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Abstract: With exacerbating climate change, the current reservoir storage capacity in South Korea is
insufficient to meet the future scheduled water demand. No study has yet evaluated the effects of
applying the water supply adjustment standard (Standard) and activating the reservoir emergency
storage in response to extreme drought. The main objective is to assess the effects of applying
Standard and activating emergency storage in meeting the water demand under extreme drought at
six multipurpose reservoirs (Andong, Gimcheon-Buhang, Gunwi, Hapcheon, Imha, and Milyang)
in the Nakdong River Basin, South Korea. We built a reservoir simulation model (HEC-ResSim),
determined the extreme drought scenarios, and emergency storage capacity. We evaluated three
reservoir operation cases (general operation, regular Standard, and revised Standard) from 2011 to
2100. The results show that applying the Standard and activating the emergency storage are effective
in meeting the future water demand during extreme drought. In conclusion, we need to secure
110 million cubic meters (MCM) (Hapcheon reservoir) and 8 MCM (Gunwi reservoir) of water to
reduce the number of days in the emergency stage. This research serves as a fundamental study
that can help establish Standard and emergency storage activation criteria for other multipurpose
reservoirs in preparation for extreme drought.

Keywords: reservoir emergency storage; water supply adjustment standard; climate change; extreme
drought; reservoir operation; Nakdong River Basin

1. Introduction

Climate change is increasing the frequency of extreme drought and worsening the
drought in the regions of East Asia [1,2]. South Korea is no exception for experiencing
more frequent and extreme drought due to climate change [3]. The historic severe drought
in South Korea was in 1988 and 1994 with the return period of 30 to 50 years [4]. The
recent climate change-fueled drought in South Korea lasted more than three years (2013 to
2015) [5]. In normal years, South Korea receives 1320 mm of annual rainfall, and 70% of its
rainfall occurs during the summer. However, from 2013 to 2015, the annual precipitation
was 35% to 50% less than the precipitation in normal years. This was the most recent severe
drought with a return period of over 100 years [6]. The exacerbating climate change can
lead to more frequent and severe drought that pose challenges and risks in operating and
managing the existing reservoir to meet the scheduled water demand in South Korea [7–9].

South Korea has 20 multipurpose reservoirs that impound water during high flows and
gradually release the water during low flows. Multipurpose reservoirs provide resiliency
against changing meteorological and hydrological variables by providing services such
as water supply, drought management, prevention of salinity intrusion, and recreational

Water 2022, 14, 3242. https://doi.org/10.3390/w14203242 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14203242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-3966-4547
https://orcid.org/0000-0002-4378-2319
https://doi.org/10.3390/w14203242
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14203242?type=check_update&version=1


Water 2022, 14, 3242 2 of 17

activities [10,11]. In 2015, the total storage of multipurpose reservoirs in South Korea was
4.88 billion cubic meters (BCM), which was approximately 2.83 BCM lower than the total
storage in a normal year (7.71 BCM). Building a new reservoir is a promising approach
to increasing water storage and mitigating water shortages [12]. However, constructing
a new reservoir comes with a huge cost, limited location, conflicts between the upstream
and downstream communities, and inevitable environmental and ecological impacts [13].
Some alternatives to building a new reservoir are transferring water from a water-abundant
river basin to a water-scarce river basin [14], connecting tunnels between two existing
reservoirs [15], or developing coordinated reservoirs and weirs operation systems to meet
water supply [16]. Likewise, reservoir operation is crucial in the river basin as it has direct
impact on meeting the water demand of a region. Past literature attempt to improve
the reservoir operation criteria [17,18], develop rule curve, deficit-supply operation [19],
or threshold levels [20] in response to climate-change-fueled drought. In response to
the recent drought, the Korean Ministry of Environment established the Water Supply
Adjustment Standard (Standard) to reduce the reservoir water supply when the reservoir
storage drops below a specified water level. This Standard is set in four stages (concern,
caution, alert, and emergency). Several studies have already tested the performance of
Standard [21]. Other studies simulate the water supply capacity [22], forecast reservoir
inflow [23], and calculate the ranges of supplement-reduction amount of water supply [24]
for multi-purpose reservoirs. The common method of assessing the severity of the drought
is using the indices like the drought index [25–27], drought vulnerability index [28], hotspot
drought risk index [29], standard flow in-dex [30] and water supply capacity index [31].
Other studies assess a potential drought hazard areas in this basin [32].

As climate change exacerbates, the current reservoir storage in South Korea is insuf-
ficient to meet the scheduled water demand [33]. To our knowledge, no study has yet
evaluated the potential application of Standard and the use of the reservoir emergency
storage in a multipurpose reservoir. The novelty of this work is evaluating the effects of
applying the Standard and activating the emergency storage in meeting the scheduled
water demand under extreme drought. The main objective is to determine the capacity
of emergency storage required to meet the scheduled water demand during the extreme
drought. The study site is the Nakdong River Basin (Basin) with six multipurpose reser-
voirs: Andong, Gimcheon-Buhang, Gunwi, Hapcheon, Imha, and Milyang. We build and
simulate a reservoir simulation model (Hydrologic Engineering Center-Reservoir System
Simulation (HEC-ResSim)). We select three extreme drought scenarios out of 25 climate
change scenarios. We evaluate three reservoir operation cases, which are the general opera-
tion (Case 1), regular Standard (Case 2), and revised Standard (Case 3). The three model
performance indices are volumetric reliability, resiliency, and vulnerability. The rest of the
sections are in sequential order: Materials and Methods; Results; Discussion; Conclusions.

2. Materials and Methods
2.1. Study Site

South Korea’s four major rivers are Han, Nakdong, Geum, and Yeongsan. This study
investigates the Nakdong River, which is the longest river (522 km) and the second largest
basin (23,717 km2) in South Korea (Figure 1a). We choose this Basin as it receives the least
amount of precipitation (average annual precipitation of 1320 mm) than other major river
basins (Table 1). The rainy season in South Korea typically lasts from July to September,
when two-thirds of the annual rainfall occurs, and the rest (one-third) of precipitation occurs
from October to June. Thus, the concentrated rainfall during the rainy season leads to
flooding, and insufficient rainfall during the dry season leads to drought. Therefore, South
Korea is prone to both flood and drought. This Basin has nine multipurpose reservoirs
that supply water for domestic, industrial, agricultural, and instream flow. We analyze six
multipurpose reservoirs that already have Standard (Figure 1b). Andong and Hapcheon
are the largest reservoirs, while Hapcheon and Imha reservoirs have the largest emergency
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storage (Table 2). We consider Andong and Imha reservoirs as a single reservoir as they are
connected through a channel and operated together.
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Geum, and Yeongsan) in South Korea. The red box highlights the Nakdong River Basin; (b) locations
of six reservoirs and watersheds (indicated by diagonal lines). In this study, we consider Andong
reservoir and Imha reservoir as a single reservoir as they are connected through a channel and
operated together.

Table 1. Average annual precipitation of four major river basins in South Korea [34]. The Nakdong
River Basin has the least amount of annual precipitation among four major river basins.

River Basin Han Nakdong Geum Yeongsan

Precipitation (mm) 1366.3 1192.3 1299.0 1437.7

2.2. Emergency Storage

The multipurpose reservoirs in South Korea have emergency storage between the
low and energy outlet levels (Figure 2). The purpose of emergency storage is to supply
water during unusual or emergency conditions. The storage of a multipurpose reservoir is
categorized into active and inactive storage. The active storage is categorized into conserva-
tion storage (for water supply) and flood control storage (for flood control). Conservation
storage is storing water in the rainy season and using it for downstream water demand.
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Flood control storage is storage between the flood water level and the normal high water
level in the non-flood season and between the flood water level and restricted water level
in the flood season. Inactive storage refers to a reservoir water capacity below the low
water level. Inactive storage divides into emergency storage and dead storage based on the
emergency outlet level. The water in emergency storage is unavailable for water supply
during the normal seasons. However, the water in the emergency storage (above the
emergency outlet) becomes available for emergency water use and supplies water only
during emergency events (e.g., extreme drought). The dead storage is storage in a reservoir
that cannot be drained by gravity through the reservoir’s outlet works. Withdrawing water
from the dead storage requires separate facilities to pump out the water. The water in the
dead storage is unavailable for use under normal circumstances.

Table 2. Characteristics of six multipurpose reservoirs in the Nakdong River Basin.

Reservoirs Andong Gimcheon-Buhang Gunwi Hapcheon Imha Milyang

Total storage (MCM) 1248 54.3 48.7 790 595 73.6
Conservation storage (MCM) 1000 42.6 40.1 560 424 69.8
Emergency storage (MCM) 130 1.6 1.3 130 84 3.6

Daily planned supply (MCM) 2.5 0.1 0.1 1.6 1.6 0.2
Emergency storage/

13 3.8 3.2 23.2 19.8 5.2Conservation storage (%)
Emergency storage/

52 16 13 81 53 18Daily planned supply (days)
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Figure 2. Description of multipurpose reservoir storage zones and water levels. The water in
emergency storage is unavailable for water supply during the normal seasons. However, the water in
the emergency storage (above the emergency outlet) becomes available for emergency water use and
supplies water only during emergency events (e.g., extreme drought).

The Standard categorized reservoir storage into four stages: Concern, caution, alert,
and emergency (Table 3 and Figure 3). The Concern stage is reducing the uncontracted
domestic and industrial water supplies. The Caution stage is reducing the same amount of
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water supply from the concern stage and instream flow. The Alert stage is reducing the
same amount from the caution stage and water supply from the agricultural sectors. The
irrigation water supply is reduced 20% from April to June, 30% from July to September.
The emergency stage is reducing the same amount as the alert stage and an additional 20%
reduction from the domestic and industrial water use sectors. This Standard is like the
hedging rule in controlling the reservoir water supply and securing the water resources
for the upcoming extreme drought. The Standard reduces the water supply ahead of the
drought to secure the water and mitigate water shortages during drought.

Table 3. Description of four stages (concern, caution, alert, and emergency) and reductions scales for
multipurpose reservoir.

Stage Reduction Scale

Concern Uncontracted domestic and industrial water
Caution Concern reduction + instream flow

Alert Caution reduction + Irrigation water (April~June: 20%, July~September: 30%)
Emergency Alert reduction + 20% of domestic and industrial water
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(concern, caution, alert, and emergency).

2.3. Model Framework

The main workflow of this study is from the reservoir simulation model step (Figure 4).
Prior steps include building a climate model, downscaling the climate change scenarios,
generating the final climate change scenarios, building hydrologic model, and generating
streamflow data. The Coupled Model Intercomparison Project Phase 5 (CMIP5) is an
ensemble model from the United Nations Intergovernmental Panel on Climate Change
(IPCC) Fifth assessment report that reflects the Asian–Australian monsoon climate [35].
IPCC provides Representative Concentration Pathway (RCP) 2.6, 4.5, 6.0, and 8.5. We
select and apply RCP 4.5 (decreases the temperature and increases precipitation) and
RCP 8.5 (reduces the precipitation and increases temperature) [36]. The input dataset
for climate change scenarios is 60 Automated Synoptic Observation System observation
points. Output from CMIP5 requires a downscaling process to improve the low spatial
resolution [37]. Korea’s Asia-Pacific Economic Cooperation Climate Center (APECC) uses
Spatial Disaggregation and Quantile Delta Mapping for downscaling the data [38]. These
downscaled climate change results become input data for the Hydro-logic Simulation
Program-Fortran (HSPF) model [39]. HSPF model is a rainfall-runoff model that produces
the daily reservoir inflow data from 2011 to 2100 (90 years). We divided the reservoir
inflow data into Period (P)1 (2011 to 2040), P2 (2041 to 2070), and P3 (2071 to 2100). We
use these generated reservoir inflow data from HSPF model as input data for the reservoir
simulation model.
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We build and run the reservoir operation simulation model to select the extreme
drought scenarios from 25 climate change scenarios. Some o well-known reservoir sim-
ulation models are HEC-ResSim [40], River and Reservoir Operations [41], Modified
SIMYLD [42], Corps Water Management System [43] and Water Evaluation and Plan-
ning system [44]. These reservoir simulation models are fundamentally similar, but they
are different in computing algorithms, organizing structure, applying user interface, and
managing data mechanism [45]. We choose HEC-ResSim 3.3 software as it is specifically
designed for simulating reservoir operation that resembles the actual reservoir operation.
The US Army Corps of Engineers developed this software, which has been widely used
for simulating the reservoir operation worldwide [46] and in South Korea. Studies used
this software to simulate reservoir operation in dry [47] and flood seasons [48]. The main
input data are aerial map, channel data, evaporation data, gage data, hydraulic structure
outflow data, reservoir storage, and inflow data [49]. The time-step of reservoir simulation
period is set to be five days as the South Korea Water Plan uses five day period to analyze
the national water budget [50].

We select the Hapcheon reservoir, which has the largest ratio of emergency storage to
water conservation storage, to simulate and select the extreme drought scenarios. Here,
we define an extreme drought as when a single drought lasts for long periods without
recovering to the water supply level. A less extreme drought event is when the water level
drops below the water supply level, but it recovers to the water supply level quickly. The
criteria for selecting the extreme drought scenarios include the number of days when the
water supply failed, the total water supply shortage, the number of water supply failures,
the maximum duration, and the maximum shortage of water supply failure. We consider
the maximum duration and the maximum shortage of water supply failure as two crucial
criteria that indicate the severity of drought.

2.4. Cases for Reservoir Operation

We design three reservoir operation cases that either considers or ignores the Standard
and emergency storage utilization conditions.

Case 1 is the default (no action) that does not consider Standard and emergency
storage. In Case 1, when the reservoir water level falls between the low and high-water
level, the reservoir can supply the scheduled domestic, industrial, irrigation, and instream
flow. We consider a failure when the reservoir water level reaches a low water level and
cannot meet the scheduled water demand.

Case 2 considers both Standard and emergency storage. Cases 2 and 3 curtail the
water supply for the current demand to alleviate the potential water shortage in the future,
even though sufficient water is available to meet the current water demand. Both cases
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increase water stored in the reservoir by accepting small current deficits to save water
against unacceptable large deficits that are likely to occur in the future. Both cases distribute
deficits in water supply across time to minimize the impact of drought. We can supply
more water in Case 2 than in Case 1 as we use emergency storage when the reservoir water
level reaches the low water level. In Case 2, we define a failure as when the level drops
below the emergency outlet level, equivalent to the emergency outlet level.

Case 3 also considers Standard and emergency storage. According to the Standard,
we are supposed to reduce 20% of water supply for the domestic and industrial sectors
when the reservoir water storage reaches the emergency stage during extreme drought.
However, reducing domestic and industrial water supply can be problematic for the end-
users. Therefore, unlike Case 2, Case 3 does not reduce the domestic and industrial water
supply even in emergency stages.

2.5. Model Performance Indices

The volumetric reliability, resiliency, and vulnerability are the common indices for
evaluating the water supply capability of a reservoir [51,52]. Reliability is the probability
that a water supply system is in a satisfactory state. Volumetric reliability is the ratio of the
water supply to the design supply of the reservoir. The volumetric reliability equation is
expressed as follows (Equation (1)).

Volumetric reliability (%) =

[
1− QS

QD

]
× 100 (1)

where QD is the scheduled water supply and QS denotes the water supply shortage.
Resiliency is the water supply system’s recovery rate from a failure state to a satisfac-

tory state. The equation for resiliency is shown below (Equation (2)).

Resiliency =
1

E[TF]
=

Prob{Xt ∈ S and Xt+1 ∈ F}
Prob{Xt ∈ F} (2)

where TF is the water supply failure duration, E[TF] is the expected value of TF, Prob {Xt∈S
and Xt+1∈F} is the probability of succeeding in ensuring water supply at present and failing
to ensure the water supply at the next time, and Prob {Xt∈F} is the probability of failing in
water supply at present.

Vulnerability is an indicator of the severity of the water shortage when water supply
fails. The vulnerability is stated as follows (Equation (3)).

Vulnerability =
1
M

{
M

∑
j=1

v(j)

}
(3)

where M is the number of water supply failure events, and v(j) indicates the shortage.

3. Results

We simulated and selected the scenarios that required emergency storage during
extreme drought (Table 4). In Table 4, the worst climate change scenarios were RCP 8.5
INM-CM4, RCP 8.5 IPSL-CM5A-LR, and RCP 4.5 CMCC-CMS. We assumed that evaluating
the effects of the emergency storage under the three most extreme drought scenarios could
cover the other less extreme drought scenarios. For example, RCP 8.5 INM-CM4 scenario
had a maximum duration of water supply failure days (307 days) and water shortage
(456 MCM) (Table 5). Among the three scenarios, the RCP4.5 CMCC-CMS scenario had a
minimum duration of water supply failure days (267 days) and water shortage (404 MCM).
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Table 4. A list of 25 future climate change scenarios and quantitative water supply capacity evaluation
results for the Hapcheon reservoir. The maximum duration and the maximum shortage of water
supply failure are the two crucial criteria that indicate the severity of drought.

No Scenario
Water

Shortage
(Days)

Water
Shortage
(MCM)

Number of
Failure
Events

Max
Shortage
Duration

(Days)

Max
Shortage
(MCM)

1 RCP 8.5 Canadian Earth System Model
2 (RCP 8.5 CanESM2) 0 0 0 0 0

2
RCP 8.5 Community Earth System

Model Biogeochemistry (RCP
8.5 CESM1-BGC)

225 310 6 63 96.1

3
RCP 8.5 Meteorological Research
Institute Coupled Global Climate
Model 3 (RCP 8.5 MRI-CGCM3)

110 153.1 3 67 99.3

4
RCP 4.5 Hadley Center Global

Environmental Model version 2
Anomaly (RCP 4.5 HadGEM2-AO)

244 366.9 5 70 111.2

5 RCP 4.5 MRI-CGCM3 186 249.4 7 74 103
6 RCP 4.5 CanESM2 256 379.6 8 81 123.1

7
RCP 4.5 Institut Pierre-Simon Laplace

Climate Model 5A Low Resolution
(RCP 4.5 IPSL-CM5A-LR)

1351 1946.8 33 128 191.5

8
RCP 4.5 Institute for Numerical

Mathematics Climate Model 5 (RCP
4.5 INM-CM4)

1843 2420.6 54 129 171.7

9
RCP 4.5 Centro Euro-Mediterraneo sui
Cambiamenti Climatici Climate Model

(RCP 4.5 CMCC-CM)
420 597.3 10 130 197.3

10 RCP 8.5 HadGEM2- Earth System
(RCP 8.5 HadGEM2-ES) 1147 1653.4 24 131 192.2

11
RCP 4.5 Geophysical Fluid Dynamics
Laboratory Earth System Models 2G

(RCP 4.5 GFDL-ESM2G)
727 1015.8 17 134 190

12 RCP 8.5 GFDL-ESM2G 977 1421.6 16 136 194.6
13 RCP 8.5 CMCC-CM 774 1110.0 21 137 193.6
14 RCP 8.5 HadGEM2-AO 521 748.1 8 141 185.5

15 RCP 4.5 Community Earth System
Model BGC (RCP 4.5 CESM1-BGC) 353 519.8 6 150 238.5

16 RCP 4.5 Norwegian Earth System
Model (RCP 4.5 NorESM1-M) 552 772.3 20 159 229.1

17
RCP 4.5 Centre National de Recherches
Météorologiques Circulation Model 5

(RCP 4.5 CNRM-CM5)
684 905.8 11 171 236.6

18 RCP 4.5 HadGEM2-ES 2049 2882.0 33 184 277.5

19 RCP 8.5 CMCC- Climate Model
System (CMS) 647 936.8 9 190 292.9

20 RCP 8.5 CNRM-CM5 402 539.7 7 196 270.1

21
RCP 4.5 IPSL-Climate Model

5A—Medium Resolution (RCP 4.5
IPSL-CM5A-MR)

2417 3498.9 46 201 298.6

22 RCP 8.5 IPSL-CM5A-MR 3377 4854.8 52 251 370.5
23 RCP 4.5 CMCC-CMS 8882 12,831.9 181 267 404.3
24 RCP 8.5 IPSL-CM5A-LR 1598 2308.2 29 296 455.2
25 RCP 8.5 INM-CM4 2527 3605.6 64 307 456.1
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Table 5. A summary table for the final three climate change scenarios with maximum shortage
duration (days) and maximum shortage (MCM).

Scenarios Max Shortage Duration (Days) Max Shortage (MCM)

RCP 8.5 INM-CM4 307 456
RCP 8.5 IPSL-CM5A-LR 296 455

RCP 4.5 CMCC-CMS 267 404

Table 6 shows results for only five reservoirs because we consider Andong and Imha
reservoirs as a single reservoir. For Andong-Imha, Milyang, and Gimcheon-Boohang
reservoirs, the reservoir water level did not drop below the average low water level when
we applied the Standard (Table 6). The average low water levels for Cases 2 and 3 were
the same in these three reservoirs. For example, in the Andong-Imha reservoir, in RCP 8.5
INM-CM4 scenario, P1 values for Cases 2 and 3 were both 154.56 m. There was no need to
activate emergency storage in Andong-Imha, Gimcheon-Boohang, and Milyang reservoirs.
Thus, we only analyzed the effects of activating the emergency storage in Hapcheon and
Gunwi reservoirs (Figures 5 and 6). For Hapcheon and Gunwi reservoirs, the volumetric
reliability, and the amount of water supply for Case 1 was higher than for Cases 2 and 3
(Tables 7 and 8). Further analysis is available in the Discussion section.
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Figure 5. Comparison of the Hapcehon reservoir’s water level for Case 1, 2, and 3 in three climate
change scenarios from 2011 to 2100. These three climate change scenarios are RCP 8.5 INM-CM4
(a), RCP 8.5 IPSL-CM5A-LR (b), and RCP 4.5 CMCC-CMS (c). The dotted black box highlights the
extreme drought period (from 2070 to 2080).
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Figure 6. Comparison of the Gunwi reservoir’s water level for Case 1, 2, and 3 in three climate change
scenarios from 2011 to 2100. These three climate change scenarios are RCP 8.5 INM-CM4 (a), RCP
8.5 IPSL-CM5A-LR (b), and RCP 4.5 CMCC-CMS (c). The dotted black box highlights the extreme
drought period (from 2070 to 2080).

Table 6. Comparison of average low water level (m) for Case 1, 2, and 3 for five reservoirs.

Scenario Case
Andong-Imha Gimcheon-Boohang Gunwi Hapcheon Milyang

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

RCP 8.5
INM-CM4

1 153.87 152.78 149.40 182.19 187.47 189.85 198.35 197.42 195.41 162.70 164.63 159.28 181.11 188.50 179.71
2 154.56 153.90 152.22 182.67 187.47 189.85 198.36 197.57 195.69 163.68 165.36 160.81 190.70 193.16 190.42
3 154.56 153.90 152.22 182.67 187.47 189.85 198.36 197.57 195.69 163.63 165.35 160.70 190.70 193.16 190.42

RCP 8.5
IPSL-

CM5A-LR

1 153.03 154.34 154.69 187.97 189.20 188.03 197.66 198.81 198.33 161.30 165.08 164.04 183.32 189.45 193.16
2 154.46 154.96 155.79 188.02 189.20 188.12 197.79 198.85 198.44 162.62 165.72 164.81 192.53 194.45 195.98
3 154.46 154.96 155.79 188.02 189.20 188.12 197.78 198.85 198.44 162.53 165.72 164.74 192.53 194.45 195.98

RCP4.5
CMCC-

CMS

1 140.51 137.60 144.87 189.08 188.77 185.93 188.03 187.78 192.84 146.45 145.44 154.92 159.42 154.89 163.60
2 146.86 146.67 151.25 189.11 188.77 186.09 188.80 188.80 193.42 151.00 151.00 158.16 183.71 181.10 185.85
3 146.86 146.67 151.25 189.11 188.77 186.09 188.78 188.77 193.41 150.50 150.63 157.88 183.71 181.10 185.85
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Table 7. Results of the three model performance evaluation indices for Case 1, 2, and 3 in the
Hapcheon reservoir.

Scenario Case
Volumetric Reliability (%) Average Resiliency Average Vulnerability (MCM)

P1 P2 P3 P1 P2 P3 P1 P2 P3

RCP 8.5
INM-CM4

1 93.3 97.3 88.6 0.023 0.040 0.023 60.2 34.7 63.9
2 92.1 96.3 87.4 - - - - - -
3 92.2 96.3 87.5 - - - - - -

RCP 8.5
IPSL-CM5A-LR

1 93.2 97.9 95.6 0.019 0.022 0.014 76.1 62.2 104.4
2 92.5 96.6 94.4 - - - - - -
3 92.5 96.6 94.5 - - - - - -

RCP4.5
CMCC-CMS

1 70.2 71.8 85.4 0.018 0.021 0.024 78.9 68.7 59.9
2 69.5 71.7 84.3 - - - - - -
3 69.6 71.7 84.4 - - - - - -

Table 8. Results of the three model performance evaluation indices for Case 1, 2, and 3 in reservoir.

Scenario Case
Volumetric Reliability (%) Average Resiliency Average vulnerability (MCM)

P1 P2 P3 P1 P2 P3 P1 P2 P3

RCP 8.5
INM-CM4

1 97.1 98.7 93.8 0.012 0.047 0.024 8.2 1.9 3.9
2 97.0 98.0 93.4 0.069 - - 1.4 - -
3 97.0 98.0 93.4 0.059 - - 1.6 - -

RCP 8.5
IPSL-CM5A-LR

1 94.5 99.2 96.9 0.016 0.020 0.019 5.7 4.5 4.7
2 94.3 99.1 96.7 0.333 - - 0.3 - -
3 94.3 99.1 96.7 0.125 - - 0.7 - -

RCP 4.5
CMCC-CMS

1 77.1 79.9 92.1 0.016 0.020 0.021 5.8 4.4 4.2
2 76.7 79.4 91.1 0.032 0.091 0 3.0 1.0 0
3 76.7 79.5 91.1 0.039 0.097 0.250 2.4 1.0 0.4

The emergency stage is the worst scenario when we reduce the same amount of water
in alert stage and an additional 20% reduction from the domestic and industrial water
use sectors. In Case 1, both reservoirs had the largest number of days that reached in
emergency stage than the number of days that reached in concern, caution, and alert stages
(Tables 9 and 10). In Cases 2 and 3, Hapcheon and Gunwi reservoirs had larger number of
days that reached the concern and caution stages, while the number of days that reached
the alert stage was similar. In Cases 2 and 3, the number of days that reached the emergency
stage greatly decreased compared to Case 1.

Table 9. Total number of days at each stage for Case 1, 2, and 3 in the Hapcheon reservoir.

Scenario Case
P1 P2 P3

Normal Concern Caution Alert Emergency Normal Concern Caution Alert Emergency Normal Concern Caution Alert Emergency

RCP 8.5
INM-CM4

1 8847 116 350 163 1482 9677 128 212 149 791 7432 172 320 207 2096
2 9432 421 639 90 376 10,127 561 206 37 26 7965 704 784 140 634
3 9429 407 643 68 411 10,123 565 206 36 27 7927 716 716 158 710

RCP 8.5
IPSL-CM5A-

LR

1 8821 188 340 198 1411 10,036 128 174 64 555 8870 173 292 93 799
2 9473 546 361 130 448 10,232 319 337 67 2 9205 280 276 74 392
3 9442 549 386 48 533 10,232 318 338 67 2 9187 283 275 83 399

RCP 4.5
CMCC-CMS

1 2994 521 886 414 6143 2351 430 938 711 6527 6244 304 486 285 2908
2 5311 1279 1392 470 2506 5561 1434 1737 512 1713 7524 522 750 252 1179
3 5080 1226 1381 559 2712 5382 1483 1642 483 1967 7424 587 672 216 1328
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Table 10. Total number of days at each stage for Case 1, 2, and 3 in the Gunwi reservoir.

Scenario Case
P1 P2 P3

Normal Concern Caution Alert Emergency Normal Concern Caution Alert Emergency Normal Concern Caution Alert Emergency

RCP 8.5
INM-CM4

1 10,521 8 18 31 380 10,558 54 30 57 258 8864 180 149 168 866
2 10,524 60 77 51 246 10,614 272 50 21 - 9234 480 225 105 183
3 10,522 61 77 51 247 10,614 272 50 21 - 9231 479 227 106 184

RCP 8.5
IPSL-CM5A-

LR

1 9872 61 89 101 835 10,803 9 12 18 115 9655 39 35 53 445
2 10,077 198 194 107 382 10,807 63 41 46 - 9735 182 201 77 32
3 10,065 200 188 100 405 10,807 63 41 46 - 9735 179 194 86 33

RCP 4.5
CMCC-CMS

1 6602 283 259 238 3576 6715 382 245 243 3372 8389 172 201 149 1316
2 7423 891 899 522 1223 7756 941 899 369 992 8898 553 388 105 283
3 7397 894 882 506 1279 7728 952 856 374 1047 8890 560 389 104 284

The current capacity of emergency storage in the Hapcheon reservoir is 130 MCM. The
largest volume of water secured in the emergency storage for the Hapcheon reservoir was
105.92 MCM in RCP 8.5 INM-CM4 scenario during P3 (Table 11). The current capacity of
emergency storage in the Gunwi reservoir is 2.4 MCM. The largest volume of water secured
in the emergency storage for the Gunwi reservoir was 7.91 MCM in RCP 4.5 CMCC-CMS
scenario during P1 (Table 12).

Table 11. Volume of water secured in the emergency storage (MCM) for Case 1, 2, and 3 in the
Hapcheon Reservoir.

Period/Scenario RCP 8.5 INM-CM4 RCP 8.5 IPSL-CM5A-LR RCP 4.5 CMCC-CMS

P1 79.73 89.15 62.15
P2 - - 68.33
P3 105.92 50.68 26.12

Table 12. Volume of water secured in the emergency storage (MCM) for Case 1, 2, and 3 in the
Gunwi reservoir.

Period/Scenario RCP 8.5 INM-CM4 RCP 8.5 IPSL-CM5A-LR RCP 4.5 CMCC-CMS

P1 3.73 2.52 7.91
P2 - - 3.34
P3 1.49 0.23 2.17

Figures 5 and 6 compare Hapcehon and Gunwi reservoirs’ water levels for Cases
1, 2, and 3 in three climate change scenarios from 2011 to 2100 (90 years). These three
climate change scenarios are RCP 8.5 INM-CM4 (a), RCP 8.5 IPSL-CM5A-LR (b), and RCP
4.5 CMCC-CMS (c). In Hapcheon and Gunwi reservoirs, the average low water level in
Case 1 was always lower than the average low water levels in Cases 2 and 3 because Case 1
always released more water than Cases 2 and 3 (Table 6). Case 1 neglected the Standard
and supplied the scheduled release requirements. Cases 2 and 3 considered the Standard
that reduces the scheduled water supply depending on the current reservoir water level
and utilizes emergency storage. For these two reservoirs, the average low water level in
Case 3 was either the same or lower than in Case 2 because it reduced 20% of the water
supply for the domestic and industrial sectors. In comparison, Case 3 provided 100% water
supply for these two sectors. We found no particular pattern of changes from 2011 to 2100.

4. Discussion

As Figures 5 and 6 cover 90 years of water level fluctuation for all three cases, it is
challenging to distinguish the characteristics of these three cases. Thus, we determined and
extracted the extreme drought period (from 2070 to 2080) and graphed them separately in
Figures 7a–c and 8a–c. In Figure 7a the water level does not drop below low water level in
Case 1 because Case 1 does not use the emergency storage, which is below the low water
level. The water level in Cases 2 and 3 goes below the low water level because these two
scenarios activate emergency storage during the severe drought. Except for this severe
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drought period, the water level in Case 2 was either the same or higher than in Case 3. The
water level in Case 3 was the same or higher than the water level in Case 1 because Case 2
applied Standard and activated the emergency storage, and on top of these two, Case 3 did
not reduce the domestic and industrial water supply.
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For Hapcheon and Gunwi reservoirs, the volumetric reliability and the amount of
water supply for Case 1 were higher than for Cases 2 and 3 because Case 1 attempted to
meet the scheduled water demand as much as possible (Tables 7 and 8). Cases 2 and 3
reduced the amount of water supply and saved the rest for the upcoming water shortage
event, resulting in lower volumetric reliability. The downside of Case 1 was that we might
not supply water at all in the future after fully supplying the scheduled amount of water.
Cases 2 and 3 applied Standard and reduced the amount of water supply without fully
meeting the scheduled water demand below the concern level. Therefore, we did not have
a case of failure in Cases 2 and 3, which resulted in 0 values in resiliency and vulnerability.
The climate-change-fueled extreme drought could cause damage economically and socially,
especially during the emergency stage. Therefore, Cases 2 and 3 were better than Case 1 as
the number of days reaching the emergency stage decreased in Cases 2 and 3.

The current emergency storage capacity of the Hapcheon reservoir (130 MCM) was
more than enough to meet the scheduled water demand under extreme drought scenarios.
Thus, we concluded that 110 MCM, 85% of the current emergency storage capacity in
Hapchoen reservoir, meets the scheduled water demand during extreme drought. This
amount of water in the emergency storage is equivalent to supplying 67 days of scheduled
water supply. We could use an extra 20 MCM of water reserved for emergency storage
for the active storage. However, the current emergency storage of the Gunwi reservoir
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(2.4 MCM) was insufficient. Thus, we concluded that 8 MCM, 350% of the current emer-
gency storage capacity in Gunwi reservoir, can meet the scheduled water demand under
extreme drought. This amount of water in the emergency storage is equivalent to supplying
76 days of scheduled water supply.

5. Conclusions

As climate change exacerbates, the current reservoir storage in South Korea is insuffi-
cient to meet the water demand. No study has yet evaluated the effects of activating the
reservoir emergency storage in response to upcoming extreme drought. The scientific value
of this study is assessing the effects of emergency storage and determining the capacity
of the emergency storage to meet the water demand under extreme drought. We built a
reservoir simulation model and determined the extreme drought scenarios and emergency
storage capacity to meet the scheduled water demand.

We concluded that Andong-Imha, Milyang, and Gimcheon-Buhang reservoirs could
meet the water demand without applying the Standard and activating the emergency
storage. However, Hapcheon and Gunwi reservoirs can benefit from applying the Standard
and activating emergency storage during extreme drought. The current emergency storage
capacity of the Hapcheon reservoir (130 MCM) was more than enough to meet the sched-
uled water demand under extreme drought scenarios. Thus, we concluded that 110 MCM,
85% of the current emergency storage capacity in Hapcheon reservoir, meets the scheduled
water demand during extreme drought. However, the current emergency storage of the
Gunwi reservoir (2.4 MCM) was insufficient. Thus, we concluded that 8 MCM, 350% of
the current emergency storage capacity in Gunwi reservoir, can meet the scheduled water
demand under extreme drought.

The number of days in the emergency stage has significantly reduced in Cases 2 and 3
in comparison to Case 1. Case 1 is designed to fully provide the scheduled amount of
water, while Cases 2 and 3 reduced the water supply in preparation for the drought season
to reduce the days remaining in the emergency stage. In other words, we determined
that reducing the number of days in the emergency storage is beneficial by increasing
the number of days in the other stages, such as concern, caution, and alert. This result
indicated that applying Standard and activating the emergency storage is beneficial in
securing additional water for domestic and industrial use.

There are some limitations to this study. One way to verify the results is to compare
them to other studies with a similar research topic. A limitation of this study was not
having similar research available to compare and verify the results. We should not exclude
the possibility of experiencing more extreme drought than the scenarios we evaluated in
this study. In that case, our estimated energy storage capacity is insufficient to meet the
scheduled water demand. We should consider conserving or recycling water as alternatives
to meet the scheduled water demand during more extreme drought.

A future study includes revising the Standard incorporating drought frequency when
estimating emergency storage. The current Standard by the Korean Ministry of Envi-
ronment (revised in 2022) does not consider emergency storage. Another futures study
is assessing emergency storage with the revised Standard that counts in the emergency
storage. This study is helpful for reservoirs in the Nakdong River Basin and reservoirs
in the other basins vulnerable to climate-change-fueled extreme drought. Thus, our find-
ings can assist the reservoir managers and operators in understanding the implication of
applying Standard and activating emergency storage to better meet the water demand in
extreme drought. This research is a fundamental study that can help establish Standard
and emergency storage activation criteria for multipurpose reservoirs in preparation for
extreme drought.
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