Groundwater Nitrate Pollution Sources Assessment for Contaminated Wellfield
Abstract
:1. Introduction
- Based on the previously developed groundwater flow model given by other authors, develop a new model that covers the narrow area of the wellfield and define dominant nitrate pollution sources;
- Develop a numerical simulation of nitrate pollution propagation in groundwater at the observed wellfield;
- Assess contributions from located point pollution sources;
- Point out a necessity that every wellfield with a significant increase in a pollutant concentration should be analyzed separately.
2. Materials and Methods
2.1. The Study Area
2.2. Geological and Hydrogeological Conditions
2.3. Experimental Data
2.4. Groundwater Flow Model
- Kii
- - hydraulic conductivity tensor (L/T);
- h
- - groundwater level (L);
- qs
- - volumetric flow representing the source/sink of water in case of pumping/extraction water in/out of the system (L3/T);
2.4.1. Model Area
2.4.2. Hydrogeological Model Parameters
2.4.3. Groundwater Flow Model Setup
2.5. Nitrate Pollution Propagation
- C
- - pollution concentration (M/L3);
- n
- - porosity;
- t
- - time (T);
- xi
- - distance along the corresponding Cartesian coordinate axis (L);
- Dij
- - hydrodynamic dispersion coefficient tensor (L2/T);
- vi
- - groundwater flow rate (L/T);
- qs
- - flow per unit volume of aquifer representing the source (positive) or sink (negative) of fluid into the aquifer (1/T);
- Cs
- - source or sink pollution concentration (M/L3).
2.5.1. Hydrodynamic Dispersion
2.5.2. Pollution Propagation Boundary Conditions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kundzewicz, Z.W. Water resources for sustainable development. Hydrol. Sci. J. 1997, 42, 467–480. [Google Scholar] [CrossRef]
- Wendland, F.; Bergmann, S.; Eisele, M.; Gömann, H.; Herrmann, F.; Kreins, P.; Kunkel, R. Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water 2019, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Almasri, M.N.; Kaluarachchi, J.J. Modular neural network to predict the nitrate distribution in groundwater using the on ground nitrogen loading and recharge data. Environ. Model. Softw. 2005, 20, 851–871. [Google Scholar] [CrossRef]
- Donoso, G.; Cancino, J.; Magri, A. Effects of agricultural activities on water pollution with nitrate and pesticides in the central valley of Chile. Water Sci. Technol. 1999, 39, 49–60. [Google Scholar] [CrossRef]
- McLay, C.D.A.; Dragten, R.; Sparling, G.; Sevarajah, N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environ. Pollut. 2001, 115, 191–204. [Google Scholar] [CrossRef]
- Hubrechts, L.; Feyen, J.; Patyn, J.; Bronders, J.; Refsgaard, A.; Basberg, L.; Larsen, O.; Vlieghe, C.; Buysee, M. Development of a groundwater abstraction modelling environment for drinking water supply. In Nitrate in Groundwater; Razowska-Jaworek, L., Sadurski, A., Eds.; Balkema: Leiden, The Netherlands, 2002; pp. 221–233. [Google Scholar]
- Sapek, A. Agricultural activities as a source of nitrate in groundwater. In Nitrate in Groundwater; Razowska-Jaworek, L., Sadurski, A., Eds.; Balkema: Leiden, The Netherlands, 2002; pp. 3–13. [Google Scholar]
- Stockmarr, J.; Nyegaard, P. Nitrate in Danish groundwater. In Nitrate in Groundwater; Razowska-Jaworek, L., Sadurski, A., Eds.; Balkema: Leiden, The Netherlands, 2002; pp. 187–199. [Google Scholar]
- Müller, L.; Behrendt, A.; Schindler, U. Structure aspects of the soil landscape and soil properties of two lowland sites in North-East Germany. Arch. Agron. Soil Sci. 2007, 50, 289–307. [Google Scholar] [CrossRef]
- Schmalz, B.; Tavares, F.; Fohrer, N. Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Adv. Geosci. Eur. Geosci. Union 2007, 11, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Krause, S.; Bronstert, A.; Zehe, E. Ground water—Surface water interactions in a North German lowland floodplain—Implications for the river discharge dynamics and riparian water balance. J. Hydrol. 2007, 347, 404–417. [Google Scholar] [CrossRef]
- Sanches Perez, J.M.; Antiguedad, I.; Arrate, I.; Garcia-Linares, C.; Morell, I. The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: A case study. Sci. Total. Environ. 2003, 317, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Dević, G.; Đorđević, D.; Sakan, S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci. Total Environ. 2014, 468–469, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.G.S.; Kumar, K.N.; Rao, D.S.; Rao, S.S. Assessment of nitrate contamination due to groundwater pollution in north eastern part of Anantapur District. Environ. Monit. Assess. 2009, 148, 463–476. [Google Scholar] [CrossRef]
- Sărmăşan, C.; Drăghici, S.; Daina, L. Identification, communication and management of risks relating to drinking water pollution in Bihor County. Environ. Eng. Manag. J. 2008, 7, 769–774. [Google Scholar] [CrossRef]
- Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrate from agricultural sources. Off. J. 1991, 375, 1–8.
- Ordinance on Conformity Parameters and Analysis Methods, Monitoring and Water Safety Plans for Human Consumption; Official Gazette of the Republic of Croatia: Zagreb, Croatia, 2017; 125/2017.
- Regulation on the Water Quality Standard; Official Gazette of the Republic of Croatia: Zagreb, Croatia, 2013; 73/13, 151/14, 78/15, 61/16.
- Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. 1998, 330, 32–54.
- Commission Directive 2015/1787 of 6th of October 2015 amending Annexes II and III to Council Directive 98/83/EC on the quality of water intended for human consumption. Available online: https://www.legislation.gov.uk/eudr/2015/1787/contents (accessed on 13 December 2021).
- Bear, J.; Cheng, A.H.-D. Modeling Groundwater Flow and Contaminant Transport; Springer: New York, NY, USA, 2010; 815p. [Google Scholar]
- Bordas, J.M. Modeling Groundwater Flow and Contaminant Transport in Fractured Aquifers. Ph.D. Thesis, Air Force Institute of Technology, Dayton, OH, USA, 2005; 106p. [Google Scholar]
- Lee, C.M.; Hamm, S.Y.; Yun, S.M.; Oh, J.E.; Kim, M.; Kim, H.K. Indication of Groundwater Contamination Using Acesulfame and Other Pollutants in a Rural Area of Korea. Water 2018, 10, 1731. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, X.; Xie, T.; Wen, N.; Yao, J. A Comprehensive Evaluation Model of Ammonia Pollution Trends in a Groundwater Source Area along a River in Residential Areas. Water 2021, 13, 1924. [Google Scholar] [CrossRef]
- Sieczka, A.; Bujakowski, F.; Falkowski, T.; Koda, E. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water 2018, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- Szymkiewicz, A.; Potrykus, D.; Jaworska-Szulc, B.; Gumuła-Kawęcka, A.; Pruszkowska-Caceres, M.; Dzierzbicka-Głowacka, L. Evaluation of the Influence of Farming Practices and Land Use on Groundwater Resources in a Coastal Multi-Aquifer System in Puck Region (Northern Poland). Water 2020, 12, 1042. [Google Scholar] [CrossRef] [Green Version]
- Hirata, R.; Cagnon, F.; Bernice, A.; Henrique Maldaner, C.; Galvão, P.; Marques, C.; Terada, R.; Varnier, C.; Cathryn Ryan, M.; Bertolo, R. Nitrate Contamination in Brazilian Urban Aquifers: A Tenacious Problem. Water 2020, 12, 2709. [Google Scholar] [CrossRef]
- Gjetvaj, G. Identification of the origin of nitrates in groundwater of the Varaždin region (Croatian title: Identifikacija porijekla nitrata u podzemnim vodama Varaždinske regije). Hrvat. Vode 1993, 1, 247–252. [Google Scholar]
- Kovač, I.; Kovačev-Marinčić, B.; Novotni-Horčička, N.; Mesec, J.; Vugrinec, J. Comparative analysis of nitrate concentrations in the upper and lower layers of the Varaždin aquifer (Croatian title: Komparativna analiza koncentracije nitrata u gornjem i donjem sloju Varaždinskog vodonosnika). Rad. Zavod Znan. Varaždin 2013, 28, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Larva, O. Aquifer Vulnerability at Catchment Area of Varaždin Pumping Sites (Croatian title: Ranjivost Vodonosnika na Priljevnom Području Varaždinskih Crpilišta). Ph.D. Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia, 2008; 198p. [Google Scholar]
- Novotni-Horčička, N.; Šrajbek, M.; Kovač, I. Nitrates in the Varaždin Regional Water Supply System (Croatian title: Nitrati u Regionalnom vodovodu Varaždin). Voda i javna vodoopskrba); Hrvatski zavod za javno zdravstvo: Baška, Croatia, 2010; pp. 123–131. [Google Scholar]
- Urumović, K. The quaternary aquifer complex in the Varaždin area (Croatian title: O kvartnom vodonosnom kompleksu u području Varaždina). Geološki Vjesn. 1971, 24, 109–118. [Google Scholar]
- Urumović, K.; Prelogović, E.; Hlevnjak, B.; Mayer, D. Hydrogeological relations of the Varaždin aquifer (Croatian title: Hidrogeološki odnosi varaždinskog vodonosnika). Geološki Vjesn. 1990, 43, 149–158. [Google Scholar]
- Langevin, C.D.; Hughes, J.D.; Banta, E.R.; Niswonger, R.G.; Panday, S.; Provost, A.M. Documentation for the MODFLOW 6 Groundwater Flow Model; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2017; 197p. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite Difference Ground-Water Flow Model; Techniques of Water-Resources Investigations of the U.S. Geological Survey; Open-File Report 83-875; USGS: Reston, VA, USA, 1988; Book 6, Chapter A1. [Google Scholar]
- China Geological Survey. Handbook of Hydrogeology, 2nd ed.; Geological Publishing House: Beijing, China, 2012.
- Aravin, V.I.; Numerov, S.N. Theory of Motion of Liquids and Gases in Undeformable Porous Media; Gostekhizdat: Moscow, Russia, 1953; 616p. (In Russian) [Google Scholar]
- Chertousov, M.D. Hydraulics; Gosenergouzdat: Moscow, Russia, 1962; 630p. (In Russian) [Google Scholar]
- Zhai, Y.; Cao, X.; Jiang, Y.; Sun, K.; Hu, L.; Teng, Y.; Wang, J. Further discussion on the influence radius of a pumping well: A parameter with little scientific and practical significance that can easily be misleading. Water 2021, 13, 50. [Google Scholar] [CrossRef]
- Gjetvaj, G. Identification of Dispersiveness Parameters in Radial Flow (Croatian title: Identifikacija Parametara Disperzivnosti u Radijalnom Toku); Zbornik radova X; savjetovanja Jugoslavenskog društva za hidraulička istraživanja: Sarajevo, Yugoslavia, 1990; pp. 436–440. [Google Scholar]
- Coduto, D.P. Geotehnical Engineering: Priciples and Practices; Prentice Hall: Hoboken, NJ, USA, 1999; 759p. [Google Scholar]
- Lubczynski, M.; Roy, J. MRS contribution to hydrogeological system parametrization. Near Surf. Geophys. 2005, 131–139. [Google Scholar] [CrossRef]
- Patrčević, V. Hydrological Analysis of the Vertical Water Balance of Groundwater in the Area of River Alluvium (Croatian title: Hidrološka Analiza Vertikalne Vodne Bilance Podzemnih Voda na Prostoru Riječnog Aluvija). Ph.D. Thesis, Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia, 1995; 161p. [Google Scholar]
- Gardner, W.H. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9.1; American Society of Agronomy: Madison, WI, USA, 1965; pp. 82–127. [Google Scholar]
- Zheng, C.; Wang, P.P. MT3DMS—A modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Contract Report for U.S. Army Corps of Engineers, SERDP 99, 239, Tuscalossa, Alabama; U.S. Army Corps of Engineers: Washington, DC, USA, 1999. [Google Scholar]
- Kovač, Z.; Nakić, Z.; Barešić, J.; Parlov, J. Nitrate origin in the Zagreb aquifer system. Geofluids 2018, 2018, 2789691. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.P. Movement of contaminants in groundwater: Groundwater transport-advection and dispersion. In Groundwater Contamination. Studies in Geophysics; National Academy Press: Washington, DC, USA, 1984; pp. 37–45. [Google Scholar]
- Mallants, D.; Marivoet, J.; Volckaert, G. Review of Recent Literature on the Dispersivity Parameter for Saturated and Fractured Porous Media; Technical Note 44; Dept. WiD, SCK-CEN: Mol, Belgium, 1998. [Google Scholar]
- Neuman, S.P. Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour. Res. 1990, 26, 1749–1758. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Mantaglou, A.; Welty, C.; Rehfeldt, K.R. A Review of Field Scale Physical Solute Transport Processes in Unsaturated and Saturated Porous Media; EPRI Topicl Report EA-4190; Electric Power Research Institute: Palo Alto, CA, USA, 1985. [Google Scholar]
- Xu, M.J.; Eckstein, Y. Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Field Scale. Ground Water 1995, 33, 905–908. [Google Scholar] [CrossRef]
- Šrajbek, M.; Kovač, I.; Novotni-Horčička, N.; Kranjčević, L. Assessment of average contributions of point and diffuse pollution sources to nitrate concentration in groundwater by nonlinear regression. Environ. Eng. Manag. J. 2020, 19, 95–104. [Google Scholar] [CrossRef]
- Eberts, S.M.; Thomas, M.A.; Jagucki, M.L. Factors Affecting Public-Supply Well Vulnerability to Contamination: Understanding Observed Water Quality and Anticipating Future Water Quality; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2013; 132p. [Google Scholar]
- Fileccia, A. Some simple procedures for the calculation of the influence radius and well head protection areas (theoretical approach and a field case for a water table aquifer in an alluvial plain). Ital. J. Groundw. 2015, AS14065, 007–023. [Google Scholar] [CrossRef]
- Bujakowski, F.; Ostrowski, P.; Sopel, Ł.; Zlotoszewska-Niedziałek, H. Connection between glacitectonic forms and groundwater flow in the Vistula River Valley. Landf. Anal. 2014, 26, 61–69. (In Polish) [Google Scholar] [CrossRef]
- Pollock, D.W. User Guide for MODPATH Version 6—A Particle-Tracking Model for MODFLOW; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2012; 70p. [Google Scholar]
- Ordinance on the Conditions for Determining the Zone of Sanitary Protection of Wellfields, Official Gazette of the Republic of Croatia: Zagreb, Croatia, 2013; 47/13.
- Marković, T. Vulnerability Assessment of Unsaturated Zone by Geochemical Modelling (Croatian title: Određivanje Osjetljivosti Nesaturirane Zone Geokemijskim Modeliranjem). Ph.D. Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia, 2007; 146p. [Google Scholar]
- Kranjčević, L.; Šrajbek, M.; Grbčić, L.; Čarija, Z. Analysis of well field nitrates pollution distribution in agricultural area. In Proceedings of the 29th DAAAM International Symposium, Zadar, Croatia, 24–27 October 2018; pp. 1053–1058. [Google Scholar]
Parameter | Unit | Varaždin | Bartolovec | Vinokovščak | MAC * |
---|---|---|---|---|---|
Nitrate | mg/L NO3− | 79.41 | 23.96 | 18.23 | 50 |
Nitrites | mg/L NO2− | 0.00 | 0.00 | 0.00 | 0.5 |
pH value | 7.45 | 7.40 | 7.41 | 6.5–9.5 | |
KMnO4 consumption | mg/L O2 | 0.87 | 0.71 | 0.79 | 5 |
Electro-conductivity | mS/cm | 585 | 560 | 550 | 2500 |
Chlorides | mg/L Cl− | 17.64 | 23.74 | 14.51 | 250 |
Amonium ion | mg/L NH4+ | 0.02 | 0.02 | 0.03 | 0.5 |
Well/Piezometer | (mg/L NO3−) | Δ | Δ2 |
---|---|---|---|
B3 | 74.14 | 5.18 | 26.83 |
B4 | 75.35 | 0.98 | 0.96 |
B5 | 76.70 | −3.08 | 9.49 |
B6 | 80.04 | −0.08 | 0.01 |
B7 | 76.71 | −0.60 | 0.36 |
B8 | 81.42 | 5.34 | 28.52 |
B9 | 85.92 | −0.67 | 0.45 |
B10 | 87.80 | 0.39 | 0.15 |
P23 | 65.03 | 3.18 | 10.11 |
P25 | 71.67 | 0.40 | 0.16 |
P26 | 77.40 | −0.18 | 0.03 |
P29 | 68.62 | 0.44 | 0.19 |
P30 | 87.00 | 0.47 | 0.22 |
∑Δ2 | 77.48 | ||
5.96 |
Point Source of Pollution | Estimated Value of Nitrate Concentration (mg/L NO3−) |
---|---|
Poultry landfill | 114 |
Poultry farm (PF1) | 80 |
Poultry farm (PF2) | 86 |
Poultry farm (PF3) | 87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šrajbek, M.; Kranjčević, L.; Kovač, I.; Biondić, R. Groundwater Nitrate Pollution Sources Assessment for Contaminated Wellfield. Water 2022, 14, 255. https://doi.org/10.3390/w14020255
Šrajbek M, Kranjčević L, Kovač I, Biondić R. Groundwater Nitrate Pollution Sources Assessment for Contaminated Wellfield. Water. 2022; 14(2):255. https://doi.org/10.3390/w14020255
Chicago/Turabian StyleŠrajbek, Marko, Lado Kranjčević, Ivan Kovač, and Ranko Biondić. 2022. "Groundwater Nitrate Pollution Sources Assessment for Contaminated Wellfield" Water 14, no. 2: 255. https://doi.org/10.3390/w14020255
APA StyleŠrajbek, M., Kranjčević, L., Kovač, I., & Biondić, R. (2022). Groundwater Nitrate Pollution Sources Assessment for Contaminated Wellfield. Water, 14(2), 255. https://doi.org/10.3390/w14020255