 0 161 0 0 73 1 0 53 0 0
FE 236 657 0 4897 427 197 372 0 1 0 0
FW 147 809 2 1901 8689 273 1683 0 427 0 6
FM 252 17 54 37 3 2464 107 28 198 0 13
SB 102 839 3 1637 920 216 2686 0 337 0 29
W 0 0 0 0 0 0 0 3037 0 0 0
U 29 3 1 1 0 0 14 2 4826 0 0
G 0 0 15 0 0 8 2 0 174 217 15
C 0 0 18 0 0 7 10 0 215 152 444

Table 6. Confusion matrix of the Swin Transformer (AB = Aquatic bed, BO = Bog, CM = Coastal
marsh, FE = Fen, FM = Freshwater marsh, FW = Forested wetland, SB = Shrub wetland, W = Water,
U = Urban, G = Grass, C = Crop).

Model AB BO CM FE FW FM SB W U G C

AlexNet
AB 2219 1 0 177 3 143 7 152 54 20 0
BO 1 1225 0 50 249 9 104 0 5 0 0
CM 54 0 188 0 0 72 2 12 33 3 0
FE 99 214 0 5106 968 26 367 0 7 0 0
FW 2 202 1 649 11,960 64 1014 0 36 0 9
FM 201 4 17 25 17 2751 15 26 111 2 4
SB 24 58 5 342 1423 269 4573 0 61 4 10
W 13 0 0 0 0 0 0 3021 2 1 0
U 4 6 5 10 26 45 21 0 4654 45 60
G 4 0 0 0 0 0 0 0 19 401 7
C 2 0 0 0 0 20 0 0 16 73 735

On the other hand, the confusion between wetlands was much higher using the very
deep CNN of AlexNet and VGG-16 compared to the Swin Transformer. The highest level
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of confusion obtained by the AlexNet classifier was between bog and fen, followed by
a high level of confusion among shrub and fen wetland classes. It is worth highlighting
that bog and fen have a much higher level of similarity in their vegetation structure and
types. On the other hand, based on the results of the VGG-16 algorithm, almost all coastal
marshes were recognized as freshwater marsh regions, while bog regions were incorrectly
classified as forested wetlands. The VGG-16 classifier failed for the recognition of wetlands
with less training data (i.e., bog and coastal marsh wetlands). It is worth highlighting
that more training data is required to adequately train very deep CNN networks, such
as VGG-16 DCNN. However, the proposed Swin Transformer showed that with a small
amount of training data, a high level of accuracy could be achieved even in a complex and
high-dimensional ecological environment (see Tables 4–6).

4.2. Wetland Maps of the Study Area of Saint John City

Coastal wetland and non-wetland maps using the proposed Swin Transformer, AlexNet,
and VGG-16 are shown in Figure 8. Based on the coastal wetland classification maps, the
proposed Swin Transformer classifier obtained the best visual results. For instance, the
AlexNet network over-classified urban and shrub areas, while the proposed transformer
technique had better results visually and statistically. The coastal wetland map obtained
by the VGG-16 network showed over-classification of aquatic bed and forested wetlands,
while other wetlands, including bog, fen, and shrub, as well as the non-wetland class of
urban were under-classified.

Water 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

Table 6. Confusion matrix of the Swin Transformer (AB = Aquatic bed, BO = Bog, CM = Coastal 
marsh, FE = Fen, FM = Freshwater marsh, FW = Forested wetland, SB = Shrub wetland, W = Water, 
U = Urban, G = Grass, C = Crop). 

Model AB BO CM FE FW FM SB W U G C 
AlexNet            

AB 2219 1 0 177 3 143 7 152 54 20 0 
BO 1 1225 0 50 249 9 104 0 5 0 0 
CM 54 0 188 0 0 72 2 12 33 3 0 
FE 99 214 0 5106 968 26 367 0 7 0 0 
FW 2 202 1 649 11,960 64 1014 0 36 0 9 
FM 201 4 17 25 17 2751 15 26 111 2 4 
SB 24 58 5 342 1423 269 4573 0 61 4 10 
W 13 0 0 0 0 0 0 3021 2 1 0 
U 4 6 5 10 26 45 21 0 4654 45 60 
G 4 0 0 0 0 0 0 0 19 401 7 
C 2 0 0 0 0 20 0 0 16 73 735 

4.2. Wetland Maps of the Study Area of Saint John City 
Coastal wetland and non-wetland maps using the proposed Swin Transformer, 

AlexNet, and VGG-16 are shown in Figure 8. Based on the coastal wetland classification 
maps, the proposed Swin Transformer classifier obtained the best visual results. For in-
stance, the AlexNet network over-classified urban and shrub areas, while the proposed 
transformer technique had better results visually and statistically. The coastal wetland 
map obtained by the VGG-16 network showed over-classification of aquatic bed and for-
ested wetlands, while other wetlands, including bog, fen, and shrub, as well as the non-
wetland class of urban were under-classified. 

 
(a) 

Water 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Coastal wetland classification using (a) Sentinel-2 true color of the study area of Saint John 
city, (b) the modified Swin Transformer, (c) AlexNet, and (d) VGG-16. 

5. Discussion 
As shown in Figure 9, to fully visualize the magnitude and effectiveness of Sentinel-

1 and Sentinel-2 features, the variable importance was assessed. For the spectral analysis, 
we ran the Random Forest classifier 30 times. Based on the results, Sentinel-2 spectral 
bands and indices were more effective than Sentinel-1 backscattering features in detecting 
coastal wetlands in the pilot site of Saint John city, as expected. According to the Gini 

Figure 8. Cont.



Water 2022, 14, 178 13 of 17

Water 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Coastal wetland classification using (a) Sentinel-2 true color of the study area of Saint John 
city, (b) the modified Swin Transformer, (c) AlexNet, and (d) VGG-16. 

5. Discussion 
As shown in Figure 9, to fully visualize the magnitude and effectiveness of Sentinel-

1 and Sentinel-2 features, the variable importance was assessed. For the spectral analysis, 
we ran the Random Forest classifier 30 times. Based on the results, Sentinel-2 spectral 
bands and indices were more effective than Sentinel-1 backscattering features in detecting 
coastal wetlands in the pilot site of Saint John city, as expected. According to the Gini 

Figure 8. Coastal wetland classification using (a) Sentinel-2 true color of the study area of Saint John
city, (b) the modified Swin Transformer, (c) AlexNet, and (d) VGG-16.

5. Discussion

As shown in Figure 9, to fully visualize the magnitude and effectiveness of Sentinel-
1 and Sentinel-2 features, the variable importance was assessed. For the spectral analysis,
we ran the Random Forest classifier 30 times. Based on the results, Sentinel-2 spectral bands
and indices were more effective than Sentinel-1 backscattering features in detecting coastal
wetlands in the pilot site of Saint John city, as expected. According to the Gini index for test
data prediction, the fifth band of Sentinel-2 (i.e., first vegetation red edge band, B5) was the
most influential variable for coastal wetland classification. However, the second vegetation
red edge band (i.e., B6) was the least influential variable. Furthermore, the σ0

HH , followed
by σ0

VV , backscattering coefficients were Sentinel-1′s most useful features.
Transformers have had a lot of success in solving NLP tasks. A tough challenge in

remote sensing complex landscape classification over conventional computer vision image
classification is the significantly higher resolution of remote sensing satellite images, despite
their high potential for a few computer vision problems. Given that vision transformers
have a complexity of O

(
n2) as pixel resolution increases, we chose the Swin Transformer

because it has a considerably lower linear complexity of O(n) as image pixel resolution
increases. The Swin Transformer, in other terms, is far more computationally efficient than
other visual transformers. For instance, in terms of time, the modified Swin Transformer
with 30 min training time was much more efficient over both CNN algorithms of AlexNet
and VGG-16 with training times of 60 and 180 min, respectively.
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Based on the achieved results, the modified Swin Transformer classifier reached
a relatively high average accuracy of 81.48%. As LaRocque et al. [14] discussed, most
wetland mapping methods in New Brunswick are based on the manual interpretation
of high-resolution imagery. There is not much literature on the use of cutting-edge deep
learning methods in the pilot site of Saint John city. LaRocque et al. [14] reported that the
RF classifier reached an overall accuracy of 97.67% with the utilization of Landsat 8 OLI,
ALOS-1 PALSAR, Sentinel-1, and LiDAR-derived topographic metrics. We cannot precisely
compare their obtained results and the results achieved by this study, as our classifiers, the
number of training data, and satellite data are different. Based on the achieved results, The
Swin Transformer presented its high capability for complex ecological scene classification
due to its lower computation cost and much higher classification accuracy than the other
two well-known CNN models of AlexNet and VGG-16.

For the implementation of the machine learning algorithms of AlexNet, VGG-16, and
the modified Swin Transformer, a Graphical Processing Unit (GPU) of NVIDIA GeForce
RTX 2070, a 16 GB Random Access Memory (RAM), and an Intel processor (i.e., i7-10750H
Central Processing Unit (CPU) of 2.60 GHz) operating on 64-bit Windows 11 were utilized. It
is worth highlighting that all algorithms were developed in the Python TensorFlow library.

6. Conclusions

New solutions and technologies for wetland mapping and monitoring have become
crucial because of the considerable benefits that wetland activities deliver to humans and
wildlife. Because of their dynamic and varied structure, which lacks clear-cut boundaries
and similar vegetation patterns, wetlands are among the most challenging ecosystems to
identify. As a result, we investigated the potential of utilizing cutting-edge transformers
(i.e., Swin Transformer) for complex landscape classification in the pilot site of Saint John
city in New Brunswick, Canada, for the protection and monitoring of coastal wetlands.
Based on the achieved results, the modified Swin Transformer presented better results for
the classification of the complex environment of Saint John city, visually and statistically.
In terms of average accuracy, the proposed Swin Transformer algorithm outperformed
the AlexNet and VGG-16 techniques by 14.3% and 44.28%, respectively. Moreover, the
proposed transformer machine learning method achieved relatively high F1-scores of 0.65,
0.71, 0.73, 0.78, 0.82, 0.84, and 0.84 for recognizing coastal marsh, shrub, bog, fen, aquatic
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bed, forested wetland, and freshwater marsh, respectively. In addition, we calculated
streamflow of the study area of Saint John city using the LiDAR DEM to investigate the
connectivity between wetlands to better understand the potential level of risk over the
possible pollution of aquatic and wetland ecosystems. We found a high level of linkage
between aquatic and wetland ecosystems in the pilot site that triggers the implementation
of future policies over the protection and preservation of coastal wetlands in Saint John city.
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