Pollutants Source Assessment and Load Calculation in Baiyangdian Lake Using Multi-Model Statistical Analysis
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area and Basin Division
2.2. Data Collection and Information
2.3. Export Coefficient Modelling (ECM)
2.4. Revised Universal Soil Loss Equation (RUSLE)
2.5. PLOAD Model
2.6. Point Source Load
2.7. LOADEST Model
3. Results
3.1. Non-Point Source Load from Agriculture and Rural Areas
3.2. Pollutant Loads from Surface Runoff Erosion
3.2.1. Adsorbed Pollutant Loads
3.2.2. Dissolved Pollution Loads
3.3. Point Source Pollutant
3.4. Flux of Pollutants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Y.; Gao, B.; Hao, H.; Zhou, H.; Lu, J. Nitrogen and phosphorus in sediments in China: A national-scale assessment and review. Sci. Total Environ. 2017, 576, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- Derolez, V.; Bec, B.; Munaron, D.; Fiandrino, A.; Pete, R.; Simier, M.; Souchu, P.; Laugier, T.; Aliaume, C.; Malet, N.; et al. Recovery trajectories following the reduction of urban nutrient inputs along the eutrophication gradient in French Mediterranean lagoons. Ocean Coast. Manag. 2019, 171, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, H.; Sun, W. Load estimation and source apportionment of nitrogen, phosphorus and COD in the basin of Lake Baiyang. China Environ. Sci. 2021, 41, 366–376. [Google Scholar]
- Zhu, Y.; Wu, F.; He, Z.; Guo, J.; Qu, X.; Xie, F.; Giesy, J.P.; Liao, H.; Guo, F. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis. Environ. Sci. Technol. 2013, 47, 7679–7687. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Ding, L.; Li, Y.; Liu, H.; Zhao, Y.; Fu, G. Eutrophication evolution trajectory influenced by human activities and climate in the shallow Lake Gehu, China. Ecol. Indic. 2022, 138, 108821. [Google Scholar] [CrossRef]
- Bao, L.; Kang, H.Y.; Hu, X.G.; Zhang, N.M.; Zhao, X.T.; Xu, H.J. The load estimation of nitrogen and phosphorus from non- point sources in the Songhuaba reservoir watershed. Environ. Sci. Surv. 2015, 34, 1–6. [Google Scholar]
- Liu, S.C.; Wang, H.H.; Tian, K. Ecological environmental changes and influencing analysis in Baiyangdian Lake. J. Agro Environ. Sci. 2020, 39, 1060–1069. [Google Scholar]
- Zhu, A.; Liu, P.; Gong, Y.; Li, M.; Su, J.; Liu, G. Residual levels and risk assessment of tetrabromobisphenol A in Baiyang Lake and Fuhe river, China. Ecotoxicol. Environ. Saf. 2020, 200, 110770. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, T.; Zhou, Y.; Shi, B.; Bi, R.; Meng, J. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. Sci. Total Environ. 2020, 760, 144080. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, J.; Yang, Z.; Lou, I. Influence of non-point source pollution on water quality of Wetland Baiyangdian, China. Desalination Water Treat. 2011, 32, 291–296. [Google Scholar] [CrossRef]
- Yang, J.; Strokal, M.; Kroeze, C.; Ma, L.; Bai, Z.; Teurlincx, S.; Janssen, A.B.G. What is the pollution limit? Comparing nutrient loads with thresholds to improve water quality in Lake Baiyangdian. Sci. Total Environ. 2022, 807, 150710. [Google Scholar] [CrossRef]
- Sun, T.; Chen, J.; Wang, H.; Shi, Z.T. Study on non-point source pollution loads in villages along the Fuhe River, Baiyangdian watershed. Res. Environ. Sci. 2012, 25, 568–572. [Google Scholar]
- Shen, Z.; Zhong, Y.; Huang, Q.; Chen, L. Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Res. 2015, 68, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, J.; Wang, G.; Liu, H.; Zhai, L.; Li, S.; Sun, C.; Shen, Z. Influence of rainfall data scarcity on non-point source pollution prediction: Implications for physically based models. J. Hydrol. 2018, 562, 1–16. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J. The correlation analysis on the landscape pattern index and hydrological processes in the Yanhe watershed, China. J. Hydrol. 2015, 524, 417–426. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.Y.; Chen, X.; Xu, Y.; Yin, Y.; Gao, L.; Liu, M. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models. J. Hydrol. 2019, 573, 486–500. [Google Scholar] [CrossRef]
- Uribe, N.; Corzo, G.; Quintero, M.; van Griensven, A.; Solomatine, D. Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agric. Water Manag. 2018, 209, 62–72. [Google Scholar] [CrossRef]
- Zema, D.A.; Lucas-Borja, M.E.; Carrà, B.G.; Denisi, P.; Rodrigues, V.A.; Ranzini, M.; Soriano Arcova, F.C.; de Cicco, V.; Zimbone, S.M. Simulating the hydrological response of a small tropical forest watershed (Mata Atlantica, Brazil) by the AnnAGNPS model. Sci. Total Environ. 2018, 636, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lu, J.; Hou, W.; Pan, Y.; Wang, Y.; Khan, M.R.; Ren, T.; Cong, R.; Li, X. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environ. Sci. Pollut. Res. 2017, 24, 11722–11733. [Google Scholar] [CrossRef]
- Ouyang, W.; Gao, X.; Wei, P.; Gao, B.; Lin, C.; Hao, F. A review of diffuse pollution modeling and associated implications for watershed management in China. J. Soils Sediments 2017, 17, 1527–1536. [Google Scholar] [CrossRef]
- Adu, T.J.; Kumarasamy, M.V. Assessing Non-Point Source Pollution Models: A Review. Pol. J. Environ. Stud. 2018, 27, 1913–1922. [Google Scholar] [CrossRef]
- Rong, Q.; Cai, Y.; Chen, B.; Yue, W.; Yin, X.; Tan, Q. An enhanced export coefficient based optimization model for supporting agricultural nonpoint source pollution mitigation under uncertainty. Sci. Total Environ. 2017, 580, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Hong, Q.; Chu, Z.; Gong, Y. A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD model in Fujiang Watershed, China. Agric. Water Manag. 2011, 98, 977–989. [Google Scholar] [CrossRef]
- Johnes, P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- Ongley, E.D.; Zhang, X.; Yu, T. Current status of agricultural and rural non-point source pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Agriculture Handbook; United States Department of Agriculture, United States Government Printing Office: Washington, DC, USA, 1978.
- Chen, H.; Teng, Y.; Wang, J. Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: A case study in the Jinjiang River, China. Environ. Monit. Assess. 2013, 185, 2009–2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fu, J. Rainfall Erosivity Estimation Under Different Rainfall Amount. Resour. Sci. 2003, 1, 35–41. [Google Scholar]
- USEPA. Compendium of Tools for Watershed Assessment and TMDL Development; U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
- USEPA. PLOAD Version 3.0: An ArcView GIS Tool to Calculate Nonpoint Sources of Pollution in Watershed and Stormwater Projects; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Kang, M.; Yoo, C. Application of the SCS-CN Method to the hancheon basin on the volcanic Jeju Island, Korea. Water 2020, 12, 3350. [Google Scholar] [CrossRef]
- Li, J.C. Simulation of Non-Point Source Pollution Load in Jialing River Basin; Chongqing University: Chongqing, China, 2007. [Google Scholar]
- Cui, H.M. Analysis on effect of agricultural non-point source pollution on the water environment in Baiyangdian basin. Mod. Agric. Sci. Technol. 2011, 7, 298–300. [Google Scholar]
- Park, Y.S.; Engel, B.A. Analysis for regression model behavior by sampling strategy for annual pollutant load estimation. J. Environ. Qual. 2015, 44, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Takara, K.; He, B.; Luo, P.; Nover, D.; Yamashiki, Y. Spatial and temporal trends in estimates of nutrients and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Sci. Total Environ. 2013, 461–462, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Cohn, T.A.; Delong, L.; Gilroy, E.J. Estimating constituent loads. Water Resour. Res. 1989, 25, 937–942. [Google Scholar] [CrossRef]
- Cohn, T.A.; Gilroy, E.J.; Baier, W.G. Estimating Fluvial Transport of Trace Constituents Using a Regression Model with Data Subject to Censoring; Joint Statistical Meeting: Boston, MA, USA, 1992; pp. 142–151. [Google Scholar]
- Powell, J.L. Least absolute deviations estimation for the censored regression model. J. Econom. 1984, 25, 303–325. [Google Scholar] [CrossRef]
- Chen, T.; Xia, J.; Zou, L.; Yan, Q. Spatiotemporal variations of NDVI of different vegetation types in the Baiyangdian Basin under the background of climate change. Resour. Sci. 2021, 43, 1248–1259. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, S.J.; Peng, J.Q. Hebei Economic Yearbook China; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Ouyang, W.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 2018, 613–614, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Zhi, X.; Wang, C.; Yin, S.; Zhou, Y.; Zhao, Q. Remote sensing monitoring of dry river beds in Baiyangdian Lake Basin. Sci. Technol. Eng. 2022, 22, 3827–3833. [Google Scholar]
- Cui, X. Investigation of Eutrophication Pollution Sources in Baiyangdian Lake. Environ. Ecol. 1995, 16, 17–18. [Google Scholar]
- Liu, X.; Shi, B.; Meng, J.; Zhou, Y.Q.; Ke, X.; Wang, T.Y. Spatio-temporal variation characteristics of water eutrophication and sediment pollution in Baiyangdian Lake. Environ. Sci. 2019, 41, 2127–2136. [Google Scholar]
- Zhao, X.; Zhang, X. Study on policy tool selection in water pollution control in Xiong’an New Area—based on the policy text of Baiyangdian Basin (1984–2018). J. Party Sch. CPC Ningbo Munic. Comm. 2019, 41, 103–111. [Google Scholar]
- Zhang, H.; Xi, B.; Gao, R.; Jiang, L.; Wang, J.; Xu, Q. Water environmental capacity accounting and upstream capacity allocation of Baiyangdian Lake. J. Environ. Eng. Technol. 2012, 2, 313–318. [Google Scholar]
- Zhu, M. Study on Agricultural NPS Loads of Haihe Basin and Assessment on its Environmental Impact; Chinese Academy of Agricultural Sciences: Beijing, China, 2011. [Google Scholar]
- Shi, J. Characteristics of Agricultural Non-Point Source Pollution and Farmland Nutrient Management in the Plain Area of Baiyangdian Watershed; Beijing Normal University: Beijing, China, 2012. [Google Scholar]
- Zhao, Z. Simulation Study of TN Load in Baiyangdian Basin Based on the SWAT Model. Water Sci. Eng. Technol. 2013, 3, 33–37. [Google Scholar]
- Zhang, X.; Yi, Y.; Liu, H.; Yang, Z. Modelling nutrient loadings to the Baiyangdian Lake under the background of urbanization. Acta Ecol. Sin. 2021, 41, 7521–7529. [Google Scholar]
- Wen, G.C.; Zhao, M.J.; Xie, H.B.; Zhang, Y.; Zhang, J. Analysis of land vegetation cover evolution and driving forces in the western part of the Ili River Valley. Arid. Zone Res. 2021, 38, 843–854. [Google Scholar]
- Trolle, D. The Influence of Sediment Nutrient Dynamics on the Response of Lake Ecosystems to Restoration and Climate Change; University of Waikato: Hamilton, New Zealand, 2009. [Google Scholar]
Pollutant | Amount (t) | Percentage(%) | ||
---|---|---|---|---|
Rural Life | Livestock and Poultry Breeding | Agricultural Cultivation | ||
Total nitrogen | 1073.82 | 38.48 | 29.59 | 31.93 |
Total phosphorus | 102.72 | 7.93 | 18.95 | 73.12 |
COD | 3349.33 | 18.15 | 70.16 | 11.69 |
River into Baiyangdian Lake | Load of Adsorbed Pollutants Generated by Soil Erosion (t/a) | ||
---|---|---|---|
COD | Total Nitrogen | Total Phosphorus | |
Bao River | 19.9 | 1.0 | 0.6 |
Fu River | 585.9 | 27.5 | 15.3 |
Baigouyin River | 495.4 | 56.4 | 2.6 |
Xiaoyi River | 161.7 | 9.2 | 2.2 |
Total | 1262.9 | 94.1 | 20.8 |
Pollutant | Fu River | Baigouyin River | Bao River | Xiaoyi River | Surrounding | Total |
---|---|---|---|---|---|---|
Total nitrogen (t/a) | 38.80 | 37.88 | 1.72 | 27.20 | 2.31 | 107.91 |
Total phosphorus(t/a) | 1.34 | 1.10 | 0.04 | 0.93 | 0.05 | 3.47 |
COD (t/a) | 201.74 | 199.43 | 8.54 | 144.14 | 11.09 | 564.94 |
River into the Baiyangdian Lake | Total Traffic (100 Million Cubic Meters) | Water Replenishment (100 Million Cubic Meters) | The Total Amount of Pollutants (t) | ||
---|---|---|---|---|---|
COD | Total Nitrogen | Total Phosphorus | |||
Fu River | 1.63 | 1.42 | 2813.3 | 844.8 | 27.6 |
Xiaoyi River | 0.65 | 0.65 | 919.1 | 223.6 | 4.2 |
Baigouyin River | 0.80 | 0.28 | 1063.2 | 150.5 | 3.7 |
Bao River | 0.36 | 0.36 | 286.7 | 53.6 | 0.99 |
Total | 3.44 | 2.71 | 5082.3 | 1272.5 | 36.5 |
Load Sources | Total Nitrogen | Total Phosphorus | Total COD | |||
---|---|---|---|---|---|---|
Amount (t) | Percentage (%) | Amount (t) | Percentage (%) | Amount (t) | Percentage (%) | |
Point pollutants | 271.01 | 14.37 | 21.49 | 15.35 | 1302.56 | 22.33 |
Agriculture and rural life | 1073.82 | 56.96 | 102.72 | 73.37 | 3349.33 | 57.43 |
Runoff | 107.91 | 5.72 | 3.47 | 2.48 | 564.94 | 9.69 |
Soil erosion | 432.61 | 22.95 | 12.33 | 8.81 | 615.52 | 10.55 |
Total | 1885.35 | 140.01 | 5832.35 | |||
Flux of pollutants | 1272.5 | - | 36.5 | - | 5082.3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Lv, C.; Gu, C.; Yu, Y.; Yang, Z.; Zhang, Z.; Tang, C. Pollutants Source Assessment and Load Calculation in Baiyangdian Lake Using Multi-Model Statistical Analysis. Water 2022, 14, 3386. https://doi.org/10.3390/w14213386
Wang G, Lv C, Gu C, Yu Y, Yang Z, Zhang Z, Tang C. Pollutants Source Assessment and Load Calculation in Baiyangdian Lake Using Multi-Model Statistical Analysis. Water. 2022; 14(21):3386. https://doi.org/10.3390/w14213386
Chicago/Turabian StyleWang, Guangwei, Cuicui Lv, Congke Gu, Yang Yu, Zhenglun Yang, Zhixiong Zhang, and Changyuan Tang. 2022. "Pollutants Source Assessment and Load Calculation in Baiyangdian Lake Using Multi-Model Statistical Analysis" Water 14, no. 21: 3386. https://doi.org/10.3390/w14213386
APA StyleWang, G., Lv, C., Gu, C., Yu, Y., Yang, Z., Zhang, Z., & Tang, C. (2022). Pollutants Source Assessment and Load Calculation in Baiyangdian Lake Using Multi-Model Statistical Analysis. Water, 14(21), 3386. https://doi.org/10.3390/w14213386