Poyang Lake Wetland Classification Using Time-Series ENVISAT ASAR Data and Beijing-1 Imagery
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Image Data and Preprocessing
2.3. Hydrological Data Collection and Analysis
3. Methods
3.1. Classification System and the Field Sampling
3.2. Time-Series Data Analysis
3.3. Rule-Based and Decision Tree Approach to Time-Series Optical and Radar Data
3.3.1. DEM Data
3.3.2. Submersion Time Estimation Index Calculation using Time-Series Images
3.3.3. Supervised Classification of Beijing-1 and Time-Series Normalized Difference Vegetation Index (TSNDVI) Images
3.3.4. Principal Component Analysis (PCA) and Temporal Ratio of ASAR WSM Time-Series Images
3.3.5. Decision Rules for Final Classification
3.4. Decision Tree Method with Time-Series Optical, Time-Series Radar, and DEM Data
4. Results and Discussion
4.1. Time-Series Data Analysis
4.2. Rule-Based and Decision Tree Approach to Time-Series Optical and Radar Data
- If a pixel belongs to TSNDVI class emergent or giant C4 grasses or C3 (sedges and forbs), and summer SAR PCA1 is high and STEI is very short, and slope <2°, then the pixel is classified as emergent.
- If a pixel belongs to TSNDVI class emergent or giant C4 grasses or C3 (sedges and forbs), and summer SAR PCA1 is medium and STEI is short, and slope <2°, then the pixel is classified as giant C4 grasses.
- If a pixel belongs to TSNDVI class emergent or giant C4 grasses or C3 (sedges and forbs) or floating, the ratio of ASAR 10 June and 29 June is lowest and STEI is medium, and slope <2°, then the pixel is classified as C3 (sedges and forbs).
- If a pixel belongs to BJ070419 class floating aquatic or farmland, and summer SAR PCA1 is low and STEI is long, and slope <2°, then the pixel is classified as floating aquatic macrophytes.
- If a pixel belongs to BJ071017 class submerged or BJ070419 class submerged, and summer SAR PCA1 is low and STEI is long/very long, and slope <2°, then the pixel is labeled as submerged aquatic macrophytes.
- Slope <2°, ratio of ASAR 10 June and 29 June ≦ 0.85, NDVI1130 ≧ 0.2 for C3 (sedges and forbs)
- Slope <2°, PC1 of ASAR 29 June and 31 July and 04 Sep is from −12 to 3 for giant C4 and 3 to 30 for emergent
- Slope <2°, NDVI 19 April ≧ 0.08 and NDVI 19 April ≦ 0.41, C4 emergent decision result = 0, NDVI 30Nov ≦ 0.3 for float
- Slope <2°, NDVI 17 October ≧ −0.07, PC1 of ASAR 28 Oct, 18 December, 3 January, 7 February, 1 April, and 20 April ≦ −25 discriminate aquatic bed and bottom from non-persistent emergent wetland and upland, PC2 of NDVI 19 April, 17 October, 30 November, and 01 January ≧ −0.1, C4 emergent decision result = 0 for submerged
4.3. Benefits of Remote Sensing Analysis of Large Wetland Ecosystem with Strong Water Level Fluctuations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibbs, J.P. Wetland Loss and Biodiversity Conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Diamond, J. China’s Environment in a Globalizing World. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Gong, P.; Cheng, X.; Guo, J.; Wang, L.; Huang, H.; Shen, S.; Wu, Y.; Wang, X.; Wang, X. Geographical Characteristics of China’s Wetlands Derived from Remotely Sensed Data. Sci. China Ser. D Earth Sci. 2009, 52, 723–738. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global Wetlands: Potential Distribution, Wetland Loss, and Status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef]
- Cyranoski, D. Putting China’s Wetlands on the Map. Nature 2009, 458, 134. [Google Scholar] [CrossRef]
- Pan, X.; Wang, B. Time for China to Restore Its Natural Wetlands. Nature 2009, 459, 321. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Fox, A.D. Birds and People Both Depend on China’s Wetlands. Nature 2009, 460, 173. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Niu, Z.; Cheng, X.; Zhao, K.; Zhou, D.; Guo, J.; Liang, L.; Wang, X.; Li, D.; Huang, H. China’s Wetland Change (1990–2000) Determined by Remote Sensing. Sci. China Earth Sci. 2010, 53, 1036–1042. [Google Scholar] [CrossRef]
- Wang, X. Poyang Lake Ecosystem Assessment. In Poyang Lake Ecosystem Assessment; Science Press: Beijing, China, 2004; p. 218. [Google Scholar]
- Ji, W.; Zeng, N.; Wang, Y.; Gong, P.; Xu, B.; Bao, S. Analysis on the Waterbirds Community Survey of Poyang Lake in Winter. Geogr. Inf. Sci. 2007, 13, 51–64. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Yu, L.; Cao, K.; Wang, D.; Duan, X.; Ding, F.; Mao, Z.; Wang, K.; Liu, S.; et al. Managing Water Level for Large Migratory Fish at the Poyang Lake Outlet: Implications Based on Habitat Suitability and Connectivity. Water 2022, 14, 2076. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, J. Spatial–Temporal Dynamics of Wetland Vegetation Related to Water Level Fluctuations in Poyang Lake, China. Water 2016, 8, 397. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Feng, L.; Hu, C.; Chen, X. Wetland Changes of China’s Largest Freshwater Lake and Their Linkage with the Three Gorges Dam. Remote Sens. Environ. 2018, 204, 799–811. [Google Scholar] [CrossRef]
- Mu, S.; Li, B.; Yao, J.; Yang, G.; Wan, R.; Xu, X. Monitoring the Spatio-Temporal Dynamics of the Wetland Vegetation in Poyang Lake by Landsat and MODIS Observations. Sci. Total Environ. 2020, 725, 138096. [Google Scholar] [CrossRef]
- Barzen, J.A.; Engels, M.; Burnham, J.; Harris, J.; Wu, G. Potential Impacts of a Water Control Structure on the Abundance and Distribution of Wintering Waterbirds at Poyang Lake; Unpublished report submitted to Hydro-Ecology Institute of the Yangtze Water Resources Commission; International Crane Foundation Baraboo: Sauk County, WI, USA, 2009; p. 54. [Google Scholar]
- Dronova, I.; Beissinger, S.R.; Burnham, J.W.; Gong, P. Landscape-Level Associations of Wintering Waterbird Diversity and Abundance from Remotely Sensed Wetland Characteristics of Poyang Lake. Remote Sens. 2016, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-L.; Mei, Z.; Hao, Y.; Zheng, J.; Wang, K.; Wang, D. Saving the Yangtze Finless Porpoise: Time Is Rapidly Running Out. Biol. Conserv. 2017, 210, 40–46. [Google Scholar] [CrossRef]
- Huang, J.; Mei, Z.; Chen, M.; Han, Y.; Zhang, X.; Moore, J.E.; Zhao, X.; Hao, Y.; Wang, K.; Wang, D. Population Survey Showing Hope for Population Recovery of the Critically Endangered Yangtze Finless Porpoise. Biol. Conserv. 2020, 241, 108315. [Google Scholar] [CrossRef]
- Bonan, G.B.; Levis, S.; Kergoat, L.; Oleson, K.W. Landscapes as Patches of Plant Functional Types: An Integrating Concept for Climate and Ecosystem Models. Glob. Biogeochem. Cycles 2002, 16, 5-1–5-23. [Google Scholar] [CrossRef] [Green Version]
- Quétier, F.; Lavorel, S.; Thuiller, W.; Davies, I. Plant-trait-based Modeling Assessment of Ecosystem-service Sensitivity to Land-use Change. Ecol. Appl. 2007, 17, 2377–2386. [Google Scholar] [CrossRef]
- Körner, K.; Jeltsch, F. Detecting General Plant Functional Type Responses in Fragmented Landscapes Using Spatially-Explicit Simulations. Ecol. Model. 2008, 210, 287–300. [Google Scholar] [CrossRef]
- Fyllas, N.M.; Troumbis, A.Y. Simulating Vegetation Shifts in North-eastern Mediterranean Mountain Forests under Climatic Change Scenarios. Glob. Ecol. Biogeogr. 2009, 18, 64–77. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.E.; Williams, L.; Wright, J. Revisiting the Holy Grail: Using Plant Functional Traits to Understand Ecological Processes. Biol. Rev. 2017, 92, 1156–1173. [Google Scholar] [CrossRef] [PubMed]
- Strahler, A.H.; Muller, J.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Li, X.; Lewis, P.; Barnsley, M.J. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0. MODIS Doc. 1999, 23, 42–47. [Google Scholar]
- Sun, W.; Liang, S.; Xu, G.; Fang, H. Improving MODIS PFT Product Using Multisource Evidential Reasoning. In Proceedings of the 9th International Symposium on Physical Measurements and Signatures in Remote Sensing, Beijing, China, 17–19 October 2005; Volume 1, pp. 225–227. [Google Scholar]
- Nair, A.; Sathyendranath, S.; Platt, T.; Morales, J.; Stuart, V.; Forget, M.-H.; Devred, E.; Bouman, H. Remote Sensing of Phytoplankton Functional Types. Remote Sens. Environ. 2008, 112, 3366–3375. [Google Scholar] [CrossRef]
- Jetz, W.; Cavender-Bares, J.; Pavlick, R.; Schimel, D.; Davis, F.W.; Asner, G.P.; Guralnick, R.; Kattge, J.; Latimer, A.M.; Moorcroft, P.; et al. Monitoring Plant Functional Diversity from Space. Nat. Plants 2016, 2, 16024. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and Net Land Cover Changes in the Main Plant Functional Types Derived from the Annual ESA CCI Land Cover Maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Dronova, I.; Gong, P.; Yang, W.; Li, Y.; Liu, Q. A New Time Series Vegetation–Water Index of Phenological–Hydrological Trait across Species and Functional Types for Poyang Lake Wetland Ecosystem. Remote Sens. Environ. 2012, 125, 49–63. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Novo, E.M.; Barbosa, C.C.; Gastil, M. Dual-Season Mapping of Wetland Inundation and Vegetation for the Central Amazon Basin. Remote Sens. Environ. 2003, 87, 404–428. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Smith, K.B.; Bourgeau-Chavez, L.L.; Romanowicz, E.A.; Brunzell, S.; Richardson, C.J. Effects of Seasonal Hydrologic Patterns in South Florida Wetlands on Radar Backscatter Measured from ERS-2 SAR Imagery. Remote Sens. Environ. 2003, 88, 423–441. [Google Scholar] [CrossRef]
- Shen, G.; Guo, H.; Liao, J. Object Oriented Method for Detection of Inundation Extent Using Multi-Polarized Synthetic Aperture Radar Image. J. Appl. Remote Sens. 2008, 2, 023512. [Google Scholar]
- Canisius, F.; Brisco, B.; Murnaghan, K.; Van Der Kooij, M.; Keizer, E. SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland. Remote Sens. 2019, 11, 720. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Fu, W.; Guo, H.; Liao, J. Water Body Mapping Using Long Time Series Sentinel-1 SAR Data in Poyang Lake. Water 2022, 14, 1902. [Google Scholar] [CrossRef]
- Zhang, B. Study on Poyang Lake; Shanghai Scientific & Technical Publishers: Shanghai, China, 1988. [Google Scholar]
- Dai, X.; Hu, Z. Resources and Environment of Poyang Lake; Science Press: Beijing, China, 2019. [Google Scholar]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling Spatial-temporal Change of Poyang Lake Using Multitemporal Landsat Imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L. Object-Based Analysis and Change Detection of Major Wetland Cover Types and Their Classification Uncertainty during the Low Water Period at Poyang Lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [Google Scholar] [CrossRef]
- Torres, R.; Buck, C.; Guijarro, J.; Suchail, J.L.; Schonenberg, A. The Envisat ASAR Instrument Verification and Characterisation. Eur. Space Agency-Publ.-ESA SP 2000, 450, 303. [Google Scholar]
- Zink, M. Introduction to the ASAR Calibration/Validation Project. In Envisat Calibration Review, Special Publication SP-520; ESA Publications Division, ESTEC: Noordwijk, The Netherlands, 2002; pp. 1–8. [Google Scholar]
- Frappart, F.; Bourrel, L.; Brodu, N.; Riofrío Salazar, X.; Baup, F.; Darrozes, J.; Pombosa, R. Monitoring of the Spatio-Temporal Dynamics of the Floods in the Guayas Watershed (Ecuadorian Pacific Coast) Using Global Monitoring ENVISAT ASAR Images and Rainfall Data. Water 2017, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Durand, J.M.; Gimonet, B.J.; Perbos, J.R. SAR Data Filtering for Classification. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 629–637. [Google Scholar] [CrossRef]
- Lee, J.S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle Filtering of Synthetic Aperture Radar Images: A Review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Wang, L.; Gong, P.; Dronova, I. Time Series Spectral Characteristics and Backscattering Signatures of Aquatic Plant Funtional Types Over The Poyang Lake Wetland, China. In Proceedings of the Dragon 2 Programme Mid-Term Results 2008–2010; European Southern Observatory: Noordwijk, The Netherlands, 2010; Volume 684, p. 67. [Google Scholar]
- Qi, S.; Brown, D.G.; Tian, Q.; Jiang, L.; Zhao, T.; Bergen, K.M. Inundation Extent and Flood Frequency Mapping Using LANDSAT Imagery and Digital Elevation Models. GISci. Remote Sens. 2009, 46, 101–127. [Google Scholar] [CrossRef]
- Cowardin, L.M. Classification of Wetlands and Deepwater Habitats of the United States; Fish and Wildlife Service, US Department of the Interior: Washington, DC, USA, 1979. [Google Scholar]
- Fitoka, E.; Keramitsoglou, I. Inventory, Assessment and Monitoring of Mediterranean Wetlands: Mapping Wetlands Using Earth Observation Techniques. EKBY NOA MedWet Publ. 2008. Available online: https://www.medwet.org/codde/8_EarthObservation/EarthObservation-Manual.pdf (accessed on 10 October 2022).
- Feng, L.; Hu, C.; Chen, X.; Li, R.; Tian, L.; Murch, B. MODIS Observations of the Bottom Topography and Its Inter-Annual Variability of Poyang Lake. Remote Sens. Environ. 2011, 115, 2729–2741. [Google Scholar] [CrossRef]
- Kiage, L.M.; Walker, N.D.; Balasubramanian, S.; Babin, A.; Barras, J. Applications of Radarsat-1 Synthetic Aperture Radar Imagery to Assess Hurricane-related Flooding of Coastal Louisiana. Int. J. Remote Sens. 2005, 26, 5359–5380. [Google Scholar] [CrossRef]
- Kwoun, O.; Lu, Z. Multi-Temporal RADARSAT-1 and ERS Backscattering Signatures of Coastal Wetlands in Southeastern Louisiana. Photogramm. Eng. Remote Sens. 2009, 75, 607–617. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P. Flood Monitoring in Vegetated Areas Using Multitemporal Sentinel-1 Data: Impact of Time Series Features. Water 2019, 11, 1938. [Google Scholar] [CrossRef]
- Parmuchi, M.G.; Karszenbaum, H.; Kandus, P. Mapping Wetlands Using Multi-Temporal RADARSAT-1 Data and a Decision-Based Classifier. Can. J. Remote Sens. 2002, 28, 175–186. [Google Scholar] [CrossRef]
- Townsend, P.A. Mapping Seasonal Flooding in Forested Wetlands Using Multi-Temporal Radarsat SAR. Photogramm. Eng. Remote Sens. 2001, 67, 857–864. [Google Scholar]
- Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-Band SAR Data for Wetlands Mapping. Int. J. Remote Sens. 2001, 22, 71–88. [Google Scholar] [CrossRef]
- Simard, M.; Grandi, G.D.; Saatchi, S.; Mayaux, P. Mapping Tropical Coastal Vegetation Using JERS-1 and ERS-1 Radar Data with a Decision Tree Classifier. Int. J. Remote Sens. 2002, 23, 1461–1474. [Google Scholar] [CrossRef]
- Henderson, F.M.; Chasan, R.; Portolese, J.; Hart, T., Jr. Evaluation of SAR-Optical Imagery Synthesis Techniques in a Complex Coastal Ecosystem. Photogramm. Eng. Remote Sens. 2002, 68, 839–846. [Google Scholar]
- Rogan, J.; Miller, J.; Stow, D.; Franklin, J.; Levien, L.; Fischer, C. Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data. Photogramm. Eng. Remote Sens. 2003, 69, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.; Lawrence, R.; Montagne, C.; Patten, D. Mapping Wetlands and Riparian Areas Using Landsat ETM+ Imagery and Decision-Tree-Based Models. Wetlands 2006, 26, 465–474. [Google Scholar] [CrossRef]
- Wright, C.; Gallant, A. Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data. Remote Sens. Environ. 2007, 107, 582–605. [Google Scholar] [CrossRef]
- Hamilton, S.K.; Kellndorfer, J.; Lehner, B.; Tobler, M. Remote Sensing of Floodplain Geomorphology as a Surrogate for Biodiversity in a Tropical River System (Madre de Dios, Peru). Geomorphology 2007, 89, 23–38. [Google Scholar] [CrossRef]
- Lang, M.W.; Kasischke, E.S.; Prince, S.D.; Pittman, K.W. Assessment of C-Band Synthetic Aperture Radar Data for Mapping and Monitoring Coastal Plain Forested Wetlands in the Mid-Atlantic Region, U.S.A. Remote Sens. Environ. 2008, 112, 4120–4130. [Google Scholar] [CrossRef]
- Clinton, N.E.; Gong, P.; Jin, Z.; Zhu, Z. Meta-Prediction of Bromus Tectorum Invasion in Central Utah, United States. Photogramm. Eng. Remote Sens. 2009, 75, 689–701. [Google Scholar] [CrossRef]
- Davranche, A.; Lefebvre, G.; Poulin, B. Wetland Monitoring Using Classification Trees and SPOT-5 Seasonal Time Series. Remote Sens. Environ. 2010, 114, 552–562. [Google Scholar] [CrossRef]
- Bwangoy, J.-R.B.; Hansen, M.C.; Roy, D.P.; Grandi, G.D.; Justice, C.O. Wetland Mapping in the Congo Basin Using Optical and Radar Remotely Sensed Data and Derived Topographical Indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Liu, H. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory. Remote Sens. 2018, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Sader, S.A.; Ahl, D.; Liou, W.-S. Accuracy of Landsat-TM and GIS Rule-Based Methods for Forest Wetland Classification in Maine. Remote Sens. Environ. 1995, 53, 133–144. [Google Scholar] [CrossRef]
- Li, J.; Chen, W. A Rule-Based Method for Mapping Canada’s Wetlands Using Optical, Radar and DEM Data. Int. J. Remote Sens. 2005, 26, 5051–5069. [Google Scholar] [CrossRef]
- Alam, S.M.R.; Hossain, M.S. A Rule-Based Classification Method for Mapping Saltmarsh Land-Cover in South-Eastern Bangladesh from Landsat-8 OLI. Can. J. Remote Sens. 2021, 47, 356–380. [Google Scholar] [CrossRef]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data Using Random Forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef] [Green Version]
- Uuemaa, E.; Hughes, A.O.; Tanner, C.C. Identifying Feasible Locations for Wetland Creation or Restoration in Catchments by Suitability Modelling Using Light Detection and Ranging (LiDAR) Digital Elevation Model (DEM). Water 2018, 10, 464. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.G.; Sarabandi, K.; Pierce, L.E. Validation of the Shuttle Radar Topography Mission Height Data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1707–1715. [Google Scholar] [CrossRef]
- Wang, L.; Gong, P.; Dronova, I. Aquatic Plant Functional Type Spectral Characteristics Analysis and Comparison Using Multi-Temporal and Multi-Sensor Remote Sensing over the Poyang Lake Wetland, China. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–6. [Google Scholar]
- Foody, G.M.; Mathur, A. Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, C.; Boyd, D.S.; Foody, G.M. One-Class Classification for Mapping a Specific Land-Cover Class: SVDD Classification of Fenland. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1061–1073. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, M.; Gong, P. A Spatial–Temporal Approach to Monitoring Forest Disease Spread Using Multi-Temporal High Spatial Resolution Imagery. Remote Sens. Environ. 2006, 101, 167–180. [Google Scholar] [CrossRef]
- Choi, C.; Kim, J.; Han, H.; Han, D.; Kim, H.S. Development of Water Level Prediction Models Using Machine Learning in Wetlands: A Case Study of Upo Wetland in South Korea. Water 2020, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Ozesmi, S.L.; Bauer, M.E. Satellite Remote Sensing of Wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Hellwich, O.; Wiedemann, C. Multisensor Data Fusion for Automated Scene Interpretation. Proc. SPIE-Int. Soc. Opt. Eng. 1999, 3871, 284–295. [Google Scholar]
- Costa, M.P.F. Use of SAR Satellites for Mapping Zonation of Vegetation Communities in the Amazon Floodplain. Int. J. Remote Sens. 2004, 25, 1817–1835. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, D.; Yang, B.; Sun, C.; Sun, M. Coastal Wetland Vegetation Classification with a Landsat Thematic Mapper Image. Int. J. Remote Sens. 2011, 32, 545–561. [Google Scholar] [CrossRef]
- Marti-Cardona, B.; Lopez-Martinez, C.; Dolz-Ripolles, J.; Bladè-Castellet, E. ASAR Polarimetric, Multi-Incidence Angle and Multitemporal Characterization of Doñana Wetlands for Flood Extent Monitoring. Remote Sens. Environ. 2010, 114, 2802–2815. [Google Scholar] [CrossRef]
- Li, H.; Wan, J.; Liu, S.; Sheng, H.; Xu, M. Wetland Vegetation Classification through Multi-Dimensional Feature Time Series Remote Sensing Images Using Mahalanobis Distance-Based Dynamic Time Warping. Remote Sens. 2022, 14, 1998–2010. [Google Scholar] [CrossRef]
- Silva, T.S.F.; Costa, M.P.F.; Melack, J.M. Spatial and Temporal Variability of Macrophyte Cover and Productivity in the Eastern Amazon Floodplain: A Remote Sensing Approach. Remote Sens. Environ. 2010, 114, 1998–2010. [Google Scholar] [CrossRef]
Satellite | Year | Dates | Water Level (m) a | GCPs b | Clouds Over Lake | RMSEs c |
---|---|---|---|---|---|---|
Beijing-1 | 2007 | 19 Apr, 6 May, 26 July, 16 Aug, 17 Oct, 30 Nov | 10.78, 13.04, 17.02, 17.53, 11.94, 8.71 | 21, 315, 28, 26, 25, 24 | 0, <2%/NO, 0, <2%/NO, <2%/YES, 0 | 0.48, 0.93, 0.43, 0.49, 0.50, 0.41 |
2008 | 1 Jan, 16 Feb, 2 Mar, 12 May (10 scenes) | 8.59, 9.61, 8.89, 12.75 | 28, 28, 25, 32 | 0, 0, 0, <2%/YES | 0.89, 0.45, 0.34, 0.45 | |
ASAR WSM | 2007 | 25 May, 10 Jun, 29 Jun, 31 July (VV), 4 Sep, 28 Oct (VV), 18 Dec | 10.22, 12.84, 15.98, 17.57, 16.16, 9.95, 8.20 | 23, 22, 19, 20, 18, 30, 27 | Free of clouds | 0.36, 0.32, 0.33, 0.31, 0.43, 0.45, 0.49 |
2008 | 3 Jan, 7 Feb, 1 Apr, 20 Apr (11 scenes) | 8.51, 10.73, 11.62, 13.55 | 46, 30, 33, 25 | 0.43, 0.38, 0.49, 0.36 |
PFT Subclass | Dominant Species (>70–100%) | Relationship to Water Table Height | Mean Submersion Time/Months | Growing Season | Canopy Height above Soil (m) | Elevation of Distribution (Meters above Sea level) |
---|---|---|---|---|---|---|
Emergent aquatic macrophytes | Phragmites communis, Zizania caduciflora, Phalaris arundinacea | Water table from 0.5 m below soil surface to 1–2 m above soil | 1–2 months /July–August | April–October | 0.8–5 | 17.7–20 |
Giant C4 grasses | Miscanthus sacchariflorus, Arundinella hirta | Upland dry, water table not greater than 1.7 m below soil surface to 1–2 m above soil | 2–3 months /July–September | April–October | 1–3 | 16–17.7 |
C3 sedges and forbs | Carex cinerascens, C. unisexualis, sometimes mixed with Artemisia spp. | Water table from 0.5 m below soil surface to 1–3.5 m above soil | 3–5 months /May–October | April–May | 0.1–1.5 | 14.2–16 |
Floating aquatic macrophytes | Nymphoides peltata, Trapa bispinosa, Potamogeton malaianus | Mud-forming floating on water surface at water height above soil surface at water depth 0.3–2 m | 5–7 months /April–November | September | 0.5–2 | 13.8–14.2 |
Submerged aquatic macrophytes | Potamogeton franchetii, Vallisneria spiralis L., Hydrilla verticillata, Ceratophyllum demersum | Underwater | 7–12 months /January–December | December | 0.5–2.5 | <13.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, F.; Wang, L.; Dronova, I.; Cao, K. Poyang Lake Wetland Classification Using Time-Series ENVISAT ASAR Data and Beijing-1 Imagery. Water 2022, 14, 3344. https://doi.org/10.3390/w14203344
Ding F, Wang L, Dronova I, Cao K. Poyang Lake Wetland Classification Using Time-Series ENVISAT ASAR Data and Beijing-1 Imagery. Water. 2022; 14(20):3344. https://doi.org/10.3390/w14203344
Chicago/Turabian StyleDing, Fang, Lin Wang, Iryna Dronova, and Kun Cao. 2022. "Poyang Lake Wetland Classification Using Time-Series ENVISAT ASAR Data and Beijing-1 Imagery" Water 14, no. 20: 3344. https://doi.org/10.3390/w14203344
APA StyleDing, F., Wang, L., Dronova, I., & Cao, K. (2022). Poyang Lake Wetland Classification Using Time-Series ENVISAT ASAR Data and Beijing-1 Imagery. Water, 14(20), 3344. https://doi.org/10.3390/w14203344