Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Biomass
2.3. Biomass Characterization
2.4. Batch Adsorption Experiments
2.5. Spent Adsorbents Disposal in Clay Ceramics
3. Results and Discussion
3.1. Biomass Characterization
3.2. Adsorption Process Characterization
3.3. Spent Adsorbent Disposal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A Review on Modification Methods to Cellulose-Based Adsorbents to Improve Adsorption Capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Tounsadi, H.; Khalidi, A.; Machrouhi, A.; Farnane, M.; Elmoubarki, R.; Elhalil, A.; Sadiq, M.; Barka, N. Highly Efficient Activated Carbon from Glebionis coronaria L. Biomass: Optimization of Preparation Conditions and Heavy Metals Removal Using Experimental Design Approach. J. Environ. Chem. Eng. 2016, 4, 4549–4564. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Ojedokun, A.T.; Bello, O.S. Sequestering Heavy Metals from Wastewater Using Cow Dung. Water Resour. Ind. 2016, 13, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Z.; Singh, V.P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent Advances in Applications of Low-Cost Adsorbents for the Removal of Heavy Metals from Water: A Critical Review. Sep. Purif. Technol. 2022, 278, 119510. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Tanong, K.; Tran, L.-H.; Mercier, G.; Blais, J.-F. Recovery of Zn(II), Mn(II), Cd(II) and Ni(II) from the Unsorted Spent Batteries Using Solvent Extraction, Electrodeposition and Precipitation Methods. J. Clean. Prod. 2017, 148, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; Intechopen: London, UK, 2019; pp. 1–23. [Google Scholar]
- Anastopoulos, I.; Pashalidis, I.; Hosseini-Bandegharaei, A.; Giannakoudakis, D.A.; Robalds, A.; Usman, M.; Escudero, L.B.; Zhou, Y.; Colmenares, J.C.; Núñez-Delgado, A.; et al. Agricultural Biomass/Waste as Adsorbents for Toxic Metal Decontamination of Aqueous Solutions. J. Mol. Liq. 2019, 295, 111684. [Google Scholar] [CrossRef]
- Soliman, N.K.; Moustafa, A.F. Industrial Solid Waste for Heavy Metals Adsorption Features and Challenges; a Review. J. Mater. Res. Technol. 2020, 9, 10235–10253. [Google Scholar] [CrossRef]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Efremova Aaron, S.; Aaron, J.J. Toxic Heavy Metals: Impact on the Environment and Human Health, and Treatment with Conducting Organic Polymers, a Review. Environ. Sci. Pollut. Res. 2020, 27, 29927–29942. [Google Scholar] [CrossRef] [PubMed]
- RESOLUCION N° 336/2003. Autoridad del Agua de Provincia de Buenos Aires. ANEXO II Parámetros de Calidad de Las Descargas Límites Admisibles. Available online: https://normas.gba.gob.ar/documentos/0P3k4eSA.html (accessed on 22 September 2022).
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable Technologies for Water Purification from Heavy Metals: Review and Analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; Hin, L.S.; El-Shafie, A. Review on Heavy Metal Adsorption Processes by Carbon Nanotubes. J. Clean. Prod. 2019, 230, 783–793. [Google Scholar] [CrossRef]
- Rebello, S.; Sivaprasad, M.S.; Anoopkumar, A.N.; Jayakrishnan, L.; Aneesh, E.M.; Narisetty, V.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Pandey, A. Cleaner Technologies to Combat Heavy Metal Toxicity. J. Environ. Manag. 2021, 296, 113231. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Omran, B.A.; Baek, K.H. Valorization of Agro-Industrial Biowaste to Green Nanomaterials for Wastewater Treatment: Approaching Green Chemistry and Circular Economy Principles. J. Environ. Manag. 2022, 311, 114806. [Google Scholar] [CrossRef]
- Guechi, E.K.; Hamdaoui, O. Evaluation of Potato Peel as a Novel Adsorbent for the Removal of Cu(II) from Aqueous Solutions: Equilibrium, Kinetic, and Thermodynamic Studies. Desalin. Water Treat. 2016, 57, 10677–10688. [Google Scholar] [CrossRef]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption of Lead on Cucumber Peel. J. Clean. Prod. 2017, 151, 603–615. [Google Scholar] [CrossRef]
- Gupta, N.; Sen, R. Kinetic and Equilibrium Modelling of Cu(II) Adsorption from Aqueous Solution by Chemically Modified Groundnut Husk (Arachis hypogaea). J. Environ. Chem. Eng. 2017, 5, 4274–4281. [Google Scholar] [CrossRef]
- Tizo, M.S.; Blanco, L.A.V.; Cagas, A.C.Q.; Dela Cruz, B.R.B.; Encoy, J.C.; Gunting, J.V.; Arazo, R.O.; Mabayo, V.I.F. Efficiency of Calcium Carbonate from Eggshells as an Adsorbent for Cadmium Removal in Aqueous Solution. Sustain. Environ. Res. 2018, 28, 326–332. [Google Scholar] [CrossRef]
- Zhao, J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of Selective Adsorption of Cr Species via Modification of Pine Biomass. Sci. Total Environ. 2020, 756, 143816. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhao, J.; Bonet-Garcia, N.; Villagrasa, E.; Solé, A.; Liao, X.; Palet, C. Insights of Microorganisms Role in Rice and Rapeseed Wastes as Potential Sorbents for Metal Removal. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Guevara-Bernal, D.F.; Cáceres Ortíz, M.Y.C.; Gutiérrez Cifuentes, J.A.; Bastos-Arrieta, J.; Palet, C.; Candela, A.M. Coffee Husk and Lignin Revalorization: Modification with Ag Nanoparticles for Heavy Metals Removal and Antifungal Assays. Water 2022, 14, 1796. [Google Scholar] [CrossRef]
- Clauser, N.M.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. Design of Nano and Micro Fibrillated Cellulose Production Processes from Forest Industrial Wastes in a Multiproduct Biorefinery. Chem. Eng. Res. Des. 2021, 167, 1–14. [Google Scholar] [CrossRef]
- Casoni, A.I.; Gutierrez, V.S.; Volpe, M.A. Conversion of Sunflower Seed Hulls, Waste from Edible Oil Production, into Valuable Products. J. Environ. Chem. Eng. 2019, 7, 102893. [Google Scholar] [CrossRef]
- Menéndez, J.E.; Hilbert, J.A. Cuantificación y Uso de Biomasa de Residuos de Cultivos En Argentina Para Bioenergía; Hilbert, J.A., Ed.; Ediciones INTA Publicaciones Periódicas; Instituto de Ingeniería Rural: Buenos Aires, Argentina, 2013; ISBN 9789875214484. [Google Scholar]
- ASTM E1755-01; Standard Test Method for Ash in Biomass. ASTM International: West Conshohocken, PA, USA, 2020.
- Zhang, H.; Carrillo, F.; López-Mesas, M.; Palet, C. Valorization of Keratin Biofibers for Removing Heavy Metals from Aqueous Solutions. Text. Res. J. 2019, 89, 1153–1165. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Mahmud, H.N.M.E.; Abdullahi, S.S.; Habibu, S.; Jagaba, A.H.; Ibrahim, M.N.M.; Ahmad, A.; Alshammari, M.B.; Parveen, T.; Umar, K. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers 2022, 14, 3362. [Google Scholar] [CrossRef] [PubMed]
- Simón, D.; Gass, S.; Palet, C.; Cristóbal, A. Disposal of Wooden Wastes Used as Heavy Metal Adsorbents as Components of Buildings Bricks. J. Build. Eng. 2021, 40, 102371. [Google Scholar] [CrossRef]
- Environment Protection Agency. SW-846 Test Method 1311 Toxicity Characteristic Leaching Procedure; Environment Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Yilmaz, O.; Ünlü, K.; Cokca, E. Solidification/Stabilization of Hazardous Wastes Containing Metals and Organic Contaminants. J. Environ. Eng. 2003, 129, 366–376. [Google Scholar] [CrossRef]
- Fayoud, N.; Tahiri, S.; Alami Younssi, S.; Albizane, A.; Gallart-Mateu, D.; Cervera, M.L.; de la Guardia, M. Kinetic, Isotherm and Thermodynamic Studies of the Adsorption of Methylene Blue Dye onto Agro-Based Cellulosic Materials. Desalin. Water Treat. 2015, 57, 16611–16625. [Google Scholar] [CrossRef]
- Najam, R.; Andrabi, S.M.A. Removal of Cu(II), Zn(II) and Cd(II) Ions from Aqueous Solutions by Adsorption on Walnut Shell-Equilibrium and Thermodynamic Studies: Treatment of Effluents from Electroplating Industry. Desalin. Water Treat. 2016, 57, 27363–27373. [Google Scholar] [CrossRef]
- Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. Determination of Chemical Changes in Heat-Treated Wood Using ATR-FTIR and FT Raman Spectrometry. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2017, 171, 395–400. [Google Scholar] [CrossRef]
- Stanković, S.; Šoštarić, T.; Bugarčić, M.; Janićijević, A.; Pantović-Spajić, K.; Lopičić, Z. Adsorption of Cu (II) Ions from Synthetic Solution by Sunflower Seed Husk. Acta Period. Technol. 2019, 50, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Anastopoulos, I.; Karamesouti, M.; Mitropoulos, A.C.; Kyzas, G.Z. A Review for Coffee Adsorbents. J. Mol. Liq. 2017, 229, 555–565. [Google Scholar] [CrossRef]
- Sulaiman, O.; Ghani, N.S.; Rafatullah, M.; Hashim, R.; Ahmad, A. Sorption Equilibrium and Thermodynamic Studies of Zinc (II) Ions from Aqueous Solutions by Bamboo Sawdust. J. Dispers. Sci. Technol. 2011, 32, 583–590. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Y.; Cai, D.; Liu, X.; Wang, X.; Huang, Q.; Yu, Z. Hexavalent Chromium Removal from Aqueous Solution by Algal Bloom Residue Derived Activated Carbon: Equilibrium and Kinetic Studies. J. Hazard. Mater. 2010, 181, 801–808. [Google Scholar] [CrossRef]
- Zhao, J.J.; Shen, X.J.; Domene, X.; Alcañiz, J.M.; Liao, X.; Palet, C. Comparison of Biochars Derived from Different Types of Feedstock and Their Potential for Heavy Metal Removal in Multiple-Metal Solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiev, A.; Yoleva, A.; Djambazov, S. Effect of Wheat Straw and Sunflower Seeds Husks as Pore Forming Agents on the Properties of Porous Clay Bricks. J. Chem. Technol. Metall. 2017, 52, 885–891. [Google Scholar]
- Khan, E.U.; Khushnood, R.A.; Baloch, W.L. Spalling Sensitivity and Mechanical Response of an Ecofriendly Sawdust High Strength Concrete at Elevated Temperatures. Constr. Build. Mater. 2020, 258, 119656. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Ahmed, J.K.; Ahmaruzzaman, M.; Ahmed, M.J.K.; Ahmaruzzaman, M. A Review on Potential Usage of Industrial Waste Materials for Binding Heavy Metal Ions from Aqueous Solutions. J. Water Process Eng. 2016, 10, 39–47. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Acquafredda, P.; De Vietro, N.; Ranieri, E.; Cosma, P.; Rizzi, V.; Petruzzelli, V.; Petruzzelli, D. Heavy Metals Retention (Pb(II), Cd(II), Ni(II)) from Single and Multimetal Solutions by Natural Biosorbents from the Olive Oil Milling Operations. Process Saf. Environ. Prot. 2018, 114, 79–90. [Google Scholar] [CrossRef]
- Mahmood-ul-Hassan, M.; Suthor, V.; Rafique, E.; Yasin, M. Removal of Cd, Cr, and Pb from Aqueous Solution by Unmodified and Modified Agricultural Wastes. Environ. Monit. Assess. 2015, 187, 19. [Google Scholar] [CrossRef]
- Qu, J.; Tian, X.; Jiang, Z.; Cao, B.; Akindolie, M.S.; Hu, Q.; Feng, C.; Feng, Y.; Meng, X.; Zhang, Y. Multi-Component Adsorption of Pb(II), Cd(II) and Ni(II) onto Microwave-Functionalized Cellulose: Kinetics, Isotherms, Thermodynamics, Mechanisms and Application for Electroplating Wastewater Purification. J. Hazard. Mater. 2020, 387, 121718. [Google Scholar] [CrossRef]
- Simón, D.; Quaranta, N.; Medici, S.; Costas, A.; Cristóbal, A. Immobilization of Zn(II) Ions from Contaminated Biomass Using Ceramic Matrices. J. Hazard. Mater. 2019, 373, 687–697. [Google Scholar] [CrossRef]
- Simón, D.; Quaranta, N.; Gass, S.; Procaccini, R.; Cristóbal, A. Ceramic Bricks Containing Ni Ions from Contaminated Biomass Used as Adsorbent. Sustain. Environ. Res. 2020, 3, 26. [Google Scholar] [CrossRef]
- Rial, J.B.; Ferreira, M.L. Potential Applications of Spent Adsorbents and Catalysts: Re-valorization of Waste. Sci. Total Environ. 2022, 823, 153370. [Google Scholar] [CrossRef] [PubMed]
- Decreto 831/93. Boletín Nacional. Residuos Peligrosos. Reglamentación de La Ley 24051. Generación, Transporte y Disposición de Residuos Peligrosos 1993. Available online: http://servicios.infoleg.gob.ar/infolegInternet/anexos/10000-14999/12830/norma.htm (accessed on 22 September 2022).
- Luo, L.; Li, K.; Weng, F.; Liu, C.; Yang, S. Preparation, Characteristics and Mechanisms of the Composite Sintered Bricks Produced from Shale, Sewage Sludge, Coal Gangue Powder and Iron Ore Tailings. Constr. Build. Mater. 2020, 232, 117250. [Google Scholar] [CrossRef]
- Mohajerani, A.; Kadir, A.A.; Larobina, L. A Practical Proposal for Solving the World’s Cigarette Butt Problem: Recycling in Fired Clay Bricks. Waste Manag. 2016, 52, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, F.; Luna-Galiano, Y.; Leiva, C.; Vilches, L.F.; Fernández-Pereira, C. Environmental Risks and Mechanical Evaluation of Recycling Red Mud in Bricks. Environ. Res. 2020, 186, 109537. [Google Scholar] [CrossRef] [PubMed]
- Mtibe, A.; Linganiso, L.Z.; Mathew, A.P.; Oksman, K.; John, M.J.; Anandjiwala, R.D. A Comparative Study on Properties of Micro and Nanopapers Produced from Cellulose and Cellulose Nanofibres. Carbohydr. Polym. 2015, 118, 1–8. [Google Scholar] [CrossRef]
- Demcak, S.; Balintova, M.; Hurakova, M.; Frontasyeva, M.V.; Zinicovscaia, I.; Yushin, N. Utilization of Poplar Wood Sawdust for Heavy Metals Removal from Model Solutions. Nov. Biotechnol. Chim. 2017, 16, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Mahmood-Ul-Hassan, M.; Yasin, M.; Yousra, M.; Ahmad, R.; Sarwar, S. Kinetics, Isotherms, and Thermodynamic Studies of Lead, Chromium, and Cadmium Bio-Adsorption from Aqueous Solution onto Picea Smithiana Sawdust. Environ. Sci. Pollut. Res. 2018, 25, 12570–12578. [Google Scholar] [CrossRef]
- Abdulhussein, S.A.; Al wared, A.I. Single and Binary Adsorption of Cu(II) and Ni(II) Ions from Aqueous Solutions by Sunflower Seed Husk. Assoc. Arab Univ. J. Eng. Sci. 2019, 26, 35–43. [Google Scholar] [CrossRef]
- Jalali, M.; Aboulghazi, F. Sunflower Stalk, an Agricultural Waste, as an Adsorbent for the Removal of Lead and Cadmium from Aqueous Solutions. J. Mater. Cycles Waste Manag. 2013, 15, 548–555. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Sufian, S.; Bin Aznan, M.F. Effect of Adsorption Parameter on the Removal of Nickel (II) by Low-Cost Adsorbent Extracted from Corn Cob. Int. J. Adv. Res. Eng. Technol. 2020, 11, 981–989. [Google Scholar] [CrossRef]
- Melese, T.; Chala, K.; Ayele, Y.; Abdisa, M. Preparation, Characterization of Raw Corncob Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution Using Batch Method. African J. Pure Appl. Chem. 2020, 14, 81–90. [Google Scholar] [CrossRef]
Biomass | Surface Area (m2/g) | Total Pore Volume (cm3/g) | Mean Pore Size (nm) |
---|---|---|---|
Pine sawdust | 1.1 | 0.003 | 9.4 |
Sunflower seed hulls | 0.7 | 0.0009 | 4.9 |
Corn residues mix | 1.5 | 0.006 | 14.9 |
Wavenumber (cm−1) | Assignment |
---|---|
3332–3336 | O-H stretching of carboxylic acids and alcohols/phenols, and N-H of amino and amide groups |
2918–2922 | Asymmetric C-H stretching of CH3 |
2846–2850 | Symmetric C-H stretching of CH2 and stretching of methoxy groups |
1722–1726 | C-O stretching of carbonyl, C=O of acetyl, carboxyl, aldehydes and aromatic/conjugated esters |
1603–1624 | COO- stretching of carboxyl groups, C=C of the aromatic ring, and C=O, C-N, C-N-H stretching of amides, and O-H bending |
1508–1510 | C=C stretching of aromatic ring, N-H bending |
1458 | C=C aromatic, C=O stretching and symmetric bending of C-H, O-H |
1419–1437 | O-H bending of acids, vibrations of aromatic rings and bending of CH2 and aromatic functional groups such as C=C and C=O |
1371 | Asymmetric C-H bending of CH3, CH2 |
1321–1325 | O-H bending of phenol group, C–N groups |
1224–1240 | C-O stretching of phenols and carboxylic acids, and alkyl aryl ether bonds |
1153–1157 | Asymmetric stretching of the C-O-C pyranose backbone |
1095–1109 | C-OH and C-H stretching |
1034–1036 | C-O stretching in carboxyl group, C-O-C, dialkyl ether, C-H of aromatics, and C=C and C-C-O |
874–895 | Changes in aromatic structures such as C–H stretching of aromatics |
Clay Ceramics | Retention Efficiency (%) | ||
---|---|---|---|
Ni(II) | Zn(II) | Cd(II) | |
Pine sawdust | >88.5 | >98.2 | >97.1 |
Sunflower seed hulls | >95.9 | >99.1 | >98.5 |
Corn residues mix | >93.4 | >98.7 | >97.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simón, D.; Palet, C.; Costas, A.; Cristóbal, A. Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents. Water 2022, 14, 3298. https://doi.org/10.3390/w14203298
Simón D, Palet C, Costas A, Cristóbal A. Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents. Water. 2022; 14(20):3298. https://doi.org/10.3390/w14203298
Chicago/Turabian StyleSimón, Daiana, Cristina Palet, Agustín Costas, and Adrián Cristóbal. 2022. "Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents" Water 14, no. 20: 3298. https://doi.org/10.3390/w14203298
APA StyleSimón, D., Palet, C., Costas, A., & Cristóbal, A. (2022). Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents. Water, 14(20), 3298. https://doi.org/10.3390/w14203298