Research on the Sustainable Development of the Bistrita Ardeleana River through the Resizing of Weirs
Abstract
:1. Introduction
- the restoration/improvement of longitudinal connectivity of the aquatic environment and riparian ecosystems;
- increased aquatic biodiversity;
- restoring normal fish migration processes;
- improving the condition of the fish population, both qualitatively and quantitatively;
- increased benefits for recreational fishing;
- improving water quality;
- reducing the risk of flooding in the local area, while ensuring that the risk of flooding is not increased downstream.
- starting the project takes too much time;
- high costs;
- lack of workforce, etc.
2. Materials and Methods
2.1. Location and Particularities of the Studied Area
- regularization of the Bistrita River and its tributaries as well as upstream and downstream bank defense;
- the construction of dykes with the role of defense against floods downstream and upstream of the city of Bistrita;
- landslide stabilization works on the left bank of the river, downstream of the Jelnei bridge [24].
2.2. Methods Used
- Q = 3.56 m3/s represents the summer flow recorded in June 2022, a period with a significant precipitation deficit;
- Q = 8.37 m3/s is the average annual flow calculated for the year 2021;
- Q = 128 m3/s represents an extreme flood flow recorded in 2020, this being one of the maximum flows recorded in the last 10 years on the Bistrita river [23].
3. Results
- -
- the black solid line from the top represents the right bank of the river
- -
- the dotted black line represents the left bank of the river
- -
- the black solid line from the bottom represents the shape of the thalweg
- -
- the red solid line represents the actual water velocities in the section after the flood has stabilized
- -
- the red dotted line represents the maximum speed in the section, the first moment of the flood (the program performs the hydraulic modeling with the dry riverbed)
- -
- the green dashed line represents the minimum speed of the flood.
3.1. Hydraulic Modeling on the Bistrita River, for the Case Where There Is Only One Weir, the Existing One
3.2. Hydraulic Modeling on the Bistrita River for the Proposed Case with the Lowering of the Crest of the Existing Weir and the Construction of Three New Weirs of Low Height Downstream of it
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blăgoi, O.; Mitroi, A. Soluții Moderne și Clasice Pentru Lucrări de Protecție pe Cursurile de Apă; Editura Performatica: Iasi, Romania, 2013; p. 6. [Google Scholar]
- Kim, J.-J.; Atique, U.; An, K.-G. Long-Term Ecological Health Assessment of a Restored Urban Stream Based on Chemical Water Quality, Physical Habitat Conditions and Biological Integrity. Water 2019, 11, 114. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.; Allan, J.D.; Meyer, J.; Bernhardt, E.S. River Restoration in the Twenty-First Century: Data and Experiential Future Efforts. Restor. Ecol. 2007, 15, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Cristescu, C. Morfologia Albiilor şi Conceptul de Restaurare a Râurilor. Ph.D. Thesis, Transilvania University, Brasov, Romania, February 2006. [Google Scholar] [CrossRef]
- Howard, A.; Coulthard, T.; Knight, D. The potential impact of green agendas on historic river landscapes: Numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site, UK. Geomorphology 2017, 293, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, E.; Runceanu, G. (Eds.) Refacerea Conectivității Longitudinale a Râurilor și Pâraielor din România. Ghid Pentru Obținerea Aprobărilor Necesare Pentru Implementarea Proiectelor de Refacere; Fundația pentru Arii Protejate: Brasov, Romania, 2019; pp. 5, 12. Available online: https://www.carpathia.org/wp-content/uploads/2019/01/Manual-Conectivitate_Rauri-LIFE.pdf (accessed on 15 July 2020).
- Mury, A.; Jeanson, M.; Collin, A.; James, D.; Etienne, S. High Resolution Shoreline and Shelly Ridge Monitoring over Stormy Winter Events: A Case Study in the Megatidal Bay of Mont-Saint-Michel (France). J. Mar. Sci. Eng. 2019, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Im, D.; Kang, H.; Kim, K.-H.; Choi, S.-U. Changes of river morphology and physical fish habitat following weir removal. Ecol. Eng. 2011, 37, 883–892. [Google Scholar] [CrossRef]
- Kim, S.K.; Choi, S.-U. Ecological evaluation of weir removal based on physical habitat simulations for macroinvertebrate community. Ecol. Eng. 2019, 138, 362–373. [Google Scholar] [CrossRef]
- Staentzel, C.; Kondolf, G.M.; Schmitt, L.; Combroux, I.; Barillier, A.; Beisel, J.-N. Restoring fluvial forms and processes by gravel augmentation or bank erosion below dams: A systematic review of ecological responses. Sci. Total Environ. 2020, 706, 135743. [Google Scholar] [CrossRef] [PubMed]
- Catalogul habitatelor, speciilor si siturilor Natura 2000 in Romania. Editor: Fundația Centru Național pentru Dezvoltare Durabilă: Bucuresti, Romania, 2013; pp. 57, 90–92, 101, 102, 107, 343, 344; Available online: https://www.academia.edu/44052643/Catalogul_habitatelor_speciilor_si_siturilor_Natura_2000_in_Romania_2015_ (accessed on 9 June 2020).
- Lavelle, A.M.; Chadwick, M.A.; Chadwick, D.D.A.; Pritchard, E.G.; Bury, N.R. Effects of Habitat Restoration on Fish Communities in Urban Streams. Water 2021, 13, 2170. [Google Scholar] [CrossRef]
- Humphreys, A.; Gough, P.; Powell, S.; Wilson, D. Chapters 12. Removing or Passing Barriers. Available online: https://www.therrc.co.uk/manual-river-restoration-techniques%20/ (accessed on 2 June 2020).
- Shakya, R.; Ahiablame, L. A Synthesis of Social and Economic Benefits Linked to Green Infrastructure. Water 2021, 13, 3651. [Google Scholar] [CrossRef]
- Perkins, D.M.; Hull, T.; Bubb, N.; Cunningham, A.; Glackin, R.; Glen, T.; Smith, S.; Davies, B. Putting the ‘Beaver’ Back in Beverley Brook: Rapid Shifts in Community Composition following the Restoration of a Degraded Urban River. Water 2021, 13, 3530. [Google Scholar] [CrossRef]
- Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E.A.D.; Barry, D.A.; Hollender, J.; Cirpka, O.A.; Schneider, P.; Vogt, T.; et al. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration; the Thur River case study. Hydrol. Earth Syst. Sci. 2014, 18, 2449–2462. [Google Scholar] [CrossRef] [Green Version]
- Ieleicz, M.; Pătraru, I. Geografia Fizică a României; Editura Universitară: Bucuresti, Romania, 2005; Volume I, pp. 208, 209, 236. Available online: https://www.emag.ro/geografia-fizica-a-romaniei-clima-apa-vegetatie-soluri-ileana-georgeta-patru-liliana-zaharia-razvan-oprea-9789737490650/pd/DZW022BBM/ (accessed on 29 May 2017).
- Tivadar, A. Contribuții la Istoria Alimentării cu apă a Orașului Bistrița; Editura Tipomur: Târgu Mureș, Romania, 1995. [Google Scholar]
- Sofronie, C. Amenajări Hidrotehnice în Bazinul Hidrografic Someș-Tisa; Editura Gloria: Cluj-Napoca, Romania, 2000; pp. 123–124. [Google Scholar]
- Duda, V.; Gaiu, C.; Klein, G. Cultură și Civilizație la Bistrița, 2nd ed.; Editura Refresh Time: Bistrita, Romania, 2015; pp. 22–24. Available online: https://www.scoala1bistrita.ro/reviste/cultura_si_civilizatie_la_bistrita_gimnaziu.pdf (accessed on 17 February 2020).
- Moldovan, C.; Silaghi, R. The Morphological Impact of the Colibița Hydrotehnical System on the Bistrita Ardeleana Riverbed. In Proceedings of the Air and Water—Components of the Environment, Cluj-Napoca, Romania, 20 March 2021; pp. 89–94. [Google Scholar] [CrossRef]
- Rapoart hidrometric al debitelor de apă pe râul Bistrița la stația hidrometrică Bistrița; Sistemul de Gospodărire al Apelor: Bistrița, Romania, 2020, 2021, 2022.
- Pop, M.; Steicu, V. Studiu Privind Inundabilitatea Orașului Bistrița—Jud. Bistrița-Năsăud; No.135, Oficiul de Gospodărire al Apelor: Cluj, Romania, 1972; pp. 5–8. [Google Scholar]
- Diaconu, S.; Stănculescu, C. Râurile României—Monografie Hidrologică; Editura Institutul de Meteorlogie și Hidrologie: București, Romania, 1971; pp. 142–146, 212–213. [Google Scholar]
- Șmuleac, A.; Șmuleac, L.; Man, T.; Popescu, C.; Imbrea, F.; Radulov, I.; Adamov, T.; Pașcalău, R. Use of Modern Technologies for the Conservation of Historical Heritage in Water Management. Water 2020, 12, 2895. [Google Scholar] [CrossRef]
- MIKE 11, A Modelling System for Rivers and Channels, Reference Manual, Danish Hydraulic Institute 2017. p. 425. Available online: https://manuals.mikepoweredbydhi.help/2017/Water_Resources/Mike_11_ref.pdf (accessed on 26 September 2022).
Section | Kilometer (m) |
---|---|
P1 | 0.00 |
P2 | 33.61 |
P3 | 66.92 |
P4 | 98.58 |
P6 (existent crest of weir) | 131.69 |
P10 | 139.96 |
P11 | 171.89 |
P12 (proposed crest of weir 1) | 195.24 |
P13 | 220.92 |
P14 | 228.51 |
P15′ (proposed crest of weir 2) | 249.33 |
P15 | 261.45 |
P16 | 289.49 |
P16′ (proposed crest of weir 3) | 302.28 |
P17 | 315 |
Section/Q | Q = 3.56 m3/s | Q = 8.37 m3/s | Q = 128 m3/s | ||||
---|---|---|---|---|---|---|---|
Section | Kilometer (m) | Water Depth (m) | Water Velocity (m/s) | Water Depth (m) | Water Velocity (m/s) | Water Depth (m) | Water Velocity (m/s) |
P1 | 0.00 | 1.242 | 0.243 | 1.443 | 0.467 | 2.933 | 2.178 |
P2 | 33.61 | 1.155 | 0.312 | 1.346 | 0.555 | 2.724 | 2.273 |
P3 | 66.92 | 1.294 | 0.21 | 1.48 | 0.414 | 2.756 | 2.198 |
P4 | 98.58 | 1.252 | 0.206 | 1.434 | 0.394 | 2.618 | 2.163 |
P6 (existing weir) | 131.69 | 0.209 | 1.254 | 0.396 | 1.341 | 1.633 | 3.139 |
P10 | 139.96 | 0.4 | 0.621 | 0.593 | 0.819 | 2.301 | 1.928 |
P11 | 171.89 | 0.403 | 0.894 | 0.607 | 1.062 | 2.308 | 2.259 |
P12 | 195.24 | 0.506 | 0.778 | 0.717 | 1.044 | 2.423 | 2.357 |
P13 | 220.92 | 0.525 | 0.724 | 0.723 | 0.978 | 2.389 | 2.532 |
P14 | 228.51 | 0.301 | 1.021 | 0.497 | 1.161 | 2.182 | 2.493 |
P15′ | 249.33 | 0.633 | 0.809 | 0.858 | 1.085 | 2.478 | 3.138 |
P15 | 261.45 | 0.608 | 0.687 | 0.82 | 1.03 | 2.412 | 3.007 |
P16 | 289.49 | 0.48 | 1.058 | 0.665 | 1.289 | 2.206 | 2.976 |
P16′ | 302.28 | 0.405 | 1.16 | 0.607 | 1.381 | 2.162 | 3.088 |
P17 | 315 | 0.419 | 1.03 | 0.628 | 1.304 | 2.194 | 3.053 |
Section/Q | Q = 3.56 m3/s | Q = 8.37 m3/s | Q = 128 m3/s | ||||
---|---|---|---|---|---|---|---|
Section | Kilometer (m) | Water Depth (m) | Water Velocity (m/s) | Water Depth (m) | Water Velocity (m/s) | Water Depth (m) | Water Velocity (m/s) |
P1 | 0.00 | 0.721 | 0.548 | 0.979 | 0.801 | 2.762 | 2.464 |
P2 | 33.61 | 0.552 | 1.129 | 0.781 | 1.48 | 2.488 | 2.719 |
P3 | 66.92 | 0.533 | 0.655 | 0.77 | 0.972 | 2.398 | 2.873 |
P4 | 98.58 | 0.391 | 1.472 | 0.595 | 1.712 | 2.114 | 3.166 |
P6/existing weir | 131.69 | 0.322 | 1.53 | 0.635 | 1.544 | 2.433 | 2.059 |
P10 | 139.96 | 0.399 | 0.622 | 0.726 | 0.62 | 2.521 | 1.701 |
P11 | 171.89 | 0.4 | 0.907 | 0.824 | 0.765 | 2.579 | 1.905 |
P12/weir 1 proposed | 195.24 | 0.497 | 1.032 | 0.631 | 2.137 | 2.721 | 1.932 |
P13 | 220.92 | 0.51 | 0.758 | 0.71 | 1.011 | 2.755 | 2 |
P14 | 228.51 | 0.283 | 1.113 | 0.48 | 1.221 | 2.562 | 1.971 |
P15′/weir 2 proposed | 249.33 | 0.638 | 0.789 | 0.88 | 1.041 | 2.649 | 3.963 |
P15 | 261.45 | 0.616 | 0.674 | 0.843 | 0.99 | 2.591 | 2.643 |
P16 | 289.49 | 0.493 | 0.998 | 0.711 | 1.134 | 2.457 | 2.542 |
P16′/weir 3 proposed | 302.28 | 0.399 | 1.679 | 0.6 | 1.679 | 2.153 | 3.776 |
P17 | 315 | 0.419 | 1.03 | 0.628 | 1.304 | 2.194 | 3.053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, A.C.; Micle, V.; Hrăniciuc, T.A.; Marcoie, N. Research on the Sustainable Development of the Bistrita Ardeleana River through the Resizing of Weirs. Water 2022, 14, 3333. https://doi.org/10.3390/w14203333
Moldovan AC, Micle V, Hrăniciuc TA, Marcoie N. Research on the Sustainable Development of the Bistrita Ardeleana River through the Resizing of Weirs. Water. 2022; 14(20):3333. https://doi.org/10.3390/w14203333
Chicago/Turabian StyleMoldovan, Aurelian Cosmin, Valer Micle, Tomi Alexandrel Hrăniciuc, and Nicolae Marcoie. 2022. "Research on the Sustainable Development of the Bistrita Ardeleana River through the Resizing of Weirs" Water 14, no. 20: 3333. https://doi.org/10.3390/w14203333
APA StyleMoldovan, A. C., Micle, V., Hrăniciuc, T. A., & Marcoie, N. (2022). Research on the Sustainable Development of the Bistrita Ardeleana River through the Resizing of Weirs. Water, 14(20), 3333. https://doi.org/10.3390/w14203333