A Modified AVI Model for Groundwater Vulnerability Mapping: Case Studies in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. The Methods and the Proposed AVI Modifications
3. Results and Discussion
- -
- “High degree” of vulnerability that corresponds to the sand dunes (for the high hydraulic conductivity and the low depth to water);
- -
- “Moderate” vulnerability degree in the alluvial–marine and pyroclastic deposits;
- -
- “Low degree” of vulnerability along the SE and the NW borders of the groundwater body, due to the high values of slope (Topography) and depth to water.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Article Impact Statement
References
- Margat, J. Vulnerabilité des Nappes D’eau Souterraine a la Pollution [Groundwater Vulnerability to Contamination]; Bases Cartogr. (Doc.); BRGM: Orléans, France, 1968; Available online: https://www.scienceopen.com/document?vid=8fdbeb52-17e3-4966-83f8-6241f355f65f (accessed on 9 January 2022).
- Zwahlen, F. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620). In European Commission, Directorate-General XII Science, Research and Development; EU Publications Office (OPOCE): Brussels, Belgium, 2004; 297p. [Google Scholar]
- Kumar, P.; Bansod, B.K.; Debnath, S.K.; Thakur, P.K.; Ghanshyam, C. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation. Env. Impact Asses 2015, 51, 38–49. [Google Scholar] [CrossRef]
- Wachniew, P.; Zurek, A.J.; Stumpp, C.; Gemitzi, A.; Gargini, A.; Filippini, M.; Witczak, S. Toward operational methods for the assessment of intrinsic groundwater vulnerability: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 827–884. [Google Scholar] [CrossRef]
- Doerfliger, N.; Zwahlen, F. EPIK: A new method for outlining of protection areas in karstic environment. In International Symposium and Field Seminar on “Karst Waters and Environmental Impacts”; Günay, G., Jonshon, A.I., Eds.; Balkema: Rotterdam, The Netherlands, 1997; pp. 117–123. [Google Scholar]
- Vias, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F. A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ. Geol. 2005, 47, 586–595. [Google Scholar] [CrossRef]
- Albinet, M.; Margat, J. Cartographie de la vulnérabilité à la pollution des nappes d’eau souterraine. Bull. BRGM 1970, 2, 4. [Google Scholar]
- Mimi, Z.A.; Assi, A. Intrinsic vulnerability, hazard and risk mapping for karst aquifers: A case study. J. Hydrol. 2009, 364, 298–310. [Google Scholar] [CrossRef]
- Sorichetta, A.; Masetti, M.; Ballabio, C.; Sterlacchini, S.; Beretta, G.P. Reliability of groundwater vulnerability maps obtained through statistical methods. J. Environ. Manag. 2011, 92, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Bonfanti, M.; Ducci, D.; Masetti, M.; Sellerino, M.; Stevenazzi, S. Using statistical analyses for improving rating methods for groundwater vulnerability in contamination maps. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aller, L.; Bennett, T.; Lehr, J.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; US Environmental Protection Agency: Washington, DC, USA, 1987; p. 455.
- Barzegar, R.; Asghari Moghaddam, A.; Norallahi, S.; Inam, A.; Adamowski, J.; Alizadeh, M.R.; Bou Nassar, J. Modification of the DRASTIC framework for mapping groundwater vulnerability zones. Groundwater 2020, 58, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Catani, V.; Zuzolo, D.; Esposito, L.; Albanese, S.; Pagnozzi, M.; Fiorillo, F.; De Vivo, B.; Cicchella, D. A new approach for aquifer vulnerability assessment: The case study of Campania Plain. Water Resour. Manag. 2020, 34, 819–834. [Google Scholar] [CrossRef]
- Stempvoort, D.V.; Ewert, L.; Wassenaar, L. Aquifer vulnerability index: A GIS-compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Corniello, A.; Ducci, D.; Napolitano, P. Comparison between parametric methods to evaluate aquifer pollution vulnerability using a GIS: An example in the Piana Campana, Southern Italy. In Engineering Geology and the Environment; Balkema: Rotterdam, The Netherlands, 1997; pp. 1721–1726. [Google Scholar]
- Gogu, R.C.; Hallet, V.; Dassargues, A. Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ. Geol. 2003, 44, 881–892. [Google Scholar] [CrossRef]
- Draoui, M.; Vias, J.; Andreo, B.; Targuisti, K.; El Messari, J.S. A comparative study of four vulnerability mapping methods in a detritic aquifer under mediterranean climatic conditions. Environ. Geol. 2008, 54, 455–463. [Google Scholar] [CrossRef]
- Shirazi, S.M.; Imran, H.M.; Akib, S. GIS-based DRASTIC method for groundwater vulnerability assessment: A review. J. Risk. Res. 2012, 15, 991–1011. [Google Scholar] [CrossRef]
- Anornu, G.K.; Kabo-Bah, A.T. Evaluation of AVI and DRASTIC methods for groundwater vulnerability mapping. J. Environ. Ecol. 2013, 4, 126. [Google Scholar] [CrossRef] [Green Version]
- Oke, S.A.; Vermeulen, D. Evaluation of the comparison of four groundwater vulnerability methodologies: A case study of Dahomey Basin shallow aquifers, Nigeria. In Groundwater Vulnerability and Pollution Risk Assessment; CRC Press: Boca Raton, FL, USA, 2020; pp. 127–137. [Google Scholar]
- Ducci, D.; Sellerino, M. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers. Sci. Total Environ. 2013, 447, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Ducci, D.; Corniello, A.; Sellerino, M. Hydrostratigraphical setting and groundwater quality status in alluvial aquifers: The low Garigliano River Basin (Southern Italy), case study. In Proceedings of the IAH Conference on Groundwater Quality Sustainability, Krakow, Poland, 12–17 September 2010; pp. 12–17, ISBN 9788322619797. [Google Scholar]
- Fusco, F.; Allocca, V.; Coda, S.; Cusano, D.; Tufano, R.; De Vita, P. Quantitative assessment of specific vulnerability to nitrate pollution of shallow alluvial aquifers by process-based and empirical approaches. Water 2020, 12, 269. [Google Scholar] [CrossRef] [Green Version]
- George, N.J. Integrating hydrogeological and second-order geo-electric indices in groundwater vulnerability mapping: A case study of alluvial environments. Appl. Water Sci. 2021, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Gogu, R.C.; Dassargues, A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Balaji, L.; Saravanan, R.; Saravanan, K.; Sreemanthrarupini, N.A. Groundwater vulnerability mapping using the modified DRASTIC model: The metaheuristic algorithm approach. Environ. Monit. Assess. 2021, 193, 1–19. [Google Scholar]
Vulnerability Degree | D | AVI C | AVI R |
---|---|---|---|
Very Low | <85 | >4 | >4 |
Low | 85–115 | 3–4 | 1–4 |
Moderate | 116–162 | 2–3 | −1–1 |
High | 163–193 | 1–2 | −3.8–−1 |
Very High | >193 | <1 | <−3.8 |
GWB | HU | K m/s | t m |
---|---|---|---|
Garigliano River Plain | Debris deposits | 600 × 10−4 | 5–100 |
Alluvial–pyroclastic deposits | 700 × 10−4 | ||
Tuffs | 100 × 10−6 | ||
Campanian Plain- Acerra | Pyroclastic–alluvial–marine deposits | 700 × 10−4 | 10–20 |
Tuffs | 100 × 10−6 | ||
Alento River Basin | Alluvial deposits | 600 × 10−4 | 0–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ducci, D.; Sellerino, M. A Modified AVI Model for Groundwater Vulnerability Mapping: Case Studies in Southern Italy. Water 2022, 14, 248. https://doi.org/10.3390/w14020248
Ducci D, Sellerino M. A Modified AVI Model for Groundwater Vulnerability Mapping: Case Studies in Southern Italy. Water. 2022; 14(2):248. https://doi.org/10.3390/w14020248
Chicago/Turabian StyleDucci, Daniela, and Mariangela Sellerino. 2022. "A Modified AVI Model for Groundwater Vulnerability Mapping: Case Studies in Southern Italy" Water 14, no. 2: 248. https://doi.org/10.3390/w14020248
APA StyleDucci, D., & Sellerino, M. (2022). A Modified AVI Model for Groundwater Vulnerability Mapping: Case Studies in Southern Italy. Water, 14(2), 248. https://doi.org/10.3390/w14020248