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Abstract: The unavailability of clean drinking water is one of the significant health issues in modern
times. Industrial dyes are one of the dominant chemicals that make water unfit for drinking. Among
these dyes, methylene blue (MB) is toxic, carcinogenic, and non-biodegradable and can cause a severe
threat to human health and environmental safety. It is usually released in natural water sources, which
becomes a health threat to human beings and living organisms. Hence, there is a need to develop an
environmentally friendly, efficient technology for removing MB from wastewater. Photodegradation
is an advanced oxidation process widely used for MB removal. It has the advantages of complete
mineralization of dye into simple and nontoxic species with the potential to decrease the processing
cost. This review provides a tutorial basis for the readers working in the dye degradation research
area. We not only covered the basic principles of the process but also provided a wide range of previ-
ously published work on advanced photocatalytic systems (single-component and multi-component
photocatalysts). Our study has focused on critical parameters that can affect the photodegradation
rate of MB, such as photocatalyst type and loading, irradiation reaction time, pH of reaction media,
initial concentration of dye, radical scavengers and oxidising agents. The photodegradation mechanism,
reaction pathways, intermediate products, and final products of MB are also summarized. An overview
of the future perspectives to utilize MB at an industrial scale is also provided. This paper identifies
strategies for the development of effective MB photodegradation systems.

Keywords: methylene blue (MB); photodegradation; toxicity; degradation parameter; mechanism;
degradation products

1. Introduction

Dyes are the coloured aromatic organic compounds that absorb light and impart
color to the visible region [1,2]. More than 100,000 commercial dyes have been reported
worldwide, amounting to approximately 7 × 108–1 × 109 kg/year [3]. William Henry
Perkin discovered the first synthetic dye in 1856, naming it Mauveine (an organic aniline
dye) [4]. Dyes are applied to the substrates to give them permanent colour, which can resist
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fading upon exposure to water, light, oxidizing agents, sweat, and microbial attack [5].
Due to these advantages, various dyes are used in different industries such as textiles,
food, rubber, printing, cosmetics, medicine, plastic, concrete, and the paper industry for
multiple purposes [6–8]. These industries generate a tremendous amount of wastewater
containing carcinogenic and toxic dyes that pollute water, which becomes unfit for human
consumption [9]. Among these industries, the textile industry is the most dye-consuming
industry utilizing textile dyes, which are highly complex compounds with different struc-
tural groups [10]. One of the highest-consuming materials in the dye industry is methylene
blue (MB), which is commonly used for colouring silk, wool, cotton, and paper [11–13]. The
Scopus database indicates that MB is widely utilized for various applications. The number
of articles on MB dye degradation has been continuously increasing since 2010–2020, as
shown in Figure 1.

Water 2022, 14, x FOR PEER REVIEW 2 of 33 
 

 

worldwide, amounting to approximately 7 × 108–1 × 109 kg/year [3]. William Henry Perkin 
discovered the first synthetic dye in 1856, naming it Mauveine (an organic aniline dye) 
[4]. Dyes are applied to the substrates to give them permanent colour, which can resist 
fading upon exposure to water, light, oxidizing agents, sweat, and microbial attack [5]. 
Due to these advantages, various dyes are used in different industries such as textiles, 
food, rubber, printing, cosmetics, medicine, plastic, concrete, and the paper industry for 
multiple purposes [6–8]. These industries generate a tremendous amount of wastewater 
containing carcinogenic and toxic dyes that pollute water, which becomes unfit for human 
consumption [9]. Among these industries, the textile industry is the most dye-consuming 
industry utilizing textile dyes, which are highly complex compounds with different struc-
tural groups [10]. One of the highest-consuming materials in the dye industry is meth-
ylene blue (MB), which is commonly used for colouring silk, wool, cotton, and paper [11–
13]. The Scopus database indicates that MB is widely utilized for various applications. The 
number of articles on MB dye degradation has been continuously increasing since 2010–
2020, as shown in Figure 1. 

Certain literature reviews are reported on the removal of MB via adsorption [14–16] 
and bioremediation [17]. However, minimal reviews are available on photodegradation 
of MB, which only describes fundamentals and photocatalysis of MB dye employing var-
ious nanocatalytic assemblies [18]. In this review, we discuss the properties, applications, 
toxicity, and available use methods for the removal of MB, with limitations. Moreover, 
photodegradation of MB and its advantages, factors affecting parameters, and photodeg-
radation and intermediate products will be reviewed in detail. 

 
Figure 1. Annual article frequency as indicated by the Scopus database at date 12 January 2022 
(Searched with a keyword ‘methylene blue dye degradation’). 

MB is an aromatic heterocyclic basic dye [19] having a molecular weight of 319.85 g 
mol−1 [20,21]. MB is a well-known cationic and primary thiazine dye with a molecular 
formula- C16H18N3ClS, having λmax of 663 nm. It is highly water-soluble, and thus forms a 
stable solution with water at room temperature [22–25]. MB comes under the class of 
polymethine dye with an amino autochrome unit and is a positively charged compound 
[26]. Its chemical name, according to the International Union of Pure and Applied Chem-
istry (IUPAC), is [3,7-bis(dimethylamino) phenothiazine chloride tetra methylthionine 
chloride] with colour index (CI) 52015 [27,28]. The model and the structure of the MB 

Figure 1. Annual article frequency as indicated by the Scopus database at date 12 January 2022
(Searched with a keyword ‘methylene blue dye degradation’).

Certain literature reviews are reported on the removal of MB via adsorption [14–16]
and bioremediation [17]. However, minimal reviews are available on photodegradation
of MB, which only describes fundamentals and photocatalysis of MB dye employing vari-
ous nanocatalytic assemblies [18]. In this review, we discuss the properties, applications,
toxicity, and available use methods for the removal of MB, with limitations. Moreover,
photodegradation of MB and its advantages, factors affecting parameters, and photodegra-
dation and intermediate products will be reviewed in detail.

MB is an aromatic heterocyclic basic dye [19] having a molecular weight of 319.85 g mol−1

[20,21]. MB is a well-known cationic and primary thiazine dye with a molecular formula-
C16H18N3ClS, having λmax of 663 nm. It is highly water-soluble, and thus forms a stable
solution with water at room temperature [22–25]. MB comes under the class of polymethine
dye with an amino autochrome unit and is a positively charged compound [26]. Its chemical
name, according to the International Union of Pure and Applied Chemistry (IUPAC), is
[3,7-bis(dimethylamino) phenothiazine chloride tetra methylthionine chloride] with colour
index (CI) 52015 [27,28]. The model and the structure of the MB molecule are shown in
Figure 2 [29], while its different resonance structures are given in Figure 3 [30]. MB is a
redox indicator and not a pH indicator [31]. MB was first synthesized by Heinrich Caro in
1800 [32].
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ous nanomaterials have been reported for this purpose, including ZnS [33], TiO2 [34,35],
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ZnO [36], hematite [37–39], plasmonic metals (such as gold, silver, platinum) [40,41],
Ag2S@TiO2 nanofibers [42] metal vanadates (those of Bi, Ni, Cu, Zn etc.) [43–47], carbon-
based catalysts such as graphene and its oxides, and carbon nitrides, [48–51], magnetite
nanoparticles (NPs) and iron (III) oxide-based catalysts [52,53]. These systems have demon-
strated exceptional results. It is expected that understanding the basics of degradation of
MB via this technology will shift the researchers’ attention to a more advanced level of such
a technology. Limited reviews are reported on removing MB dye via adsorption [14,15].
Still, there is no specific review on photodegradation of MB by single-component and multi-
component photocatalytic systems so far, to the best of the authors’ knowledge. This review
collectively highlights the single component and multi-component photocatalytic systems
as effective and promising technologies for removing MB from industrial wastewater. The
influence of operating parameters on the degradation of MB by various photocatalytic
systems is also examined. This review is focused to provide guidelines for developing
effective photocatalytic systems for MB degradation from wastewater.

2. Properties of Methylene Blue

MB is a solid, odourless, dark green powder at room temperature and yields a
blue solution when dissolved in water [54,55]. MB have molecular diffusivity (Dmol)
of 4.7 × 106 (cm2/s) at 25 ◦C [56]. The length of MB molecule is 13.82 Å or 14.47 Å, and the
width is approximately 9.5 Å [57]. MB dye has a pKa of 3.8 [58,59]. It is soluble in methanol,
2-propanol, water, ethanol, acetone, and ethyl acetate [60]. Its solubility in water is 43.6 g/L
at 25 ◦C [61]. The melting point (Tm) of MB is in the range 100–110 ◦C [62].

MB has a characteristic deep blue colour in the oxidized state and is colourless in the
reduced form; leucoMB [63]. The structure of both forms is represented in Figure 4 [64,65].
The colour of MB depends on its chromophoric and auxochrome groups. The chromophore
group of MB is the N–S conjugated system on the central aromatic heterocycle, while the
auxochrome group is N-containing groups with lone pair electrons on the benzene ring [66].
In photodegradation and adsorption studies, UV-analysis of MB is very important, as
almost all calculations are measured from its UV-Visible spectra. The absorption spectra of
the MB reveal the most intense absorption peak at around 664 nm associated with an MB
monomer, with a shoulder peak at about 612 nm attributed to MB dimer. An additional
two bands appear in the ultraviolet region with peaks around 292 and 245 nm (associated
with substituted benzene rings) [67]. These absorption peaks gradually decrease as the
photodegradation reaction proceeds [68]. Fourier transform infrared-spectroscopy (FTIR)
also provides important quantitative and qualitative analysis for the studied dyes. This
includes identifying the chemical bonds and functional groups in the study sample. Various
FTIR peaks of MB and their assignments are summarized in Table 1.

Table 1. FTIR spectra and assignment of MB [69–71].

FTIR Transmission Wavenumbers (cm−1) Assignments

3410 -NH/-OH overlapped stretching vibration
2928 symmetrical stretching C-H of -CH2 band
1600 C=N central ring stretching
1482 C=C side ring stretching
1384 multiple ring stretching
1590 skeleton stretching vibration of the benzene ring
1486.4 and 1389 stretching vibration of C–N in aromatic amines
1320 CAr–N stretching
1572 stretching band of C=O, C-N of amide II
1240 and 1182 N–CH3 stretching
1143 stretching vibration of C–N in the aliphatic chain
1442 symmetrical stretching band of –COOH
1140 and 854 bending band of N-H and C-N from the amide III
880 absorption of C–H in-plane bending vibration
665 skeleton vibration mode of C–S–C
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3. Uses and Applications of Methylene Blue

MB is an attractive molecule with various properties useful for biomedical applications
and is used as an effective therapeutic agent to treat anaemia, malaria, and Barrett’s
oesophagus [72]. MB has primarily been used in human and veterinary medicine for
several diagnostic and therapeutic procedures [73].

MB was the first synthetic antimalarial used during the late 19th and the early 20th
centuries against all types of malaria and can also act as a chloroquine sensitizer [74,75].
MB dye is being used for the photodynamic treatment of cancer [76]. It is widely used as
a photosensitizing agent for photodynamic inactivation of RNA viruses (including HIV,
hepatitis B, and hepatitis C viruses) in plasma [77]. Recent studies have suggested that
MB has beneficial effects on memory improvement and Alzheimer’s disease. Presently,
it is used clinically in a wide range of medications that treat conditions such as such as
methemoglobinemia, urinary tract infections, plaque psoriasis, thyroid surgery, cancer
chemotherapy, and ifosfamide-induced encephalopathy [78,79]. MB served as the leading
compound for developing tricyclic antidepressants- chlorpromazine [80]. It has also been
used to detect neuroendocrine tumours, such as insulinoma [81].

MB dye has many potential applications in the textile, pharmaceutical, paper, dyeing,
printing, paint, medicine, and food industries [82–85]. It is the most common dye in the
textile industry [86], and is considered one of the most popular clothing colourants [87]. MB
firmly adheres in the interstitial spaces of cotton fibres and is fixed firmly on fabric in the
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textile industry [88]. MB is used to estimate rock swelling, which is used as a quick test to
assess the quality of foundry sand in foundries [89]. MB dye is also used as a photosensitizer,
an oxidation-reduction indicator, an optical redox indicator in analytical chemistry and in
the trace analysis of anionic surfactants [90–92]. It is also used as a potential material in
dye-sensitized solar cells [93,94], capacitors [95], sensors [96,97], microbial fuel cells [98], etc.

4. Toxicity of Methylene Blue

Textile industries usually release a large amount of MB dyes in natural water sources,
which becomes a health threat to human beings and microbes [99]. MB dye is harmful
to human health above a certain concentration due to its substantial toxicity [24]. MB
is toxic, carcinogenic, and non-biodegradable and can cause a serious threat to human
health and destructive effects on the environment [100,101]. MB causes several risks to
human health such as respiratory distress, abdominal disorders, blindness, and digestive
and mental disorders [15,102]. It also causes nausea, diarrhoea, vomiting, cyanosis, shock,
gastritis, jaundice, methemoglobinemia, tissue necrosis, and increased heart rate, causing
the death of premature cells in tissues and skin/eye irritations [103–107]. MB contacts
with skin may result in skin redness and itching [108]. The no observed adverse effect
level (NOAEL) for the MB in rats was observed to be 25 mg kg−1 [109]. Some of the toxic
effects of MB on humans and other animals are represented in Figure 5 [110]. MB discharge
into the environment is a significant threat for aesthetical and toxicological reasons. It
also reduces light penetration and is a toxic supply to food chains for organisms [111].
MB presence in water bodies, even at a very low concentration, makes highly coloured
sub-products. Owing to its high molar absorption coefficient (~8.4 × 104 L mol−1 cm−1

at 664 nm), which reduces sunlight transmittance, it decreases oxygen solubility, affects
the photosynthetic activity of aquatic life, and decreases the diversity and aesthetics of the
biological community [112–115].
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5. Methods of Removal of Methylene Blue

Treatment of wastewater containing MB dye before discharging into the environment
is of great importance due to its harmful impacts on water quality and perception [116,117].
Various methods are reported to remove MB and other textile dyes from industrial wastew-
ater. These include adsorption/biosorption [118–123], phytoremediation [124,125], coag-
ulation [126,127] electrocoagulation [56,128], vacuum membrane distillation [129], liquid-
liquid extraction [130], ultrafiltration [131–133], nanofiltration [134–136], microwave treat-
ment [137], biodegradation [138–140], hybrid systems [141–144] etc. Due to the thermal and
light stability and non-biodegradability, it is tough to degrade MB dye into smaller inorganic
molecules by employing common methods [145,146]. Each of these treatment methods has
its advantages and constraints in terms of cost and feasibility, efficiency, and environmental
impact [147]. Advanced oxidation processes (AOPs) were developed to treat toxic organic
pollutants such as MB through strong redox processes with specific radicals generated
in this process without generating any additional harmful substances [148–150]. AOPs
approaches employed for the photodegradation of MB are ozonation [151,152], UV/H2O2
oxidation [153] electrochemical oxidation/degradation [154,155], catalytic oxidation [156],
heterogeneous photo-Fenton [157,158], photocatalytic degradation [159,160], etc. The AOPs
treatment methods have certain advantages. The main disadvantages of ozonation are the
low solubility of ozone in water, elevated energy costs, and the formation of hazardous
byproducts [149]. H2O2 has poor UV light absorption characteristics. Thus, this can be
considered as wasting most of the light input. In the Fenton process, the production of
sludge that contains iron hydroxide as a byproduct is a major drawback [161]. The main
drawback of the electrochemical process is the high operating cost due to the high energy
consumption [162]. Among these AOPS methods, photocatalytic degradation methods are
the most employed ones to remove MB. Few new photocatalytic degradation techniques
are hybrid or integrated by sonocatalysis [163], nanofiltration [141], adsorption [164], and
biodegradation [165], etc. These integrated methods were found to be more efficient than a
single process alone.

6. Photodegradation of Methylene Blue

Over the last few decades, multi-component photocatalysis of organic pollutants
using semiconducting NPs has received increased attention because it is a cost-effective,
environmentally-friendly, and easy technique for wastewater treatment containing haz-
ardous pollutants [166–168]. The lower cost of catalysts and the utilization of renewable en-
ergy in this technology are much more attractive when compared to other techniques [169].

The oxidation of MB to H2O and CO2 through a photocatalyst is an imperative
technique to remove the dye from industrial wastewater [170]. Photodegradation is an
oxidation process in which the chemical breakdown of complex molecules transforms into
simple, nontoxic, and lower molecular weight fragments due to light exposure [171]. This is
an emerging and promising technology for waste effluent treatment, having the capability
to decolourize and degrade the dye molecules into simple and nontoxic inorganic species
such as CO2 and H2O [172]. The process is performed in the presence of photocatalyst,
a semiconductor material activated by adsorbing photons, and can accelerate a reaction
without being consumed [173].

MB is a representative organic dye and stable under visible light irradiation [174]. Due
to its stability, it cannot be degraded efficiently just by photolysis or catalysis alone. It
was reported that 7.9% of MB dye was removed through photolysis after 10 h irradiation
time [175], and only 10% degradation of MB occurred after 24 h in the presence of a catalyst
without light irradiation [176]. It was also observed that no/negligible decomposition
occurred without a catalyst under visible light [177,178]. Similarly, no degradation was
observed in the acidic and neutral medium in the dark and under sunlight irradiation
without using a catalyst [179]. In the basic medium, photolysis occurs rapidly because of
the formation of the hydroxyl ions, which is a key radical for dye degradation. However,
raising the temperature has a negligible effect and under argon, atmosphere degradation
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completely stopped [179]. Photodegradation of MB is an efficient approach because MB can
also function as a photocatalyst sensitizer [180]. The small/partial degradation observed
in MB without catalysts might be attributed to the photosensitized phenomenon of MB
molecules observed after irradiation with different light sources [181,182]. MB can absorb
light in the region of 500–700 nm, form singlet and triplet species by electronic transition and
intersystem crossing, and undergo self-decomposition to a certain extent [183]. Photolysis
of MB dye proceeds in the atmospheric air, which means that the O2 is essential for the
degradation. In basic media, •OH radicals form through monoelectronic reduction of MB+

radicals by OH−. •OH reacts with each other to produce H2O2, which is an important active
species in degradation processes. Similarly, O2 reacts with excited MB* radicals and forms
O2
•−. These photolysis reactions of MB are summarized in the following Equations (1)–(3),

as follow:
MB+ + OH− →MB* + OH• (1)

2OH• → H2O2 (2)

MB* + O2 →MB+ + O2
•− (3)

All these reactive radical species take part in the direct photolysis of MB dye [179].
Photodegradation of MB dye in % can be calculated from the Equations (4) and (5):

Degradation rate (%) =

(
C0 − C

C0

)
× 100 (4)

Degradation rate (%) =

(
A0 − A

A0

)
× 100 (5)

where, C0 represents the initial concentration of dye, C stands for dye concentration after
the reaction, A0 symbolizes initial absorbance, and A shows the absorbance of dye after
the reaction [184]. The absorption is often measured at 664 nm, and absorption intensity
decreases with increasing irradiation time [185].

7. Mechanism of Photodegradation of Methylene Blue

The photodegradation of MB proceeds via (i) demethylation; (ii) breaking of the MB
central aromatic ring and then the side aromatic rings; (iii) conversion of the fragments
produced from the first two steps to intermediates species, such as R-NH3

+, phenol, aniline
and aldehydic/carboxylate species; and (iv) conversion of these intermediates to the final
products, such as CO2, H2O, SO4

2− and NH4
+ [186]. Most of the reaction intermediates

come from the breakage of the aromatic ring of the MB dye. The fragments of dyes
are degraded into further reaction intermediates, including aldehyde, carboxylic species,
phenols, and amines, which are ultimately converted into H2O, CO2, ammonium ions and
sulfate ions [18].

Usually, •O2
− and •OH radicals are responsible for the degradation of MB and have

been determined via ESR measurements under full-spectrum irradiation in H2O and
methanol. The results clearly displayed signals with intensity ratios of 1:2:2:1 and 1:1:1:1,
which are the characteristic ratios for •OH and •O2

−, respectively. The created e− and
h+ are transferred to the photocatalyst surface. The e− reduces O2 to superoxide radicals
(•O2

−) while the h+ either oxidizes H2O to form •OH or directly oxidizes MB dye. These
reactive species (•O2

−, •OH and h+) initiate the redox reactions and degrade MB dye into
CO2, H2O, or inorganic ions. Thus, the MB dye solution becomes colourless due to the
degradation of aromatic rings [187–189]. Such a mechanism of photodegradation of MB
dye can be understood from Figure 6, in which MB dye is degraded using ZnO NPs as a
single-component photocatalyst [190]. Similarly, Figure 7 has provided an example of a
multicomponent system consisting of Fe2O3/graphene/CuO photocatalyst [191].
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•OH has been normally recognized as the most important active species for ring-
opening and complete degradation of MB dye. The •OH attacks the C–S+=C functional
group, which is the initial step of MB degradation. To conserve the double bond conjugation
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that was lost through the transformation from C–S+=C to C–S(=O)–C, the central aromatic
ring containing both heteroatoms S and N is opened. Hole-induced H+ plays a vital role in
forming CH and NH bonds [192–194]. Such splitting of a complex molecule into smaller and
highly oxidized intermediate molecules is the primary reason for dye degradation [195].
The FTIR spectroscopy studies suggest that •OH radicals attack the side chains of MB
during decomposition pathways, which leads to a demethylation process. The colour
change in MB contributes to the protonation in the aromatic ring, and it is most likely a
reversible reaction process [196]. The VB holes can also directly attack MB dye. They can
degrade it [197,198] due to the high oxidation potential of holes [169], which permits direct
oxidation of the dye to reactive intermediates followed by degradation [199].

8. Parameters Affecting Methylene Blue Photodegradation
8.1. Effect of Irradiation Time

The irradiation time and adsorption equilibrium between MB and a photocatalyst are
the most critical parameters that controlled photodegradation [200]. The percentage of MB
degradation is directly related to the irradiation time, which means degradation increases
with increasing irradiation time [201,202]. The distinct absorption peak of MB spectra
gradually decreases with the increase in reaction time. It shows a colour change from
blue to colourless, and the reduction of MB chromophore is probably the reason for the
decrease in absorption spectra [203,204]. The photodegradation of MB initially increases
gradually by increasing irradiation time and then becomes constant after a particular
time [184]. Figure 8 shows the effect of irradiation time on the photodegradation of MB,
which displays the absorptive intensity of MB at 664 nm, and it gradually decreases with
the reaction time. The decrease in the concentration of MB dye in the photograph indicates
that degradation increases with the irradiation time. [205].
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8.2. Light Source and Intensity

Light intensity and radiation wavelength both affect the rate of photocatalytic degra-
dation of pollutants [206]. There are various sources of UV light such as black light tubes,
fluorescent tubes, Vis white cold light tubes [207], etc., while the sources of visible light
are tungsten halogen lamps (QVF135/500 W) [208] or xenon lamps (500 W) [209], etc. The
more energy photons interact with the photocatalysts, the more will be the production of
charge carriers and, consequently, the degradation rate will increase [18]. Solar and artificial
lights have been used for the photocatalytic degradation of dyes. Still, most commonly,
artificial light sources are used to maintain stable intensities and avoid clouding and other
environmental issues. Graphene decorated titanium dioxide degraded 87% MB dye under
UV light and 40% MB dye under visible light [210]. The degradation efficiency of MB is
not satisfactory, and there are still limitations in terms of light source and intensity [211].
This shows that light intensity and exposure times have an immense effect on the rate of
photodegradation.

8.3. Effect of Initial Dye Concentration

The photodegradation rate of a dye depends on its concentration, nature, and the
presence of other existing compounds in the solution [212]. The adsorption capacity of MB
dye is high at lower concentrations because of the availability of more active sites on the
surface of the photocatalyst [206]. The photodegradation rate of MB increases by increasing
initial dye concentration up to a specific limit and then decreases with further increasing
dye concentration [213]. The initial increase in the MB dye degradation rate with increasing
initial dye concentration might be due to the rise in the reaction probability between the
dye molecules and the •OH radical [214]. Using TiO2 as a photocatalyst, Pandey et al. [215]
observed that increasing the MB concentration beyond the limit (3.00 × 10−6 M) causes
retardation of reaction due to the increased collisions between dye molecules and decreased
collisions between the dye and the •OH. Arumugam and Choi [45] also observed such
results using a BiVO4 photocatalyst. They explained that dye molecule adsorption on
the photocatalyst surface and the rate of hydroxyl radical formation is high at a lower
concentration. The slower degradation rate at higher concentrations is because of the
intermediate products of the MB degradation, which have lower light absorbance and
would compete with MB for reaction with hydroxyl radicals and thus lower MB degradation
rates [216]. The higher MB concentration might serve as an inner filter shunting the
light photons away from the surface of the photocatalyst, making oxidative free radicals
non-available [217]. It is suggested that the lower photodegradation of MB at higher
concentration occurs because of the covering of active sites of photocatalysts by higher
dye molecules adsorption, which suppresses the generation of active •OH radicals and
increases the screening effect of UV light [218].

8.4. The pH Effect

The pH plays a vital role in the characteristics of dyes and the reaction mechanisms,
including hydroxyl radical attack, direct oxidation by the h+, and immediate reduction by
the conducting band e− [219]. The surface charge of the adsorbent (catalyst) also varies with
changing the pH value [220]. MB is a cationic dye and will adsorb on a highly negatively
charged photocatalyst [221]. The photodegradation of MB could be tuned with the pH of the
medium [222]. In a basic medium, the photocatalyst tends to acquire a negative charge that
results in increased adsorption of positively charged dyes because of the rising electrostatic
attraction [223]. At lower pH (acidic media), H+ as the dominant species competes with
the cationic MB dye, which decreases the adsorption of the MB molecules on the surface
of the photocatalyst. The non-adsorption of MB on the photocatalyst surface reduces the
reaction between the •OH and MB. At higher pH, there is no competition between OH−

and MB, as OH− will be repelled by the negatively charged surface of the photocatalyst
and will remain in the solution in a large quantity [224,225]. Some photocatalysts such as
ZnO may dissolve at lower pH, which decreases MB degradation [226]. The adsorption



Water 2022, 14, 242 12 of 30

of MB on the surface of TiO2 is maximum in the basic medium as it acquires a negatively
charged surface, which causes an increase in the electrostatic attraction between the TiO2
particles and the MB molecules [227].

8.5. Effect of Oxidants

The practical way to increase the photodegradation of MB is to add a strong ox-
idant [228]. H2O2 increases the formation rate of hydroxyl radicals and enhances the
degradation of compounds at low concentrations. This is due to the efficient generation
of •OH and inhibition of electron-hole pair recombination, as H2O2 is an electron accep-
tor [229,230]. Hydrogen peroxide is considered one of the most potent oxidizing potential
catalysts and produces 2 mol of the •OH (H2O2 + hv = 2•OH), followed by interaction
with dye molecules [231]. The efficiency of MB degradation increases by increasing H2O2
amount up to a certain extent and then decreases, which might be due to recombination
caused by hydroxyl radicals and the scavenging effect of H2O2 [232]. At higher concentra-
tion, H2O2 can scavenge •OH to form •OOH, as shown in Equation (6), which have much
lower oxidation capability [233]. Air and KMnO4 are also used as potential oxidizing agents
for the photodegradation of MB [234,235]. Citrate ions generate H2O2 via its photolysis
and cause a slight increase in the decolourization of MB [236].

H2O2 + •OH→ H2O + •OOH (6)

8.6. Effect of Radical Scavengers and Ions

In the photodegradation process, hole, hydroxyl and superoxide radicals are the key
reactive species participating in organic pollutants degradation [237]. Several radicals’
scavengers are reported to understand the mechanism and the primary active species re-
sponsible for the photodegradation of MB [238]. These radicals include ammonium oxalate
(h+), t-butanol (•OH), and 1,4-benzoquinone (•O2

−) [239]. Salgado and Valentini [240]
used SiO2@TiO2 hybrid spheres as a photocatalyst for MB degradation and applied t-butyl
alcohol (•OH scavenger), benzoquinone (•O2

− scavenger) and ethylenediamine tetraacetic
acid (h+ scavenger). It was observed that t-butyl alcohol significantly suppressed the
photocatalytic efficiency than other scavengers. They thus suggested that •OH mainly
promoted MB degradation. Lee and Park [241] employed α-Fe2O3/g-C3N4 nanofilm. They
documented the same results that tert-butyl alcohol significantly lowered the degradation
rate when H2O2 was added, indicating that the •OH generated by the Fenton reaction is the
significant reactant in the MB degradation. Using different scavengers, several researchers
also reported that •OH is the main species in MB degradation [242–245]. Bicarbonate is a
well-known radical scavenger, but under certain conditions, it enhances the degradation
of certain pollutants, as also observed for MB. The reason is that bicarbonate radicals are
more stable than •OH, and their oxidation ability is relatively high, making the lifetime
of bicarbonate radicals longer than that of •OH and resulting in an enhanced degrada-
tion performance [246]. Other important •OH scavengers reported in the literature for
photodegradation of MB are acetonitrile [192] and CaCO3 [247].

Inorganic anion tends to coexist with organic pollutants in wastewater effluent and
can influence the separation and purification substances represented in the wastewater
treatment [248]. The effects of various inorganic anions on the photodegradation of MB in
the presence of different photocatalysts are summarized in Table 2.
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Table 2. The effect of inorganic anions on photodegradation of MB.

Photocatalyst Inorganic Anions Positive Effect Negative Effect Dual Effect Negligible Effect Reference

Au-Fe3O4/
graphene composites

NaCl, Na2SO4, NaH2PO4,
NaNO3, and Na2CO3

SO4
2− , Cl− ,

H2PO4
− , NO3

− ,
CO3

2−
Na+ [248]

Ag3PO4

NO3
− , OH− , NO2

− , HCO3
− ,

Cl− , Br− , CO3
2− , SO4

2− ,
SO3

2− , S2− and
PO4

3−

OH− , Cl− , Br− ,
HCO− , CO3

2− ,
SO4

2− , SO3
2− , S2−

NO2
− , HCO3

− , Cl− , SO3
2− ,

PO4
3− , Br− NO3

− [249]

ZnFe2O4 SO4
2− , NO3

− , Cl− , CO3
2− SO4

2− , NO3
− , Cl− ,

CO3
2− [250]

cerium-doped
SiO2/TiO2

NO3
− , SO4

2− , Cl− NO3
− , SO4

2− , Cl− [251]

silver ion-doped TiO2 Cl− , NO3
− , SO4

2− , CO3
2− Cl− , NO3

− , SO4
2− ,

CO3
2− [252]

Conclusively, photocatalyst’s type and concentration selectively control radical pro-
duction and kinetics during photodegradation.

9. Degradation Products of Methylene Blue, Its Identification, and Reaction Pathways

The reactive radicals generated in the single-component and multicomponent pho-
tocatalysis are h+, •OH, and •O2

− oxidize MB dye into CO2, H2O, and other degradation
products [253]. The degradation of MB leads to the formation of harmless CO2 and conver-
sion of N and S heteroatoms into inorganic ions, such as nitrate, ammonium, and sulfate
ions, respectively [194]. The decrease in the maximum absorption peak (664 nm) intensity of
MB indicates that the chromophoric group of the MB molecule is completely removed [254].
When the characteristic peak position of MB absorption spectrum centred at 664 nm remains
the same during the entire experiment with a decrease in intensity, it indicates the absence
of any other chromophore molecules as a by-product [255]. The complete degradation of
MB without any intermediate formation can be examined by the disappearance of the λmax
peak (662 nm) without the appearance of other peaks in the UV–vis spectra [256]. Zhou
et al. [257] observed that the exhibited bands at 465 and 292 nm in the UV−vis spectra de-
crease rapidly and disappear after 40 min without the appearance of new absorption bands
in the spectra. They indicated that the heteropolyaromatic linkages and benzene rings of
MB were likely to be depleted as the dye was completely degraded. The blue shifts in the
UV spectra of MB indicate the formation of by-products, such as Azure A, Azure B, Azure C,
and Thionine [258]. The formation of these compounds occurs through the demethylation
of MB during the photodegradation process [259]. Aniline was observed as a degradation
product of MB as a small peak was observed corresponding to m/z = 121.1796, which is
assigned to aniline, using Cu9S5 as photocatalyst [260]. Mondal et al. [67] proposed that
the active radicals, such as OH• and HO2

•, first degrade the N–CH3 bond, and then –CH3
is oxidized to HCHO or HCOOH. The active radicals then break the thionine molecule’s
C–S and C–N bonds and produce relatively unstable smaller organic by-products. These
reactions continue until the MB degrades completely to smaller inorganic molecules, such
as CO2, H2O, Cl−, SO4

2− and NO3. They presented the possible reactions steps involved
in Figure 9. In the ESI-MS spectrum, the presence of peaks at lower m/z ratio, i.e., 114,
122, 142, 150, 159, confirmed successful and total degradation of the MB molecule into
smaller fragments [261]. In a study, intermediates and the final products generated were
detected using IC, GC−MS, and LC−MS technologies, and the MB degradation pathway
was proposed. The authors concluded that most of the Cl− might be ionized during the
dissolution of MB and exist in the independent state. N−CH3 with the lowest bond energy
of 70.8 kcal/mol is first broken, and −CH3 is oxidized to HCOOH or HCHO. N−CH3 and
C−N are broken after the oxidation of Cl−S to S=O, and the S−C bond in the remaining
structure is split to form phenol and aniline-2-sulfonic acid. These organic intermediates
in solution were further oxidized until they were finally transformed into CO2, H2O, Cl−,
SO4

2−, and NO3
− [262]. Another study indicates that •OH and H2O2 may attract towards

the cationic sulfur group and heteroaromatic ring of the MB that induces the opening
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of the central aromatic ring. Thus producing sulfoxide and hydroxylated intermediate
products. These sulfoxide groups may further oxidize to sulfone and cause the dissociation
of the two rings. Finally, these aromatic compounds decomposed and formed volatile low
molecular weight compounds such as CO2, H2O, NH4+, NO3

− and SO4
2− ions. The whole

systematic degradation process is summarized in Figure 10 [263]. It was also proposed
that N–CH3 terminal bonding of MB is the first broken bonding, and CH3 is oxidized to
HCOOH or HCHO. The remaining C–N and C–S bonding are continuously broken to form
the single ring structures and then finally oxidized to ions such as NO3

−, SO4
2−, H2O, and

CO2 [264]. Similarly, the disappearance of FTIR individual characteristics peaks (Table 1) in
photocatalytically treated MB solution indicates the removal of the MB molecule, while the
appearance of any new peaks may be due to the formation of mineralized ions [70,265]. In
the same way, the decrease in the total organic carbon (TOC) values after photodegradation
reactions show the mineralization degree of the MB [266,267]. The HPLC analysis of MB
dye at different intervals of reaction time represents chromatograms for azure A, azure B,
azure C, and Thionine as intermediates products [268].
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10. Role of Catalysts

The photodegradation efficiency of MB is significantly influenced by the type of the
catalyst and its concentration. As mentioned above, many single-component and multi-
component photocatalysts have been successfully employed to achieve maximum degra-
dation efficiency. Some examples are ZnS [33], TiO2 [34,35], ZnO [36], hematite [37–39],
plasmonic metals (such as gold, silver, platinum) [40,41,269], metal vanadates (those of Bi,
Ni, Cu, Zn, etc.) [43–47], and carbon-based catalysts such as graphene and its oxides, and
carbon nitrides, [40,41]. These systems have demonstrated high efficacy in oxidizing MB
through redox reactions.
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For the single component photocatalyst such as TiO2 [35], the redox reactions are initiated
by irradiating the photocatalyst with light of suitable photon energy (of energy ≥ bandgap of
the photocatalyst). This leads to exciting electron from the valence band to the conduction
band of the photocatalyst, generating electon-hole pairs. At the photocatalyst surface, the
electrons and holes participate in the reduction and oxidation reactions, respectively. The
reduction reaction of the conduction band electrons with oxygen produces superoxide
anions, while the oxidation reaction of the valence band hole with water molecules produces
hydroxyl radicals. The produced superoxide anions and hydroxel radicals can degrade MB.
However, the single component photocatalyst such as TiO2 or ZnO [36] suffers from some
drawbacks, including the wide bandgap, and the inability to absorb the visible light, which
limits its photocatalytic applications to the UV region of the sunlight spectrum. Moreover,
the high recombination rate of the photoexcited electron-hole pairs in the single component
photocatalyst weakens the dye degradation rate [26–28]. As a result, many studies have
been reported on the surface modification of single component photocatalysts such as
addition of noble metals, graphene, or carbon to reduce their bandgaps, and electron-hole
recombination and hence enhance their photocatalytic performance [270].

Nevertheless, preparing an efficient, wide bandgap photocatalyst is still challenging.
Therefore, an efficient strategy for crafting a highly effective photocatalyst is designing
a multi-component photocatalyst in which a narrow bandgap photocatalyst composites
the wide bandgap photocatalyst. Such a design enhances the absorption of the visible
region of the sunlight spectrum, reduces the electron-hole recombination rate, and enhances
photocatalytic activity. Table 3 provides selected examples of efficient multi-component
photocatalysts for MB degradation from wastewater. On the other hand, the following
parameters of the photocatalyst also need to be manipulated and optimized to promote
degradation efficiency:

1. Particle size: when the particle size is reduced to the nanoscale level, the specific
surface area and the number of the active sites increases.

2. Morphology: morphology is a key that provides the exposed area to sunlight. It is
reported that nano rod-like ZnO structures form a high amount of reactive species
due to strong absorption and lower recombination [271].

3. Crystallinity: higher crystallinity leads to fewer defects for the recombination of pho-
toexcited electron-hole pairs, and hence improves the overall photocatalytic activity
of the catalyst [272].

4. The high surface area associated with more active sites, and dye adsorption capacity.
5. Facet tuning for specific wavelength absorption as in the case of copper and TiO2

based materials that are widely used in relevant applications [273,274].
6. Kinetic directing catalysts, which produce the desired products from the recycled MB

degraded products for use, are also important.

Considering these objectives, various parameters of the catalyst need to be manip-
ulated and optimized, including the nanoscale particle size, desirable morphology (1D,
2D or 3D), and crystallinity. A wide range of literature is available on 1D photocata-
lysts [275], 2-D photocatalysts such as graphene and carbon nitrides [276,277], and 3D
materials with octahedral morphologies [273,278]. Table 3 provides selected examples of
efficient multi-component photocatalysts for MB degradation from wastewater.
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Table 3. Photodegradation of MB over various photocatalysts.

Optimized Material
and Morphology Synthesis Method Light Source %MB

Degraded@Time Favourable Features Ref

β-
Cu2V2O7/Zn2V2O6
(1 wt%:5 wt%)
Layered morphology

Ultrasonic assisted
hydrothermal
synthesis

300 Xenon Lamp 98.7%@65 min

Due to the layered morphology of
Cu2V2O7, the Zn2V2O6pelets are
distributed evenly, hence facilitate
the charge transfer. A large surface
area provides more catalytic sites
and exposure to light.

[43]

CuO/Bi2O3
nanocomposite

Impregnation
calcination method UV-C irradiation 88.32%@120 min

Probably due to the synergistic
effect between the components of
the nanocomposite

[279]

ZnO-NR/ACF
nanocomposites

Hydrothermal
method UV irradiation 99%%@120 min

Synergistic effects between ZnO
nanorods and activated carbon
fibers (ACFs)

[280]

SnO2-bentonite
nanocomposites Green synthesis Solar irradiation 100%@300 min

Efficient dye adsorption on
bentonite and high surface of
immobilized SnO2 on bentonite
surface

[281]

5% PTh/ZnO
Sol-gel and oxidative
polymerization
techniques

250 W high-pressure
mercury lamp 95%@180 min

Perfect synchronization and
synergistic effect of both PTh and
ZnO

[282]

TiO2/Seashell
composites (23.4%
TCAS)

Simple grinding and
calcination,
followed by the
sol–gel process

Natural sunlight 100%@140 min

The elements presents in abalone
shell doped into the substitutional
sites of TiO2 and act as
semiconductors that improved the
charge separation efficiency of TiO2.

[283]

γ-Fe3/
Fe3O4/ SiO2 (Ar
modified)

Single-stage
heat-treatment
process

UV-light 87.5%@120 min

Combined effects of structure
defects, oxygen vacancies,
and the formed carbon sheets after
PVA decomposition

[284]

70% CeO2/g-C3N4
Z-scheme
heterojunction

Ball milling UV light irradiation 90.1%@180 min

Stronger UV light response, higher
charge carrier separation efficiency
and the synergy
between adsorption and
photocatalysis.

[285]

g-C3N4/Ca2Fe2O5
heterostructures

Solid-state reaction
route Natural sunlight 95.4%@70 min

Enhance photodegradation efficient
due to the mitigation of
recombination of photogenerated
charge carriers by Type-II
heterojunction

[286]

Flower-like
Bi2O4/ZnO
heterojunction

Hydrothermal
method

Xenon lamp of power
300 W 98.5%@30 min

The product exibited prferable
morphology for the photocatalytic
activity

[287]

Ternary
MoS2/Bi2S3/TiO2
heterostructure

Microwave-assisted
hydrothermal
method

250 W Xenon lamp 99%@4 min

Ultrafst Mb phododegradation is
duto introducing multiple
pathways of electrons transfer that
efficiently suppressed the
photoelectrons-holes recombination
in the heterostructured composite

[288]

11. Summary and Future Perspectives

The presence of MB in natural water is harmful to humans and harms microbes and
aquatic life due to its toxic nature. Photodegradation is found to be an effective and
economical approach for the complete decolourization and mineralization of MB dye
into nontoxic species. The effect of different parameters shows that photodegradation of
MB increases with increasing irradiation time, photocatalysts dosage, pH of the medium,
oxidants, and decreasing initial dye concentration. The effect of radical scavengers revealed
that •OH is the main species in MB degradation. The impact of inorganic anions shows
that anions may show the negative, positive or dual effect on the photodegradation of MB,
which depends on its concentration and the nature of the photocatalyst. The mechanism and
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reactions pathways analysis revealed that MB dye first converted into different intermediate
products and then completely mineralized into CO2, H2O, NO3

−, SO4
2− and Cl.

There are a few dimensions that still require thorough investigations to not only effec-
tively remove the MB dyes but also increase their practical usage in various applications.

1. The wettability and optical properties of MB suggest its hydrophobic and strong
fluorescent nature. Its emission peak is observed at 686 nm (λex 665 nm), and this
property can be exploited in multiple advanced applications. Due to these rationalities,
MB has recently been used as an extrinsic fluorophore to study the micellization
behaviour of drug delivery systems, i.e., bile salts (BS) [289]. The fluorescence response
was monitored by fluorescence anisotropy at 686 nm, which indicates the MB–BS
(MB-bile salt) association supported by the heat of formation values. This definitive
study suggests the future potential of MB dyes as extrinsic fluorescence probes [289].
Moreover, the same property (in combination with various NPs) can be used in future
imaging/diagnosis and treatment of tumours and other diagnostic applications [290].
Moreover, these properties can aid with optical sensor fabrication, though limited
literature is available on the topic.

2. An important unexplored dimension is to utilize modified MB dye in petroleum
applications. The fluorescent nature of these materials could be helpful to probe the
oil pockets, map the oil transport pathways and investigate various mechanisms,
especially at the dead ends of the rock, where the operational conditions and depth
hindered the application of the usual investigative techniques.

3. Another critical aspect, which can be further investigated, is to convert the MB to ben-
eficial and viable products via in situ bioconversion approaches. These investigations
will not only remove the MB from the aqueous medium but also help to generate a
variety of lower molecular products.

4. Lastly, the simple adsorption approach for removal of MB dye needs to rediscover
by utilizing modern concepts and materials. The ultimate goal should be to achieve
greater efficiency at a cheaper cost. In this regard, various naturally available supports,
especially the plant bio sorbents, still possess enough potential. Recently, the fava
bean peels Vicia faba (FBP), were explored for the removal of methylene blue (MB)
dye, a novel ultrasonic-assisted shaking sorption. The comparison with conventional
shaking indicates that the MB removal efficiency reached 90% at 50 mg/L of the
initial dye concentration for the ultrasonic-assisted sorbents in a remarkably shorter
time [58,291].
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