Wastewater Management in Agriculture
Abstract
:1. Introduction
2. The Impact of Irrigation with Treated Wastewater on Crops
3. The Impact of Irrigation with Wastewater on the Soil
3.1. Analysis of Metals in the Soil as a Result of Irrigation with Wastewater
3.2. The Content of Pathogens in Wastewater
- -
- bacteria 1–1010 n/L of wastewater; depending on the amount of wastewater and the source, they can survive in water for 10–60 days, in cultures for 2–30 days, and in soil 10–70 days [84];
- -
- helminths 1–103 n/L can survive in crops for 30–60 years [84], and their eggs can live for many years in the soil;
- -
- protozoa 1–104 n/L can survive in water for 15–180 days, in cultures for 2–10 days, and in soil for 10–150 days [84];
- -
- viruses 1–106 n/L can survive in water for 50–120 days, in cultures for 15–60 days, and in soil for 20–100 days [84].
4. Wastewater Treatment Procedures
- -
- Conventional methods involving the coagulation and flocculation of suspended solids in a colloidal state or dispersed in very fine particles; chemical precipitation to remove very fine colloidal and suspended substances from wastewater by adding coagulants that make them settle; biodegradation; sand filtration; adsorption;
- -
- Water depollution by electrochemical treatment, membrane separation, advanced oxidation, and nanofiltration [100].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.europarl.europa.eu/news/en/headlines/society/20180703STO07129/eu-responses-to-climate-change (accessed on 1 September 2022).
- Ungureanu, N.; Vlădut, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Gerten, D.; Lucht, W.; Ostberg, S.; Heinke, J.; Kowarsch, M.; Kreft, H.; Kundzewicz, Z.W.; Rastgooy, J.; Warren, R.; Schellnhuber, H.-J. Asynchronous exposure to global warming: Freshwater resources and terrestrial ecosystems. Environ. Res. Lett. 2013, 8, 34032. [Google Scholar] [CrossRef]
- Pehme, K.M.; Burlakovs, J.; Kriipsalu, M.; Pilecka, J.; Grinfelde, I.; Tamm, T.; Jani, Y.; Hogland, W. Urban hydrology research fundamentals for waste management practices. Res. Rural. Dev. 2019, 1, 160–167. [Google Scholar]
- Available online: https://ro.warbletoncouncil.org/distribuye-agua-tierra-1038 (accessed on 8 September 2022).
- Nasim, F.A.; Hoque, M.Z.; Hoque, E.; Islam, S.; Parveen, N.; Chakma, S.; Afrad, S.I. How Does Adoption of Crop Variety Reduce the Impact of Drought in Agriculture and Mitigate Food Insecurity of Smallholder Farmers? A Case Study on. Asian J. Agric. Ext. Econ. Sociol. 2019, 30, 1–12. [Google Scholar]
- Niles, M.T.; Brown, M.E. A multi-country assessment of factors related to smallholder food security in varying rainfall conditions. Sci. Rep. 2017, 7, 16277. [Google Scholar] [CrossRef] [Green Version]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Bixio, D.; Thoeye, C.; De Koning, J.; Joksimovic, D.; Savic, D.; Wintgens, T.; Melin, T. Wastewater reuse in Europe. Desalination 2006, 187, 89–101. [Google Scholar] [CrossRef]
- Engin, G.O.; Demir, I. Cost analysis of alternative methods for wastewater handling in small communities. J. Environ. Manag. 2006, 79, 357–363. [Google Scholar] [CrossRef]
- Fito, J.; Alemu, K. Microalgae–bacteria consortium treatment technology for municipal wastewater management. Nanotechnol. Environ. Eng. 2019, 4, 4. [Google Scholar] [CrossRef]
- Bichai, F.; Polo-López, M.I.; Ibañez, P.F. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. Water Res. 2012, 46, 6040–6050. [Google Scholar] [CrossRef]
- Zema, D.A.; Lucas-Borja, M.E.; Andiloro, S.; Tamburino, V.; Zimbone, S.M. Short-term effects of olive mill wastewater application on the hydrological and physico-chemical properties of a loamy soil. Agric. Water Manag. 2019, 221, 312–321. [Google Scholar] [CrossRef]
- Banitalebi, G.; Beigi Harchagani, H.; Ghobadinia, M. The effect of long-term irrigation with municipal treated wastewater on the saturated hydraulic conductivity of silty loam soil and its estimation—A case study. J. Water Soil Sci. 2016, 21, 171–184. [Google Scholar]
- Mojiri, A.; Abdul Aziz, H. Effects of municipal wastewater on accumulation of heavy metals in soil and wheat (Triticum aestivum L.) with two irrigation methods. Rom. Agric. Res. 2011, 28, 217–222. [Google Scholar]
- Arast, M.; Zehtabian, G.H.; Jafari, M.; Khosravi, H.; Shojaei, S. The study of urban wastewater, saline water and brackish water effects on some soil characteristics (Case study: Qom plain). Iran J. Range Desert Res. 2018, 23, 541–552. [Google Scholar]
- Habibi, S. A long-term study of the effects of wastewater on some chemical and physical properties of soil. J. Appl. Res. Water Wastewater 2019, 12, 156–161. [Google Scholar]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y. Wastewater irrigation: Past, present, and future. Wiley Interdiscip. Rev. Water 2017, 6, e1234. [Google Scholar] [CrossRef]
- Malekian, R.; Heidarpour, M.; Mostafazadeh Fard, B.; Abedi Kopaei, J. Effect of surface and subsurface irrigation with treated wastewater on bermudagrass properties. J. Soil Water Sci. 2008, 15, 248–257. [Google Scholar]
- Khalid, S.; Shahid, M.; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [Green Version]
- Sou, M.Y.; Mermoud, A.; Yacouba, H.; Boivin, P. Impacts of irrigation with industrial treated wastewater on soil properties. Geoderma 2013, 200–201, 31–39. [Google Scholar]
- Ensink, J.H.J.; Mahmood, T.; Dalsgaard, A. Wastewater-irrigated vegetables: Market handling versus irrigation water quality. Trop. Med. Int. Health 2007, 12, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Jan, F.A.; Ishaq, M.; Khan, S.; Ihsanullah, I.; Ahmad, I.; Shakirullah, M. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively cleanwater irrigated soil (lower Dir). J. Hazard. Mater. 2010, 179, 612–621. [Google Scholar] [CrossRef]
- Rai, P.K.; Tripathi, B.D. Microbial contamination in vegetables due to irrigation with partially treated municipal wastewater in a tropical city. Int. J. Environ. Health Res. 2007, 17, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Pierson, D.; Arvola, L.; Allott, N.; Järvinen, M.; Jennings, E.; May, L.; Moore, K.; Schneiderman, E. Modeling the Effects of Climate Change on the Supply of Phosphate-Phosphorus. In The Impact of Climate Change on European Lakes; Part of the Aquatic Ecology Series book series (AQEC, Volume 4); Springer: Dordrecht, The Netherlands, 2009; pp. 139–159. [Google Scholar]
- Rusănescu, C.O.; Popescu, I.N.; David, L. Relative humidity monitoring, (Advances in Environmental and Geological Science and Engineering). In Proceedings of the 3 rd International Conference on Environmental and geological science and Engineering (EG’ 10), Corfu Island, Greece, 24–26 August 2017; pp. 175–180. [Google Scholar]
- Saaremäe, E.; Liira, M.; Poolakese, M.; Tamm, T. Removing phosphorus with Ca-Fe oxide granules—A possible wetlands filter material. Hydrol. Res. 2014, 45, 368–378. [Google Scholar] [CrossRef]
- Bunce, J.; Ndam, E.; Ofiteru, I.; Andrew, M.; Graham, D. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front. Environ. Sci. 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Ruzhitskaya, O.; Gogina, E. Methods for Removing of Phosphates from Wastewater. In Proceedings of the MATEC Web of Conferences 2017, Seoul, Korea, 22–25 August 2017; Volume 106, p. 7006. [Google Scholar]
- Burlakovs, J.; Hogland, W.; Vincevica-Gaile, Z.; Kriipsalu, M.; Klavins, M.; Jani, Y.; Hendroko Setyobudi, R.; Bikse, J.; Rud, V.; Tamm, T. Environmental Quality of Groundwater in Contaminated Areas—Challenges in Eastern Baltic Region. In Water Resources Quality and Management in Baltic Sea Countries; Springer: Cham, Switzerland, 2020; pp. 59–84. [Google Scholar]
- Schneiderman, E.; Järvinen, M.; Jennings, E.; May, L.; Moore, K. Modeling the Effects of Climate Change on Catchment Hydrology with the GWLF Model. In The Impact of Climate Change on European Lakes; Springer: Dordrecht, The Netherlands, 2009; pp. 33–50. [Google Scholar]
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Tab_5_-_Share_of_the_population_connected_to_at_least_secondary_urban_wastewater_treatment,_2002-2020_(%25).png (accessed on 1 September 2022).
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Aziz, F.; Farissi, M. Reuse of treated wastewater in agriculture: Solving water deficit problems in arid areas (review). Ann. West Univ. Timis. 2014, 17, 95–110. [Google Scholar]
- Gharaibeh, M.A.; Ghezzehei, T.A.; Albalasmeh, A.A.; Alghzawi, M.Z. Alteration of physical and chemical characteristics of clayey soils by irrigation with treated waste water. Geoderma 2016, 276, 33–40. [Google Scholar] [CrossRef]
- Rodriguez, C.; Van Buynder, P.; Lugg, R.; Blair, P.; Devine, B.; Cook, A.; Weinstein, P. Indirect potable reuse: A sustainable water supply alternative. Int. J. Environ. Res. Public Health 2009, 6, 1174–1203. [Google Scholar] [CrossRef]
- Angelakis, A.; Snyder, S. Wastewater treatment and reuse: Past, present, and future. Water 2015, 7, 4887–4895. [Google Scholar] [CrossRef] [Green Version]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; Mccornick, P.G.; Drechsel, P.; Bahri, A.; Minhas, P.S. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Abdel Sabour, M.F. Impact of wastewater reuse on cobalt status in Egyptian environment. J. Environ. Sci. 2003, 15, 388–395. [Google Scholar]
- Abdel-Aziz, R. Impact of Treated Wastewater Irrigation on Soil Chemical Properties and Crop Productivity. Int. J. Water Resour. Arid. Environ. 2015, 4, 30–36. [Google Scholar]
- Balkhair, K.S.; El-Nakhlawi, F.S.; Ismail, S.M.; AlSolimani, S.G. Treated wastewater use and its effect on water conservation, vegetative yield, yield components and water use efficiency of some vegetable crops grown under two different irrigation systems in Western Region, Saudi Arabia. Eur. Sci. J. 2013, 3, 395–402. [Google Scholar]
- Biswas, A.K. Water for sustainable development in the 21st century: A global perspective. Geojournal 1991, 24, 341–345. [Google Scholar] [CrossRef]
- Khandaker, S.; Saha, G.C.; Islam, M.S.; Ratan, M.M.R. Reuse of textile dying wastewater for irrigation in cultivation of some selected crops: A review. Int. J. Renew Energy Environ. Eng. 2014, 2, 294–300. [Google Scholar]
- Qishlaqi, A.; Moore, F.; Forghani, G. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environ. Monit. Assess. 2008, 141, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Muchuweti, M.; Birkett, J.W.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.D.; Lester, J.N. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agric. Ecosyst. Environ. 2006, 112, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.K.; Rajput, T.B.S.; Patel, N. Biometric properties and selected chemical concentration of cauliflower influenced by wastewater applied through surface and subsurface drip irrigation system. J. Clean. Prod. 2016, 139, 396–406. [Google Scholar] [CrossRef]
- Souza, C.F.; Bastos, R.G.; Gomes, M.P.M.; Pulschen, A.A. Eficiência de estac¸ão de tratamento de esgoto doméstico visando reuso agrícola. Rev. Ambient. Água. 2015, 10, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Blum, J.; Herpin, U.; Melfi, A.J.; Montes, C.R. Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil. Agric. Water Manage. 2012, 115, 203–216. [Google Scholar] [CrossRef]
- Cirelli, G.L.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C. Treated municipal wastewater reuse in vegetable production. Agric. Water Manage. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- Nogueira, S.F.; Pereira, B.F.F.; Gomes, T.M.; de Paula, A.M.; dos Santos, J.A.; Montse, C.R. Treated sewage effluent: Agronomical and economical aspects on bermudagrass production. Agr. Water Manage. 2013, 116, 151–159. [Google Scholar] [CrossRef]
- Marinho, L.E.O.; Tonetti, A.L.; Stefanutti, R.; Coraucci Filho, B. Application of reclaimed wastewater in the irrigation of rosebushes. Water Air Soil Poll. 2013, 224, 1669. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, P.; Mara, D.D.; Bartone, C.R.; Scheierling, S.M. Improving Wastewater Use in Agriculture: An Emerging Priority; World Bank Policy Research Working Paper No. 5412; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Bedbabis, S.; Ben Rouina, B.; Boukhris, M.; Ferrara, G. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate. J. Environ. Manag. 2014, 133, 45–50. [Google Scholar] [CrossRef]
- Shilpi, S.; Lamb, D.; Bolan, N.; Seshadri, B.; Choppala, G.; Naidu, R. Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production. J. Environ. Manag. 2019, 239, 73–83. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Yadegarfar, G.; Hatamzadeh, M.; Pourmohammadbagher, H.; Sahbaei, Z.; Rahmani, H.R. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018, 144, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Beneduce, L.; Gatta, G.; Bevilacqua, A.; Libutti, A.; Tarantino, E.; Bellucci, M.; Troiano, E.; Spano, G. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops. Int. J. Food Microbiol. 2017, 260, 51–58. [Google Scholar] [CrossRef]
- Hussain, A.; Priyadarshi, M.; Dubey, S. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl. Water Sci. 2019, 9, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Balkhair, K.S. Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater. Saudi J. Biol. Sci. 2016, 23, S83–S92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirzel, D.R.; Steenwerth, K.; Parikh, S.J.; Oberholster, A. Impact of winery wastewater irrigation on soil, grape and wine composition. Agric. Water Manag. 2017, 180, 178–189. [Google Scholar] [CrossRef]
- Jang, T.; Jung, M.; Lee, E.; Park, S.; Lee, J.; Jeong, H. Assessing environmental impacts of reclaimed wastewater irrigation in paddy fields using bioindicator. Irrig. Sci. 2013, 31, 1225–1236. [Google Scholar] [CrossRef]
- Zhang, A.; Cortés, V.; Phelps, B.; Van Ryswyk, H.; Srebotnjak, T. Experimental Analysis of Soil and Mandarin Orange Plants Treated with Heavy Metals Found in Oilfield-Produced Wastewater. Sustainability 2018, 10, 1493. [Google Scholar] [CrossRef]
- Panigrahi, P.; Raychaudhuri, S.; Thakur, A.; Nayak, A.; Sahu, P.; Ambast, S. Automatic drip irrigation scheduling effects on yield and water productivity of banana. Sci. Hortic. 2019, 257, 108677. [Google Scholar] [CrossRef]
- Pedrero, F.; Alarcón, J.J. Effects of treated wastewater irrigation on lemon trees. Desalination 2009, 246, 631–639. [Google Scholar] [CrossRef]
- Perulli, G.D.; Gaggia, F.; Sorrenti, G.; Donati, I.; Boini, A.; Bresilla, K.; Manfrini, L.; Baffoni, L.; Di Gioia, D.; Grappadelli, L.C.; et al. Treated wastewater as irrigation source: A microbiological and chemical evaluation in apple and nectarine trees. Agric. Water Manag. 2021, 244, 106403. [Google Scholar] [CrossRef]
- Yehia, H.M.; Sabae, S.Z. Microbial pollution of water in ElSalam canal, Egypt. Am. Eurasian J. Agric. Environ. Sci. 2011, 11, 305–309. [Google Scholar]
- Niewolak, S. Bacteriological monitoring of River water quality in the north area of wigry national park. Polish J. Environ. Stud. 2000, 9, 291–299. [Google Scholar]
- Akaninwor, J.O.; Anosike, E.O.; Egwim, O. Effect of indomie industrial effluent discharge on microbial properties of new Calabar River. Sci. Res. Essay 2007, 2, 1–5. [Google Scholar]
- Gunkel, G.; Kosmol, J.; Sobral, M.; Rohn, H.; Montenegro, S.; Aureliano, J. Sugar cane industry as a source of water pollution-case study on the situation in Ipojuca River, pernambuco, Brazil. Water Air Soil Pollut. 2007, 180, 261–269. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Mirzaei-Takhtgahi, H.; Ghamarnia, H.; Pirsaheb, M. Impact of irrigation with contaminated water on soil properties (Case Study: Border Land of Gharesoo River). J. Appl. Res. Water Wastewater 2018, 5, 447–453. [Google Scholar]
- Andrews, D.M.; Robb, T.; Elliott, H.; Watson, J.E. Impact of long-term wastewater irrigation on the physicochemical properties of humid region soils: “The Living Filter” site case study. Agric. Water Manag. 2016, 178, 239–247. [Google Scholar] [CrossRef]
- Yang, P.G.; Yang, M.; Mao, R.Z.; Byrne, J.M. Impact of long-term irrigation with treated sewage on soil magnetic susceptibility and organic matter content in north China. Bull. Environ. Contam. Toxicol. 2015, 95, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Longterm impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study, Agriculture. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- WHO. Guideline for Drinking Water Quality Recommendation; World Health Organization: Geneva, Switzerland, 1984; p. 130. [Google Scholar]
- WHO. Guidelines for the Safe Useof Wastewater and Excreta in Agriculture and Aquaculture; Cairncross, S., Mara, D., Eds.; World Health Organisation: Geneva, Switzerland, 1989; p. 194. [Google Scholar]
- WHO. Water Quality: Guidelines, Standards and Health; Fewtrell, L., Bartram, J., Eds.; IWA Publishing: London, UK, 2001; ISBN 1900222280. [Google Scholar]
- FAO. Coping with Water Scarcity. Challenge of the Twenty-First Century; UN-Water: Geneva, Switzerland, 2007. [Google Scholar]
- Zema, D.A.; Calabro, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Wastewater Management in Citrus Processing Industries: An Overview of Advantages and Limits. Water 2019, 11, 2481. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Hernandez, L. Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 1996, 178, 255–263. [Google Scholar] [CrossRef]
- Kiran, D.; Ladwani, H.; Krishna, D.; Vivek, S.; Manik, D.; Ramteke, S. Impact of Domestic Wastewater Irrigation on Soil Properties and Crop Yield. Int. J. Sci. Res. Publ. 2012, 2, 164–172. [Google Scholar]
- Munir, J.; Mohammad, M.J.A.; Mazahreh, N. Changes in Soil Fertility Parameters in Response to Irrigation of Forage Crops with Secondary Treated Wastewater. Soil Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar]
- Mancino, C.F.; Pepper, L.L. Irrigation of turf grass with secondary sewage effluent: Soil quality. Agron. J. 1992, 84, 650–654. [Google Scholar] [CrossRef]
- Singh, A. A review of wastewater irrigation: Environmental implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- Peña, A.; Delgado-Moreno, L.; Rodríguez-Liébana, J.A. A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. Sci. Total Environ. 2020, 718, 134468. [Google Scholar] [CrossRef]
- Boutilier, L.; Jamieson, R.; Gordon, R.; Lake, C.; Hart, W. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands. Water Research 2009, 43, 4370–4380. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.L.; Artiola, J.F. Chapter 12—Chemical Contaminants. In Environmental and Pollution Science, 3rd ed.; Academic Press: New York, NY, USA, 2019; pp. 175–190. [Google Scholar]
- Christensen, E.R.; Wang, Y.; Huo, J.; Li, A. Properties and fate and transport of persistent and mobile polar organic water pollutants: A review. J. Environ. Chem. Eng. 2022, 10, 107201. [Google Scholar] [CrossRef]
- Soil, C.; Taskforce, G. Environmental fate and effect of poly- and perfluoroalkyl substances. Environ. Sci. Eur. Refin. Ind. 2016, 8, 16. [Google Scholar]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Reemtsma, T.; Miehe, U.; Duennbier, U.; Jekel, M. Polar pollutants in municipal wastewater and the water cycle: Occurrence and removal of benzotriazoles. Water Res. 2010, 44, 596–604. [Google Scholar] [CrossRef]
- Reemtsma, T.; Weiss, S.; Mueller, J.; Petrovic, M.; Gonz´alez, S.; Barcelo, D.; Ventura, F.; Knepper, T. Polar pollutants entry into the water cycle by municipal wastewater: A European perspective. Environ. Sci. Technol. 2006, 40, 5451–5458. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Stasinakis, A.S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci. Total Environ. 2015, 524–525, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.D.; Crago, J.P.; Hedman, C.J.; Treguer, R.J.F.; Magruder, C.; Royer, L.; Royer, S.; Klaper, R.D. Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci. Total Environ. 2013, 444, 515–521. [Google Scholar] [CrossRef]
- Lazarova, V.; Bahri, A. Water Reuse for Irrigation: Agriculture, Landscapes, and Turf Grass; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hsien, C.; Low, J.S.C.; Chung, S.Y.; Tan, D.Z.L. Quality-based water and wastewater classification for waste-to-resource matching. Resour. Conservat. Recycl. 2019, 151, 104477. [Google Scholar] [CrossRef]
- Deng, S.; Yan, X.; Zu, Q.; Liao, C. The utilization of reclaimed water: Possible risks arising from waterborne contaminants. Environ. Pollut. 2019, 254, 113020. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Elsayed, N.; Rezaei, N.; Guo, T.; Mohebbi, S.; Zhang, Q. Wastewater-based resource recovery technologies across scale: A review. Resour. Conservat. Recycl. 2019, 145, 94–112. [Google Scholar] [CrossRef]
- Anjaneyulu, Y.; Sreedhara Chary, N.; Samuel Suman Raj, D. Decolourization of industrial efuents: Available methods and emerging technologies—A review. Rev. Environ. Sci. Bio/Technol. 2005, 4, 245–273. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Falås, P.; Wick, A.; Castronovo, S.; Habermacher, J.; Ternes, T.; Joss, A. Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res. 2016, 95, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez, A.; Maya, C.; Gibson, R.; Jiménez, B. The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico. Environ. Pollut. 2011, 159, 1354–1362. [Google Scholar] [CrossRef]
- Krahnstöver, T.; Santos, N.; Georges, K.; Campos, L.; Antizar-Ladislao, B. Low-Carbon Technologies to Remove Organic Micropollutants from Wastewater: A Focus on Pharmaceuticals. Sustainability 2022, 14, 11686. [Google Scholar] [CrossRef]
- Macova, M.; Toze, S.; Hodgers, L.; Mueller, J.; Bartkow, M.; Escher, B. Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling and drinking water generation. Water Res. 2011, 45, 4238–4247. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://biodetectionsystems.com/wp-content/uploads/2020/09/8_Bioanalytical_tools_Escher_BDS.pdf (accessed on 19 October 2022).
- Council Directive 91/271/EEC of 21 May 1991. Available online: https://ec.europa.eu/environment/water/water-urbanwaste/pdf/UWWTD%20Evaluation%20SWD%20448-701%20web.pdf (accessed on 19 October 2022).
- Włodarczyk-Makuła, M.; Wiśniowska, E.; Popenda, A. Monitoring of Organic Micropollutants in Effluents as Crucial Tool in Sustainable Development. Probl. Ekorozw. 2018, 13, 191–198. [Google Scholar]
2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | 2018 | 2020 | |
---|---|---|---|---|---|---|---|---|---|---|
Belgium | 47.7 | 53.2 | 57.4 | 71.0 | 75.0 | 76.8 | 80.5 | 82.8 | 84.3 | 83.6 |
Bulgaria | 37.8 | 38.0 | 38.8 | 41.4 | 45.1 | 53.9 | 54.8 | 61.8 | 63.7 | 65.1 |
Czechia | 69.7 | 70.8 | 71.9 | 75.4 | 76.9 | 78.0 | 79.8 | 81.2 | 82.3 | 83.4 |
Denmark | 88.0 | - | - | - | 93.4 | 94.2 | 96.3 | 96.8 | 97.1 | 97.7 |
Germany (1) (3) (4) | 92.6 | 93.8 | 97.3 | 91.9 | 95.6 | 95.4 | 95.6 | 96.0 | - | - |
Estonia | 71.0 | 72.0 | 78.0 | 84.0 | 79.0 | 81.0 | 83.0 | 83.0 | 83.0 | 83.0 |
Ireland (1) (4) (5) (10) | 29.0 | - | - | 59.0 | 71.0 | 58.8 | 60.0 | 61.2 | 61.8 | 61.9 |
Greece (4) (10) | - | - | - | 85.0 | 87.4 | 92.0 | 92.8 | 93.4 | 94.8 | 94.2 |
Spain | 88.0 | - | 88.0 | 88.0 | 93.0 | 88.7 | 84.7 | 86.6 | 86.6 | - |
France (1) | 77.3 | 79.5 | - | - | 77.7 | 80.2 | 80.4 | 80.5 | 80.2 | 79.9 |
Croatia | - | - | - | - | - | 36.9 | 36.9 | 36.9 | 36.9 | 36.9 |
Italy (3) (8) | - | - | 54.2 | 57.5 | - | 57.6 | - | 59.6 | - | - |
Cyprus (3) | 18.3 | 28.4 | 29.8 | - | - | - | - | - | 82.7 | - |
Latvia | 51.1 | 62.7 | 62.5 | 55.1 | 58.9 | 67.6 | 71.2 | 74.1 | 75.4 | 80.4 |
Lithuania (3) | - | - | 47.5 | - | 63.7 | 63.1 | 69.4 | 73.5 | 75.8 | 77.0 |
Luxemburg (2) (3) | - | 88.1 | - | - | - | 96.6 | 96.9 | 97.0 | 97.0 | 98.3 |
Hungary | 32.4 | 40.2 | 45.3 | 50.0 | 72.8 | 73.5 | 78.1 | 80.4 | 80.4 | 80.9 |
Malta | 12.9 | 10.9 | 9.3 | 14.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5 |
Netherlands | 98.5 | 98.9 | 99.1 | 99.3 | 99.5 | 99.4 | 99.5 | 99.5 | 99.5 | 99.5 |
Austria (1) | 86.0 | 88.9 | 91.8 | 92.7 | 93.9 | 94.5 | 95.0 | 99.8 | 99.8 | 99.1 |
Poland | 54.1 | 56.8 | 60.7 | 62.9 | 64.5 | 68.5 | 71.4 | 73.4 | 74.0 | 74.8 |
Portugal (2) (5) (9) | 27.0 | 32.0 | 37.0 | 52.0 | 55.8 | - | - | - | 84.6 | - |
Romania (3) | - | 16.9 | 16.9 | - | 22.7 | 35.3 | 38.2 | 43.8 | 48.1 | 51.8 |
Slovenia | 18.4 | 29.3 | 47.6 | 51.1 | 51.6 | 53.7 | 55.6 | 63.2 | 69.0 | 69.3 |
Slovakia | - | - | - | - | - | - | - | 63.6 | 65.7 | 68.8 |
Finland | 81.0 | 81.0 | 82.0 | 82.0 | 83.0 | 83.0 | 85.0 | 84.0 | 85.0 | 85.0 |
Sweden (10) | 93.0 | 94.0 | 94.0 | 94.0 | 94.0 | 95.0 | 95.0 | 95.0 | 96.0 | 96.0 |
Iceland (3) | 1.0 | 1.0 | 2.0 | 2.0 | 1.0 | - | - | - | - | - |
Norway | - | - | - | 47.9 | 48.3 | 49.5 | 49.9 | 55.7 | 66.8 | 67.9 |
Switzerland (3) (7) | 96.0 | - | 97.0 | - | 98.0 | - | - | - | - | - |
United Kingdom (3) | 99.0 | 99.0 | 99.0 | 96.9 | 99.5 | 9.0 | 10.0 | 12.5 | 12.9 | 13.8 |
Albania | - | - | - | - | - | 42.0 | 49.1 | 56.3 | 60.8 | 61.1 |
Serbia | 5.1 | 5.8 | 6.8 | 7.2 | 8.6 | |||||
Turkey | 19.2 | 24.8 | 29.6 | 31.4 | 37.6 | 42.0 | 49.1 | 56.3 | 60.8 | 61.1 |
Bosnia and Herzegovina (10) | 9.9 | 10.0 | 10.0 | 10.7 | 10.9 | 11.4 | 11.8 | 29.6 | 29.0 | 29.6 |
Kosovo * (6) | - | - | - | - | - | 0.55 | - | - | - | - |
Parameter | TW [41,53] | UW [41,53] | TTW [70] | SW [70] | RW [70] | WHO [59] | ||
---|---|---|---|---|---|---|---|---|
pH | 7.45 [59] | 7.9 [41] | 7.89 [59] | 7.2 [41] | 7.5 ± 0.5 | 6.8 ± 0.4 | 5.7 ± 0.5 | 6–9 |
EC, dS/m | 2.15 [59] | 2.3 [41] | 3.510 [59] | 0.8 [41] | 2.7 ± 0.5 | 2.7 ± 1.1 | 2.8 ± 0.7 | 0–3 |
SAR meq L−1 | 7.27 [59] | - | 13 [59] | - | NM | NM | NM | 0–15 |
TDS (mg/L) | 764.55 [59] | 2157 [41] | 1612 [59] | 1469 [41] | NM | NM | NM | 0–2000 |
SS (mg/L) | 130.55 [59] | - | 0 [59] | - | 15.7 ± 4.9 | 26.6 ± 14.6 | 249.1 ± 89.3 | 10 |
COD (mg/L) | 17.14 [59] | 59 [41] | 10 [59] | 34 [41] | 37.7 ± 14.5 | 40.6 ± 16.9 | 985.3 ± 321.6 | 0.5 |
BOD (mg/L) | 2.8 [59] | 32 [41] | 0.8 [59] | 18 [41] | 37.7 ± 14.5 | 23.1 ± 1.3 | - | 100 |
Wastewater | Freshwater | WHO [59] | |||
---|---|---|---|---|---|
Fe, mg/kg | 9.02 [17] | 1.58 [54] | 1.96 [17] | - | - |
Cu, mg/kg | 1.14 [17] | 0.050 [54] | 2.98 [17] | - | - |
Zn, mg/kg | 18.3 [17] | NM | 7.92 [17] | - | - |
Mn, mg/kg | 10.54 [17] | 0.096 [54] | 7.76 [17] | - | - |
Ca++ (mg/L) | 61.15 [59] | 54 [41] | 54.28 [59] | 15 [41] | 400 |
Mg++ (mg/L) | 11.51 [59] | 21 [41] | 27.66 [59] | 9 [41] | 60 |
Na+ (mg/L) | 43.53 [59] | 119 [41] | 83.76 [59] | 26 [41] | 900 |
K+ (mg/L) | 6.5 [59] | 22 [41] | 3.89 [59] | 5 [41] | 0–2 |
Fe++ (mg/L) | 1.58 [59] | 167 [41] | 0.018 [59] | 72 [41] | 5 |
Mn++ (mg/L) | 0.096 [59] | 86 [41] | 0.002 [59] | 23 [41] | 0.2 |
Cu++ (mg/L) | 0.050 [59] | 37 [41] | 0.079 [59] | 18 [41] | 0.2 |
Pb+++ (mg/L) | 0.019 [59] | 18 [41] | 0.004 [59] | 8 [41] | 5 |
Cd++ (mg/L) | 0.0091 [59] | 5 [41] | 0.0001 [59] | 2 [41] | 0.2 |
Cr++ (mg/L) | 0.014 [59] | - | 0.029 [59] | - | 0.1 |
Ni++ (mg/L) | 0.032 [59] | 7 [41] | 0.006 [59] | 3 [41] | 0.2 |
Zn | - | 56 [41] | - | 17 [41] | - |
Co | - | 23 [41] | - | 4 [41] | - |
NH4+ (mg/L) | 33.31 [59] | 18 [41] | 0 [59] | 5 [41] | 0–5 |
NO3− (mg/L) | 23.48 [59] | - | 0 [59] | - | 0–8 |
P3− (mg/L) | 6.56 [59] | - | 0 [59] | - | 0–2 |
Bacterial Count/100 mL | TW | UW | WHO |
---|---|---|---|
Total viable bacterial count | 1.1 × 103 [59] | 2.4 × 102 | ND |
Total coliform | 962 [59] | 240 | 1000 |
Fecal coliform | 240 [59] | 0.0 | <1000 |
Fecal Streptococci | 35–65 [59] | 0.0 | ND |
E. coli | 60 [59] | 0.0 | ND |
P. aeuroginosa | 20 [59] | 0.0 | ND |
Salmonella | 4 [59] | 0.0 | ND |
Total Vibrio | 4 [59] | ND | ND |
Listeria group | 4 [59] | ND | ND |
Nematode (egg/L) | 3 [59] | ND | 1 |
Treatment Method | Costs, EUR/m3 | Residues Left after Treatment, % |
---|---|---|
Conventional treatment (without micropollutants removal) | 0.17 | 47 |
Ozone oxidation | 0.23 | 2 |
UV radiation | 0.3 | 13 |
Activated carbon | 0.48 | 3 |
Reverse osmosis | 0.65 | 4 |
Compound | Concentrations in Effluents (ng/L) | Concentrations in Surface Water (ng/L) | Compound | Concentrations in Effluents (ng/L) | Concentrations in Surface Water (ng/L) |
---|---|---|---|---|---|
Dioxins PCDDs | 0.003 ÷ 0.177 | 0.728 ÷ 6 | Diclophenac | 50 ÷ 2500 | 2.8 ÷ 470 |
Furans PCDFs | 0.006 ÷ 0.05 | 0.599 | Carbamazepine | 482 ÷ 950 | n.d ÷ 230 |
Polychlorinated biphenyls (PCBs) | 10 ÷ 908 (7 congeners) | 0.3 ÷ 150 | Ibuprofen | 81 ÷ 2100 | 10 ÷ 40 |
Nonylphenol (NP) | 880 ÷ 22,690 | 0.88 ÷ 18,000 | Naproxen | 21 ÷ 12,500 | <LOD ÷ 300 |
Diethyl phthalate (DEHP) | 6.01 × 106 ÷ 17.04 × 106 | 110 ÷ 36,000 | 17β-Estradiol (E2 | <5 ÷ 631 | 369 |
Polycyclic aromatic hydrocarbons (PAHs) | 1025 ÷ 3,056,000 | 4–437 | 17αEthynylestradiol (EE2) | < 5 ÷ 187 | 43 |
MCPA | 25 ÷ 150 | n.d. ÷ 370 | 2,4-D | 13 ÷ 27 | <1000 |
Diuron | 62 ÷ 1379 | 2.4 ÷ 2.849 × 106 | Dieldrin | <10 | 2.5 |
Aldrin | Production is banned | 15.3 | Atrazine | no data | 100 ÷ 4.9 × 105 |
Tributylocine (TBT) | 2.5 × 106 | 1.39 × 103–1.44 × 103 | Endosulphane | ≤220 | ≤4 × 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusănescu, C.O.; Rusănescu, M.; Constantin, G.A. Wastewater Management in Agriculture. Water 2022, 14, 3351. https://doi.org/10.3390/w14213351
Rusănescu CO, Rusănescu M, Constantin GA. Wastewater Management in Agriculture. Water. 2022; 14(21):3351. https://doi.org/10.3390/w14213351
Chicago/Turabian StyleRusănescu, Carmen Otilia, Marin Rusănescu, and Gabriel Alexandru Constantin. 2022. "Wastewater Management in Agriculture" Water 14, no. 21: 3351. https://doi.org/10.3390/w14213351
APA StyleRusănescu, C. O., Rusănescu, M., & Constantin, G. A. (2022). Wastewater Management in Agriculture. Water, 14(21), 3351. https://doi.org/10.3390/w14213351