Exploration and Investigation of High-Level Radon Medicinal Springs in the Crystalline Units: Lugicum
Abstract
:1. Introduction
2. Research Area
3. Materials and Methods
3.1. Preparation of the Claim Area
3.2. Metrology
3.3. Field Exploration Technique
3.4. Field Data Finalization
4. Results
4.1. Claim #1—Orlice–Sněžník Dome
4.2. Claim #2—East Krkonoše
4.3. Claim #3—Lázně Libverda–Świeradów-Zdrój
4.4. Claim #4—Chrastava-Bogatynia
4.5. Claim #5—Tanvald Granite
5. Discussion
5.1. GIS Usability
5.2. Radon Activity Concentration and Gamma Dose Rate Relationship
5.3. Effectivity of the Gamma Indication Method
5.4. Activation Process Remarks
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Čtrnáctka | Jakubův | - | St. Vojtěch | Bukový | Michael | Rafael | Soumar | Mikuláš | Schindler | |
---|---|---|---|---|---|---|---|---|---|---|---|
Code | S-4 | S-6 | KSS-1 | HMÚ-1 | JL-6 | L3/6 | L3/9 | CH2/11 | CH3/17 | TGR/33 | |
Claim Number | #1 | #1 | #1 | #2 | #2 | #3 | #3 | #4 | #4 | #5 | |
Locality | Stříbrnice | Stříbrnice | Dolní Hedeč | H. M. Úpa | Jánské Lázně | Nové Město | Nové Město | Abrechtice | Nová Ves | Kokonín | |
Sampling Date | 18 November 2005 | 18 November 2005 | 17 November 2005 | 11 September 2009 | 07 September 2006 | 29 September 2011 | 29 September 2011 | 21 September 2013 | 15 July 2017 | 20 June 2015 | |
Cations | value | ||||||||||
Li | (mg/L) | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.015 |
Na | (mg/L) | 4.8 | 4 | 8.5 | 1.78 | 2.2 | 5.15 | 3.59 | 310 | 12.58 | 58 |
K | (mg/L) | 1.2 | 1.3 | 1.2 | 0.72 | 1.1 | 1.63 | 1.56 | 23.7 | 1.04 | 6.97 |
NH4 | (mg/L) | <0.03 | <0.03 | <0.03 | n.a. | <0.03 | n.a. | n.a. | n.a. | n.a. | n.a. |
Mg | (mg/L) | 1.2 | 0.9 | 1.4 | 2.83 | 1.2 | 2.80 | 2.12 | 35.9 | 3.16 | 6.82 |
Ca | (mg/L) | 5.8 | 5.8 | 9.8 | 11.2 | 6.00 | 11.4 | 7.14 | 108 | 45.5 | 31.1 |
Sr | (mg/L) | 0.018 | 0.020 | 0.017 | 0.035 | 0.008 | <0.005 | <0.005 | 0.46 | 0.05 | 0.14 |
Ba | (mg/L) | 0.003 | 0.002 | 0.002 | 0.028 | 0.008 | 0.009 | 0.018 | 0.270 | 0.012 | 0.056 |
Fe | (mg/L) | <0.009 | <0.009 | 0.25 | <0.005 | 0.020 | 0.028 | 0.019 | <0.005 | 0.058 | 0.056 |
Mn | (mg/L) | 0.003 | 0.003 | 0.019 | <0.005 | 0.041 | 0.005 | 0.059 | 2.8 | 0.003 | 0.443 |
Al | (mg/L) | 0.03 | 0.042 | 0.002 | <0.05 | 0.429 | 0.82 | 1.21 | 0.27 | 0.12 | 0.183 |
Ti | (mg/L) | 0.001 | 0.001 | 0.001 | <0.005 | 0.001 | <0.01 | <0.01 | 0.02 | n.a. | 0.001 |
Anions | |||||||||||
F | (mg/L) | 0.12 | 0.11 | 0.54 | 0.065 | 0.28 | 1.81 | 1.36 | 0.33 | 0.36 | <0.2 |
Cl | (mg/L) | 1.0 | 0.8 | 5.9 | 1.23 | 0.8 | 2.72 | 3.04 | 785 | 5.4 | 136 |
Br | (mg/L) | n.a. | n.a. | n.a. | n.a. | n.a. | 0.009 | 0.007 | <0.2 | <0.2 | n.a. |
SO4 | (mg/L) | 11.9 | 11.5 | 2.5 | 13.6 | 10.4 | 39.4 | 31.0 | 45.8 | 35.2 | 39.5 |
NO2 | (mg/L) | <0.01 | <0.01 | <0.01 | n.a. | <0.01 | 0.002 | 0.002 | n.a. | n.a. | n.a. |
NO3 | (mg/L) | 5.3 | 6.0 | 24.0 | 1.86 | 1.4 | 3.98 | 3.22 | 20.2 | 16.9 | 43.2 |
PO4 | (mg/L) | 0.61 | 0.45 | <0.01 | <0.2 | <0.01 | n.a. | n.a. | <0.4 | <0.4 | n.a. |
HCO3 | (mg/L) | 18.0 | 9.2 | 28.0 | 48.8 | 13.4 | 48.8 | 25.9 | 4.6 | 18.3 | 18.3 |
Microelements | |||||||||||
V | (µg/L) | 0.08 | 0.06 | 0.07 | n.a. | 0.1 | n.a. | n.a. | n.a. | n.a. | n.a. |
Cr | (µg/L) | 0.44 | 0.19 | <0.01 | n.a. | 0.13 | n.a. | n.a. | n.a. | n.a. | n.a. |
Co | (µg/L) | 0.022 | 0.011 | 0.015 | n.a. | 0.26 | n.a. | n.a. | n.a. | n.a. | 8 |
Ni | (µg/L) | 0.97 | 0.98 | 0.54 | n.a. | 0.72 | n.a. | n.a. | n.a. | n.a. | 8 |
Cu | (µg/L) | 1.16 | 0.32 | 0.98 | <10 | 1.17 | <10 | <10 | <10 | n.a. | 69 |
Zn | (µg/L) | 20 | 14.6 | 57 | <5 | 27.7 | <5 | <5 | 90 | n.a. | 148 |
As | (µg/L) | 4.2 | 4.4 | 18.1 | n.a. | 24.5 | n.a. | n.a. | n.a. | n.a. | <68 |
Ag | (µg/L) | 0.045 | 0.034 | <0.005 | n.a. | 0.035 | n.a. | n.a. | n.a. | n.a. | n.a. |
Cd | (µg/L) | 0.36 | 0.29 | 0.69 | n.a. | 0.28 | n.a. | n.a. | n.a. | n.a. | n.a. |
Pb | (µg/L) | 0.39 | 0.89 | 0.36 | 0.22 | 0.48 | <50 | <50 | <30 | n.a. | n.a. |
Bi | (µg/L) | <0.005 | <0.005 | 0.23 | n.a. | <0.005 | n.a. | n.a. | n.a. | n.a. | n.a. |
Undissoc. | |||||||||||
H4SiO4 | (mg/L) | n.a. | n.a. | n.a. | 17.2 | n.a. | 36.5 | 26.1 | 24.6 | n.a. | 19.8 |
Total Mineralization | (mg/L) | 50.0 | 40.1 | 82.1 | 99.4 | 37.3 | 155.1 | 106.3 | 1361.9 | 138.7 | 360.6 |
Radiology | |||||||||||
Th | (µg/L) | 0.15 | 0.14 | 0.08 | <0.01 | 0.20 | 0.016 | 0.015 | n.a. | n.a. | n.a. |
U | (µg/L) | 1.38 | 1.48 | 1.36 | 16.6 | 9.09 | 3.97 | 2.68 | 0.96 | n.a. | 4.45 |
226Ra | (Bq/L) | 0.078 | 0.024 | 0.017 | 0.09 | n.a. | 0.12 | 0.19 | 1.69 | 0.11 | 0.47 |
222Rn | (Bq/L) | 2243 | 2185 | 4485 | 3330 | 4500 | 5723 | 3215 | 1750 | 2672 | 2420 |
Eh (ORP)H | (mV) | 427 | 461 | 238 | 545 | 481 | 556 | 519 | 495 | 501 | 480 |
Dissolved CO2 | (mg/L) | 18.0 | 19.8 | 11.4 | n.a. | 4.4 | n.a. | n.a. | n.a. | n.a. | n.a. |
References
- Sheen, S.; Lee, K.S.; Chung, W.Y.; Nam, S.; Kang, D.R. An updated rewiew of case-control studies of lung cancer and indoor radon—Is indoor radon the risk factor for lung cancer? Ann. Occup. Environ. Med. 2016, 28, 1–9. [Google Scholar]
- Rodriguez-Martinez, Á.; Torres-Durán, M.; Barros-Dios, J.M.; Ruano-Ravina, A. Residental radon and small cell lung cancer. A systematic review. Cancer Lett. 2018, 426, 57–62. [Google Scholar] [CrossRef] [PubMed]
- IARC 2012—Radiation. A Review of Human Carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer; World Health Organization: Lyon, France, 2012; Volume 100D.
- Dobrzyński, L.; Fornalski, K.W.; Reszcyńska, J. Meta-analysis of thirty-two case-control and two ecological radon studies of lung cancer. J. Radiat. Res. 2017, 59, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Orient, J.M. Fukushima and Reflections on Radiation as a Terror Weapon. J. Amer. Phys. Surg. 2017, 19, 48–55. [Google Scholar]
- György, C. Hormesis and immunity: A review. A. Microbiol. Immunol Hungar. 2018, 66, 155–168. [Google Scholar]
- Becker, K. One century of radon therapy. Int. J. Low Radiat. 2004, 1, 334–357. [Google Scholar] [CrossRef]
- Przylibski, T.A. Radon: A radioactive therapeutic element. In Radon, Health and Natural Hazards; Gilmore, G.K., Perrier, F.E., Crockett, R.G.M., Eds.; The Geological Society of London, Special Publication 451: London, UK, 2018; pp. 209–236. [Google Scholar]
- Deetjen, P.; Falkenbach, A.; Harder, D.; Jöckel, H.; Kaul, A.; Philipsborn, H.V. Radon als Heilmittel. Terapeutische Wirksamkeit, Biologischer Wirkungsmechanismus und Vergleichende Risikobewertung; Verlag Dr. Kovac: Heidelberg, Germany, 2005; 111p. [Google Scholar]
- Cucu, A.; Shreder, K.; Kraft, D.; Rühle, P.F.; Klein, G.; Thiel, G.; Frey, B.; Gaipl, U.S.; Fournier, C. Decrease of markers related to bone erosion in serum of patients with mucosceletal disorders after serial low-dose radon spa therapy. Front. Immunol. 2017, 8, 822. [Google Scholar] [CrossRef]
- Rühle, P.F.; Wunderlich, R.; Deloch, L.; Fournier, C.; Maier, A.; Klein, G.; Fietkau, R.; Gaipl, U.S.; Frey, B. Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01. Autoimunity 2017, 50, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Vogiannis, E.; Nikolopoulos, D.; Louizi, A.; Halvadakis, C.P. Radon variations during treatment in thermal spas of Lesvos Island (Greece). J. Environ. Radioact. 2004, 75, 159–170. [Google Scholar] [CrossRef]
- Voronov, A.N. Radon-rich waters in Russia. Environ. Geol. 2004, 46, 630–634. [Google Scholar] [CrossRef]
- Zdrojewicz, Z.; Strzelczyk, J. Radon treatment controversy. Dose-Response 2006, 4, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Erickson, B.E. The therapeutic use of radon: A biomedical treatment in Europe; An “alternative” remedy in the United States. Dose-Response 2007, 5, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Nagy, K.; Kávási, N.; Kovács, T.; Somlai, J. Radon therapy and speleotherapy in Hungary. Presse Therm. Clim. 2008, 145, 219–225. [Google Scholar]
- Persianova-Dubrova, A.L.; Badalov, N.G.; Lvova, N.V.; Tupitsyna, I.U.; Uianaeva, A.I.; Krikorova, S.A.; Adilov, V.B.; Linok, V.A.; Povazhnaia, E.L. Crenobalneotherapy in Russia. Presse Therm. Clim. 2012, 149, 93–102. [Google Scholar]
- Kröner, A.; Jaeckel, P.; Hegner, E.; Opletal, M. Single zircon ages and whole-rock Nd isotopic sustematics of early Palaeozoic granitoid gneisses from the Czech nad Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). Int. J. Earth Sci. 2001, 90, 304–324. [Google Scholar] [CrossRef]
- Oberc-Dziedzic, T.; Kryza, R.; Pin, C.; Mochnacka, K.; Larionov, A. The orthogneiss and schist complex of the Karkonosze–Izera Massif (Sudetes, SW Poland): U–Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol. Sudet. 2009, 41, 3–24. [Google Scholar]
- Jeřábek, P.; Konopásek, J.; Žáčková, E. Two-stage exhumation of subducted Saxothuringian continental crust records underplating in the subduction channel and collisional forced folding (Krkonoše-Jizera Mts., Bohemian Massif). J. Struct. Geol. 2016, 89, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Oberc-Dziedzic, T.; Kryza, R.; Mochnacka, K.; Larionov, A. Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. Int. J. Earth Sci. 2010, 99, 27–46. [Google Scholar] [CrossRef]
- Winchester, J.A.; Patočka, F.; Kachlík, V.; Melzer, M.; Nawakowski, C.; Crowley, Q.G.; Floyd, P.A. Geochemical discrimination of metasedimentary sequences in the Krkonoše-Jizera terrane (West Sudetes, Bohemian Massif): Paleotectonic and stratigraphic constraints. Geol. Carpat. 2003, 54, 267–280. [Google Scholar]
- Žák, J.; Verner, K.; Sláma, J.; Kachlík, V.; Chlupáčová, M. Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif. Tectonics 2013, 32, 1493–1512. [Google Scholar] [CrossRef]
- Černík, T.; Goliáš, V. Radioactivity of granitoids the Krkonoše-Jizera pluton: Statistical evaluation of archive data. In Geoscience Research Reports for 2013/D—Mineralogy, Petrology and Geochemistry; Czech Geological Survey: Prague, Czech Republic, 2014; pp. 97–100. (In Czech) [Google Scholar]
- Abraham, M.; Dudek, A.; Fediuk, F. The Czech part of the Krkonoše-Jizera Mts. Pluton in the light of regional heavy mineral prospecting. Bull. Geosci. 2000, 75, 17–22. [Google Scholar]
- Vrána, S.; Sulovský, P.; Schovánek, P. Changes in chemical composition of allanite-(Ce) accompanying alteration: Relations with uranium release in biotite monzogranite near Bedřichov. In Geoscience Research Reports for 2011; Czech Geological Survey: Prague, Czech Republic, 2012; pp. 202–207. (In Czech) [Google Scholar]
- Veselý, T. Small uranium deposits of crystalline of the Bohemian Massif. Part III: North and northwest Bohemian area. Geol. Hydometal. Uranium 1982, 6, 3–46. (In Czech) [Google Scholar]
- Mochnacka, K.; Banaś, M. Occurence and genetic relationships of uranium and thorium mineralization in the Karkonosze Izera Block (the Sudety Mts., SW Poland). Ann. Soc. Geol. Polon. 2000, 70, 137–150. [Google Scholar]
- Mochnacka, K.; Oberc-Dziedzic, T.; Mayer, W.; Pieczka, A. Ore mineralization related to geological evolution of the Karkonosze-Jizera Massif (the Sudetes, Poland)—Towards a model. Ore Geol. Rew. 2015, 64, 215–238. [Google Scholar] [CrossRef]
- Goliáš, V.; Tumurkhuu, G.; Kohn, P.; Šálek, O.; Plášil, J.; Škoda, R.; Soumar, J. Construction of new houses on a uranium vein outcrop: A case study from the Czech Republic. Nukleonika 2016, 61, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Przylibski, T.A.; Mamont-Cieśla, K.; Kusyk, M.; Dorda, J.; Kozlowska, B. Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland). J. Environ. Radioact. 2004, 75, 193–209. [Google Scholar] [CrossRef]
- Krásný, J. Groundwaters of the Czech Republic; Czech Geological Survey: Prague, Czech Republic, 2012; 1143p, ISBN 978-80-7075-797-0. (In Czech) [Google Scholar]
- Act No. 164/2001 Sb., §2 (1), “Spa Act”of the Czech Collection of Laws. Available online: https://www.zakonyprolidi.cz/cs/2001-164 (accessed on 10 November 2021).
- Ustawa z dnia 9 czerwca 2011 r. Prawo geologiczne i górnicze (Mining and Geological Law). Dz.U. z 2011 r. nr 163, poz. 981, art. 5, ust. 2. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20111630981 (accessed on 11 November 2021).
- Tokarev, A.N.; Schebakov, A.B. Radiogidrogeologia; Gosgeoltechnizdat: Moscow, Russia, 1956; 263p. (In Russian) [Google Scholar]
- IAEA 2003: Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; International Atomic Energy Agency: Vienna, Austria, 2003; 173p.
- IAEA 2010: Radioelement Mapping: Basic Principles, Objectives, Guides; Technical Reports; International Atomic Energy Agency: Vienna, Austria, 2010; 123p.
- Hynie, O. Hydrogeology of the Czechoslovakia, Part II. Mineral Waters; Academia: Prague, Czech Republic, 1963; 797p. [Google Scholar]
- Jetel, J.; Rybářová, L. Mineral Waters of the East Bohemian Region; Czech Geological Survey: Prague, Czech Republic, 1979; 228p. (In Czech) [Google Scholar]
- Kačura, G. Mineral Waters of the North Bohemian Region; Czech Geological Survey: Prague, Czech Republic, 1980; 178p. (In Czech) [Google Scholar]
- Jaiswal, R.K.; Mukherjee, S.; Krishnamurthy, J.; Saxena, R. Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: An approach. Int. J. Remote Sens. 2003, 24, 993–1008. [Google Scholar] [CrossRef]
- Teixeira, J.; Chaminé, H.I.; Carvalho, J.M.; Pérez-Alberto, A.; Rocha, F. Hydrogeomorphological mapping as a tool in grounwater exploration. J. Maps 2013, 9, 263–273. [Google Scholar] [CrossRef]
- Krištiak, J.; Záliš, Z. Database of Radioactive Object of the Uranium Survey for Environmental Purposes, Průzkum Příbram—GEOFOND: Příbram, Czech Republic, 1993; 97p, (Unpublished). (In Czech)
- Kadlčíková, E. Geological Structure and Prospects of Uranium Distribution in the West Sudeten Region; MS. Czechoslovak Uranium Industry: Liberec, Czech Republic, 1975; 199p. (In Czech) [Google Scholar]
- Stárková, Z.; Zrůstek, V. Prognoses of ČSSR for Uranium, Area No. 44—Orlice-Kłodzko Dome; MS. Czechoslovak Uranium Industry: Dolní Rožínka, Czech Republic, 1976; 197p. (In Czech) [Google Scholar]
- Sedlák, J.; Gnojek, I.; Dědáček, K.; Zabadal, S. Airborne Geophysical Mapping of Radioactive Contamination in the Liberec Region; Final Report; MS. Miligal Company, Brno, GEOFOND: Prague, Czech Republic, 2005. [Google Scholar]
- Lysenko, V.; Mrázová, Š.; Mannová, M. Morphotectonic Analysis of the Jizera Mountain Protected Landscape Area; Final Report; Czech Geological Survey: Prague, Czech Republic, 2003; 28p. (In Czech) [Google Scholar]
- Mareš, S. Introduction to Applied Geophysics; D. Reidel Publishing Company: Dordrecht, The Netherlands; Boston, MA, USA; Lancaster, PA, USA, 1984; 510p. [Google Scholar]
- IAEA 1976: Radiometric Reporting Methods and Calibration in Uranium Exploration; International Atomic Energy Agency: Vienna, Austria, 1976; 57p.
- IAEA 1989: Construction and Use of Calibration Facilities for Radiometric Field Equipment; International Atomic Energy Agency: Vienna, Austria, 1989; 86p.
- Matolín, M. Determination of 222Rn and 220Rn by Portable Emanometers. Acta Univ. Carol. Geol. 1988, 1, 101–110. [Google Scholar]
- Haaslahti, J.; Aalto, J.; Oikari, T. A portable liquid scintillation counter for general LSC and high sensitivity alpha-counting applications. J. Radioanal. Nucl. Chem. 2000, 243, 377–381. [Google Scholar] [CrossRef]
- Pates, J.M.; Mullinger, N.J. Determination of 222Rn in fresh water: Development of a robust method of analysis by α/β separation liquid scintillation spectrometry. Appl. Radiat. Isot. 2007, 65, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Manová, M.; Matolín, M. Radiometric Map of the Czech Republic 1:500,000; Czech Geological Survey: Prague, Czech Republic, 1995. [Google Scholar]
- Hocking, R.R. Methods and Applications of Linear Models: Regression and Analysis of Variance; John Wiley: New York, NY, USA, 1996. [Google Scholar]
- Eisenhauer, J.G. Regression through the Origin. Teach. Stat. 2003, 25, 3. [Google Scholar] [CrossRef]
- Valečka, J. Sedimentology of upper Cretaceous in the Kłodzko graben. Sborn. Geol. Věd Ser. Geol. 1988, 43, 147–191. (In Czech) [Google Scholar]
- Holluta, J. Über radioaktive Quellen in der Sudeten. HDI-Mitt. Huptvereines Dtsch. Ing. Tschechosl. Rep. 1929, 18, 66–215. [Google Scholar]
- Lipanský, T. The Springs of the Radioactive Mineral Waters in the Orlice-Sněžník Dome. Master’s Thesis, Faculty of Science, Charles University, Prague, Czech Republic, 2007; 76p. (In Czech). [Google Scholar]
- Wagner, A. Radioaktivität der Quellen im Sudetenland. Firgenwald 1942, 13, 94–111. [Google Scholar]
- Goliáš, V. Springs of the radioactive medicinal groundwaters in Janské Lázně—Těsný důl. Opera Corcon. 2007, 44, 161–169. (In Czech) [Google Scholar]
- Goliáš, V.; Przylibski, T.A.; Lipanský, T.; Dohnal, J.; Miśta, W.; Nowakowski, R.; Tejnecký, V.; Mokrá, Z.; Vávrová, J.; Šimon, J.; et al. Springs of the radioactive mineral groundwaters in the Kowary—Horní Malá Úpa area. Opera Corcon. 2010, 47 (Suppl. 1), 75–90. (In Czech) [Google Scholar]
- Miśta, W.; Nowakowski, R. Investigation of radon water in old workings after uranium mining in Kowary. In Dzieje górnictwa—element europejskiego dziedzictwa kultury; Zagożdżon, P.P., Madziarz, M., Eds.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2009; pp. 245–253. [Google Scholar]
- Markov, I.; Savolis, V.; Knjazev, A.; Gromkov, L. Calculation of Reserves of the Jáchymov Mines Company in 1952; MS—Archive of the DIAMO State Enterprise: Jáchymov, Czechoslovakia, 1953. (In Russian) [Google Scholar]
- Nývlt, D.; Engel, Z.; Tyráček, J. Pleistocene Glaciations of Czechia. Dev. Quternary Sci. 2011, 15, 37–46. [Google Scholar]
- Przylibski, T.A. Radon, a Component of Healing Waters of the Sudetes; Oficina Wydawiczna Politechniki Wrocławskiej: Wrocław, Poland, 2005; 329p. (In Polish) [Google Scholar]
- Hrušková, L. Springs of the Radioactive Mineral Waters in the Lázně Libverda—Świeradów-Zdrój Area. Master’s Thesis, Faculty of Science, Charles University, Prague, Czech Republic, 2013; 68p. (In Czech). [Google Scholar]
- Goliáš, V.; Hrušková, L.; Przylibski, T.A.; Lipanský, T.; Černík, T. Radioactive springs of the Krkonoše Mts and Jizera Mts as geological phenomena, healing sources and tourist attractions. Opera Corcon. 2013, 50, 135–142. [Google Scholar]
- Černík, T. Springs of the Radioactive Mineral Waters in the Chrastava—Bogatynia Area. Master’s Thesis, Faculty of Science, Charles University, Prague, Czech Republic, 2017; 63p. (In Czech). [Google Scholar]
- Goliáš, V.; Hrušková, L.; Černík, T.; Bruthans, J.; Nakládal, P.; Churáčková, Z.; Kula, A. Albrechtice chloride district. In Geoscience Research Reports for 2013/H—Hydrogeology; Czech Geological Survey: Prague, Czech Republic, 2014; pp. 159–164. (In Czech) [Google Scholar]
- Kopecký, L. České středohoří Mts and Ambient Young Alkaline Volcanic Complexes in the Ohře Rift, Czech Republic: Volcanology, Petrology and Rift Evolution; Czech Geological Survey: Prague, Czech Republic, 2010; 188p, ISBN 978-80-7075-748-2. [Google Scholar]
- Bruthans, J. Delay Time and the Water Chemistry in the Zittau Basin, Unpublished Report; Charles University: Prague, Czech Republic, 2008; 20p. (In Czech)
- Porcelli, D.; Swarzenski, P.W. The Behavior of U- and Th-series Nuclides in Groundwater. Rev. Mineral. Geochem. 2003, 52, 317–361. [Google Scholar] [CrossRef]
- Thurnquist, E.L. Regional increase of mean chloride concentration in water due to the application of deicing salt. Sci. Total Environ. 2004, 325, 29–37. [Google Scholar]
- Kändler, M.; Blechinger, K.; Seidler, C.H.; Pavlů, V.; Šanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Štich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef]
- Kohn, P. Springs of the Radioactive Mineral Waters on Tanvald Granite. Master’s Thesis, Faculty of Science, Charles University, Prague, Czech Republic, 2015; p. 34. (In Czech). [Google Scholar]
- Klomínský, J.; Jarchovský, T.; Rajpoot, G.S. Atlas of Plutonic Rocks and Orthogneisses in the Bohemian Massif. 4. LUGICUM; Czech Geological Survey: Prague, Czech Republic, 2010; 78p. [Google Scholar]
- Barnet, I. The Maps of Radon Index of the Geological Basement 1:50,000; Czech Geological Survey Press: Prague, Czech Republic, 2005. [Google Scholar]
- Barnet, I.; Pacherová, P.; Preusse, W.; Stec, B. Cross-border radon index map 1:100,000 Lausitz-Jizera-Karkonosze Region (northern part of the Bohemian Massif). J. Environ. Radioact. 2010, 101, 809–812. [Google Scholar] [CrossRef]
- Khan, A.R.; Rafique, M.; Rahman, S.U.; Basharat, M.; Shahzadi, C.; Ahmed, I. Geo-spatial analysis of radon in spring and well water using kriging interpolation method. Water Supply 2018, 19, 222–235. [Google Scholar] [CrossRef]
- Szegvary, T.; Leunberger, M.C.; Conen, F. Predicting terestrial 222Rn flux using gamma dose rate as a proxy. Atmos. Chem. Phys 2007, 7, 2789–2795. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, S.; Huisman, J.A.; Azevedo, E.B. Meteorological and soil surface effects in gamma radiation time series—Implications for assessment of earthquake precursors. J. Environ. Radiact. 2018, 195, 72–78. [Google Scholar] [CrossRef]
- Li, P.; Zhang, R.; Gu, M.; Zheng, G. Uptake of the natural radioactive gas radon by an epiphytic plant. Sci. If Tonatal Environ. 2018, 612, 436–441. [Google Scholar] [CrossRef]
- Li, P.; Sun, X.; Cheng, J.; Zheng, G. Absorbtion of the natural radioactive gas 222Rn and its progeny 210Pb by Spanish moss Tillandsia usneoides and its response to radiation. Environ. Exp. Bot. 2019, 158, 22–27. [Google Scholar] [CrossRef]
- Przylibski, T.A. Shallow circulation groundwater—The main type of water containing hazardous radon concentration. Nat. Hazards Earth Syst. Sci. 2011, 11, 1695–1703. [Google Scholar] [CrossRef]
- Banks, D.; Robins, N. An introduction to Grounwater in Crystalline Bedrock; Norges Geologiske Undersokelse: Tronheim, Norway, 2002; 68p.
- Khaska, M.; Salle, C.L.; Videau, G.; Flinois, J.S.; Frape, S.; Team, A.; Verdoux, P. Deep water circulation at the northern Pyrenean thrust: Implication of high temperature water-rock interaction process on the mineralization of major spring water in an overthrust area. Chemical Geol. 2015, 419, 114–131. [Google Scholar] [CrossRef]
- Wood, W.W.; Kraemer, T.F.; Shapiro, A. Radon (222Rn) in Ground Water of Fractured Rocks: A Diffusion/Ion Exchange Model. Ground Water 2004, 42, 552–567. [Google Scholar] [CrossRef] [PubMed]
- Gainon, F.; Goldschneider, N.; Surbeck, H. Conceptual model for the origin of high radon levels in spring waters—The example of the St. Placidus spring, Grisons, Swiss Alps. Swiss J. Geosci 2007, 100, 251–262. [Google Scholar] [CrossRef] [Green Version]
Claim Statistics | Claim #1 | Claim #2 | Claim #3 | Claim #4 | Claim #5 | Total |
---|---|---|---|---|---|---|
Claim Name | Orlice–Sněžník Dome | East Krkonoše | Lázně Liverda–Świeradów-Zdrój | Chrastava–Bogatynia | Tanvald Graite | Lugicum |
Main Source Rock | Sněžník Othogneiss | Krkonoše Othogneiss (+Krkonoše Granite) | Jizera Othogneiss | Jizera Othogneiss (+Tanvald Granite) | TanvaldGranite | Orthogneiss(+Granites) |
Years of Exploration | 2005–2006 | 2008–2009 | 2010–2011 | 2012–2013 | 2014–2015 | 2005–2015 |
Sources measured in total | 349 | 271 | 570 | 510 | 654 | 2354 |
222Rn activity determination | 122 | 120 | 155 | 120 | 143 | 660 |
Activity 222Rn > 500 Bq/L | 89 | 54 | 86 | 101 | 107 | 437 |
Activity 222Rn > 1000 Bq/L | 55 | 24 | 48 | 69 | 52 | 248 |
Activity 222Rn > 1500 Bq/L | 26 | 12 | 23 | 29 | 21 | 111 |
Activity 222Rn > 2000 Bq/L | 14 | 8 | 13 | 11 | 11 | 57 |
Activity 222Rn > 5000 Bq/L | 1 | 0 | 1 | 0 | 0 | 2 |
Spring Name | Code | Type | Claim | Locality | WGS 84 (N) | WGS 84 (E) | Altitude(m a.s.l.) | 222Rn (Bq/L) | Flow Rate(L/min) | EC (μS/cm) | pH | Chemical Type | Temperature (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Čtrnáctka | S-4 | spring | #1 | Stříbrnice | 50°11.498′ | 16°53.353′ | 840 | 2243–2990 | 5–17 (72–pumped) | 62 | 5.9 | Ca–Na–HCO3–SO4 | 5.3–6.4 |
Jakubův | S-6 | spring | #1 | Stříbrnice | 50°11.540′ | 16°53.263′ | 829 | 1783–2530 | 90–180 | 58 | 5.5 | Ca–Na–HCO3–SO4 | 5.4–6.7 |
- | KSS-1 | well,80 m | #1 | Dolní Hedeč | 50°05.286′ | 16°46.955′ | 632 | 4830–5175 | 4.2 (32–pumped) | 116 | 6.3 | Ca–Na–HCO3–SO4 | 8.8 |
Sv. Vojtěch | HMÚ-1 | spring | #2 | Horní Malá Úpa | 50°44.070′ | 15°48.021′ | 981 | 2247–4215 | 0.9–2.5 | 85 | 6.6 | Ca–Mg–HCO3–SO4 | 7.4–8.6 |
Bukový | JL-6 | spring | #2 | Janské Lázně | 50°38.891′ | 15°46.183′ | 887 | 3760–4979 | 1.1–2.9 | 44 | 5.4 | Ca–Na–HCO3–SO4 | 6.3–7.3 |
Michael | L3/6 | spring | #3 | Nové Město p. S. | 50°55.837′ | 15°14.891′ | 511 | 4823–6237 | 0.31–0.37 | 130 | 5.6 | Ca–SO4–HCO3 | 9.9–10.6 |
Rafael | L3/9 | spring | #3 | Nové Město p. S. | 50°55.813′ | 15°14.970′ | 518 | 2775–3216 | 5.1–24 | 89 | 5.2 | Ca–Mg–SO4–HCO3 | 9.1–10.1 |
Soumar | CH2/11 | spring | #4 | Albrechtice | 50°52.124′ | 15°02.282′ | 515 | 1375–1834 | 0.98–1.7 | 2939 | 5.3 | Na–Ca–Cl | 8.2–11.6 |
Mikulášský | CH3/17 | spring | #4 | Nová Ves | 50°50.265′ | 15°0.302′ | 374 | 2672–2821 | 6.6–9.6 | 175 | 5.8 | Ca–SO4–HCO3 | 9.5–9.8 |
Schindler | TGR/33 | spring | #5 | Kokonín | 50°42.243′ | 15°10.622′ | 563 | 2136–2589 | 25–29 | 670 | 6.7 | Na–Ca–Cl | 8.5 |
GIS layer | Server | Claim #1 | Claim #2 | Claim #3 | Claim #4 | Claim #5 |
---|---|---|---|---|---|---|
Geological map 1:50,000 | geology.cz | + | + | + | + | + |
Map of radon risk 1:50,000 | geology.cz | − | n.u. | n.u. | n.u. | n.u. |
Topographic map 1:50,000 | inspire.cz | 0 | 0 | 0 | 0 | 0 |
Anomalies of uranium survey | local | + | + | (+) | + | (+) |
Linear structures (remote sensing) | local | n.a. | n.a. | 0 | (+) | (+) |
Uranium map (aeroradiometry) | local | n.a. | n.a. | + | (+) | (+) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goliáš, V.; Hájková, L.; Lipanský, T.; Černík, T.; Kohn, P.; Ježek, J.; Procházka, R.; Przylibski, T.A.; Dohnal, J.; Strnad, L.; et al. Exploration and Investigation of High-Level Radon Medicinal Springs in the Crystalline Units: Lugicum. Water 2022, 14, 200. https://doi.org/10.3390/w14020200
Goliáš V, Hájková L, Lipanský T, Černík T, Kohn P, Ježek J, Procházka R, Przylibski TA, Dohnal J, Strnad L, et al. Exploration and Investigation of High-Level Radon Medicinal Springs in the Crystalline Units: Lugicum. Water. 2022; 14(2):200. https://doi.org/10.3390/w14020200
Chicago/Turabian StyleGoliáš, Viktor, Lenka Hájková, Tomáš Lipanský, Tomáš Černík, Pavel Kohn, Josef Ježek, Radek Procházka, Tadeusz A. Przylibski, Jiří Dohnal, Ladislav Strnad, and et al. 2022. "Exploration and Investigation of High-Level Radon Medicinal Springs in the Crystalline Units: Lugicum" Water 14, no. 2: 200. https://doi.org/10.3390/w14020200
APA StyleGoliáš, V., Hájková, L., Lipanský, T., Černík, T., Kohn, P., Ježek, J., Procházka, R., Przylibski, T. A., Dohnal, J., Strnad, L., Kowalska, A., Fijałkowska-Lichwa, L., Miśta, W., & Nowakowski, R. (2022). Exploration and Investigation of High-Level Radon Medicinal Springs in the Crystalline Units: Lugicum. Water, 14(2), 200. https://doi.org/10.3390/w14020200