Propagation Characteristics of Hydrological Drought Based on Variable and Fixed Threshold Methods in Snowmelt and Rainfall Driven Catchments
Abstract
:1. Introduction
- (i)
- Reveal the difference in the HD distribution pattern within a year;
- (ii)
- Demonstrate the difference in the propagation characteristics of HD events;
- (iii)
- Determine/explain the possible reasons for these differences.
2. Methods
2.1. Fixed and Variable Drought Threshold
2.2. Identification of Hydrological Propagation Characteristics
3. Study Case and Dataset
4. Results and Discussion
4.1. Distribution Patterns of Streamflow within a Year
4.2. Distribution Patterns of Hydrological Droughts within a Year
4.3. Hydrological Drought Propagation Characteristics
4.4. Variation of Hydrological Drought Characteristics
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AghaKouchak, A.; Feldman, D.; Hoerling, M.; Huxman, T.; Lund, J. Recognize anthropogenic drought. Nature 2015, 524, 409–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, A.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Love, C.; Yao, H.; Chen, X.; AghaKouchak, A. Determination of water required to recover from hydrological drought: Perspective from drought propagation and non-standardized indices. J. Hydrol. 2021, 590, 125227. [Google Scholar] [CrossRef]
- Linsley, R.; Kohler, M.; Paulhus, J. Hydrology for Engineers, 3rd ed.; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- Wu, J.; Yao, H.; Yuan, X.; Lin, B. Dissolved organic carbon response to hydrological drought characteristics: Based on long-term measurements of headwater streams. Water Res. 2022, 215, 115252. [Google Scholar] [CrossRef]
- Attrill, M.J.; Power, M. Modelling the effect of drought on estuarine water quality. Water Res. 2000, 34, 1584–1594. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardized indicators. Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, X.; Yao, H.; Zhang, D. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Sci. Total Environ. 2020, 765, 144232. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Gao, L.; Chen, Y.; Liu, M. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. J. Hydrol. 2017, 551, 495–507. [Google Scholar] [CrossRef]
- Tijdeman, E.; Barker, L.J.; Svoboda, M.D.; Stahl, K. Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States. Water Resour. Res. 2018, 54, 6005–6023. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Q.; Chang, J.; Zhu, Y.; Li, X. Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin, China. J. Hydrol. 2015, 530, 127–136. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Liu, Z.; Zhang, D. Hydrological drought instantaneous propagation speed based on the variable motion relationship of speed-time process. Water Resour. Res. 2018, 54, 9549–9565. [Google Scholar] [CrossRef]
- Parry, S.; Wilby, R.L.; Prudhomme, C.; Wood, P.J. A systematic assessment of drought termination in the Inited Kingdom. Hydrol. Earth Syst. Sci. 2016, 20, 4265–4281. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yuan, X.; Yao, H.; Chen, X.; Wang, G. Reservoirs regulate the relationship between hydrological drought recovery water and drought characteristics. J. Hydrol. 2021, 603, 127127. [Google Scholar] [CrossRef]
- Apurv, T.; Sivapalan, M.; Cai, X. Understanding the role of climate characteristics in drought propagation. Water Resour. Res. 2017, 53, 9304–9329. [Google Scholar] [CrossRef] [Green Version]
- Zeleke, E.B.; Melesse, A.M.; Kidanewold, B.B. Assessment of climate and catchment control drought propagation in the Tekeze River Basin, Ethiopia. Water 2022, 14, 1564. [Google Scholar] [CrossRef]
- Zalokar, L.; Kobold, M.; Sraj, M. Investigation of spatial and temporal variability of hydrological drought in Slovenia using the standardized streamflow index (SSI). Water 2021, 13, 3197. [Google Scholar] [CrossRef]
- Xu, L.; Abbaszadeh, P.; Moeadkhani, H.; Chen, N.; Zhang, X. Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Shah, D.; Mishra, V. Integrated drought index (IDI) for drought monitoring and assessment in India. Water Resour. Res. 2020, 56, WR026284. [Google Scholar] [CrossRef]
- Stahl, K.; Vidal, J.P.; Hannaford, J.; Tijdeman, E.; Laaha, G.; Gauster, T.; Tallaksen, L.M. The challenges of hydrological drought definition, quantification and communication: An interdisciplinary perspective. Proc. IAHS 2020, 383, 293–295. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological drought explained. WIREs Water. 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Hammond, J.C.; Simeone, C.; Hecht, J.S.; Hodgkins, G.A.; Lombard, M.; McCabe, G.; Price, A.N. Going beyond low flows: Streamflow drought deficit and duration illuminate distinct spatiotemporal drought pattersn and trends in the U.S. during the last century. Water Resour. Res. 2022, 58, e2022WR031930. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Rangecroft, S.; Coxon, G.; Breña Naranjo, J.A.; Van Ogtrop, F.; Van Lanen, H.A. Using paired catchments to quantify the human influence on hydrological droughts. Hydrol. Earth Syst. Sci. 2019, 23, 1725–1739. [Google Scholar] [CrossRef] [Green Version]
- Tijdeman, E.; Hannaford, J.; Stahl, K. Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci. 2018, 22, 1051–1064. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Mallakpour, I.; Yuan, X.; Yao, H.; Wang, G.; Chen, X. Impact of the false intensification and recovery on the hydrological drought internal propagation. Weather Clim. Extreme 2022, 36, 100430. [Google Scholar] [CrossRef]
- Lin, K.; Lv, F.; Chen, L.; Singh, V.P.; Zhang, Q.; Chen, X. Xinanjiang model combined with curve number to simulate the effect of land use change on environmental flow. J. Hydrol. 2014, 519, 6142–13152. [Google Scholar] [CrossRef]
- Wu, J.; Yao, H.; Chen, X.; Wang, G.; Bai, X.; Zhang, D. A framework for assessing compond drought events from a drought propgation perspective. J. Hydrol. 2022, 604, 127228. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, H.; James, A.; Lin, Q.; Fu, W. Modifying SWAT-CS for simulation chloride dynamics in a Boreal Shield headwater catchment in south-central Ontario, Canada. Sci. Total Environ. 2020, 717, 137213. [Google Scholar] [CrossRef]
- Morison, M.Q.; Higgins, S.N.; Webster, K.L.; Emilson, E.J.S.; Yao, H.; Casson, N.J. Spring coherence in dissolved organic carbon export dominates total coherence in Boreal Shield forested catchments. Environ. Res. Lett. 2022, 17, 014048. [Google Scholar] [CrossRef]
- Yao, H.; Scott, L.; Guay, C.; Dillon, P. Hydrological impacts of climate change predicted for an inland lake catchment in Ontario by using monthly water balance analyses. Hydrol. Process. 2009, 23, 2368–2382. [Google Scholar] [CrossRef]
- Yao, H.; James, A.; McConnell, C.; Turnbull, B.; Field, T.; Somers, K.M. Relative contributions of stream concentration, stream discharge and shoreline load to base cation trends in Red Chalk and Harp Lakes, south-central Ontario, Canada. Hydrol. Process. 2016, 30, 858–872. [Google Scholar] [CrossRef]
- James, A.L.; Yao, H.; McConnell, C.; Field, T.; Yang, Y. The DESC catchments: Long-term monitoring of inland Precambrian shield catchment streamflow and water chemistry in Central Ontario, Canada. Hydrol. Process. 2022, 36, e14491. [Google Scholar] [CrossRef]
- Glass, V.M.; Percival, D.C.; Proctor, J.T.A. Tolerance of lowbush blueberries (Vaccinium angustifolium Ait.) to drought stress. I. Soil Water and yield component analysis. Can. J. Plant Sci. 2005, 85, 911–917. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Begueria, S.; Lorenzo-Lacruz, L.; Azorin-Molina, C.; Moran-Tejeda, E. Accurate computation of a streamflow drought index. J. Hydrol. Eng. 2011, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Tallaksen, L.M.; Hisdal, H.; Van Lanen, H.A.J. Space-time modelling of catchment scale drought characteristics. J. Hydrol. 2009, 375, 363–372. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yuan, X.; Yao, H.; Zhao, Y.; AghaKouchak, A. The interactions between hydrological drought evolution and precipitation-streamflow relationship. J. Hydrol. 2021, 597, 126210. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, X.; Zhang, L.; Lai, R.; Liu, J. Impacts of small cascaded hydropower plants on river discharge in a basin in Southern China. Hydrol. Process 2019, 33, 1420–1433. [Google Scholar] [CrossRef]
Catchment | Station | Timescale | Streamflow Records |
---|---|---|---|
Harp Lake | HP0 | Monthly | 1978–2019 |
HP3 | Monthly | 1978–2019 | |
HP3a | Monthly | 1978–2019 | |
HP4 | Monthly | 1978–2019 | |
HP5 | Monthly | 1978–2019 | |
HP6 | Monthly | 1978–2019 | |
Dongjiang River | Yuecheng | Monthly | 1960–2006 |
Lantang | Monthly | 1958–2015 | |
Jiuzhou | Monthly | 1960–2006 |
Catchment | Methods | D (Month) | S (m3/s) | DID | DRD |
---|---|---|---|---|---|
Harp Lake | FDT | 3.91 | 0.054 | 2.64 | 1.27 |
VDT | 4.67 | 0.062 | 3.33 | 1.33 | |
Dongjiang River | FDT | 5.05 | 10.62 | 3.16 | 1.89 |
VDT | 5.47 | 23.58 | 2.6 | 2.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Yao, H.; Wang, G. Propagation Characteristics of Hydrological Drought Based on Variable and Fixed Threshold Methods in Snowmelt and Rainfall Driven Catchments. Water 2022, 14, 3219. https://doi.org/10.3390/w14203219
Wu J, Yao H, Wang G. Propagation Characteristics of Hydrological Drought Based on Variable and Fixed Threshold Methods in Snowmelt and Rainfall Driven Catchments. Water. 2022; 14(20):3219. https://doi.org/10.3390/w14203219
Chicago/Turabian StyleWu, Jiefeng, Huaxia Yao, and Guoqing Wang. 2022. "Propagation Characteristics of Hydrological Drought Based on Variable and Fixed Threshold Methods in Snowmelt and Rainfall Driven Catchments" Water 14, no. 20: 3219. https://doi.org/10.3390/w14203219
APA StyleWu, J., Yao, H., & Wang, G. (2022). Propagation Characteristics of Hydrological Drought Based on Variable and Fixed Threshold Methods in Snowmelt and Rainfall Driven Catchments. Water, 14(20), 3219. https://doi.org/10.3390/w14203219