Monitored and Intentional Recharge (MIR): A Model for Managed Aquifer Recharge (MAR) Guideline and Regulation Formulation
Abstract
:1. Introduction
State of the Art and Cross-Pollination
2. Methodology
2.1. The Monitored and Intentional Recharge (MIR) Conceptual Model
2.2. Review of Main Aspects in MAR Guiding and Regulating Documents
3. Results and Discussion
3.1. Review of Main Items in MAR Guiding and Regulating Documents
3.2. The Monitored and Intentional Recharge (MIR) Conceptual Model
3.2.1. Water Sources
3.2.2. Hydrogeological and Environmental Conditions
3.2.3. MAR Technology
3.2.4. MAR Sensors for Data Gathering
3.2.5. Monitoring Guidelines
3.2.6. Final Use of the Intentionally Recharged Water
3.2.7. Analytical Aspects
3.2.8. Risk or Impact Assessment
3.2.9. Other Aspects and General Recommendations
4. Conclusions
- Water sources for MAR;
- Environmental conditions in which MAR activities take place, including the climate, and aquifer type, geology, surface water basin, groundwater body, and depurative capacity;
- MAR technology;
- MAR sensors for data gathering, which can characterize the environmental conditions and monitoring the system;
- Guidelines for monitoring water quantity and quality, which includes aspects on sampling frequency and points;
- Final use of the recovered water, including irrigation, water supply, hydraulic barriers against seawater intrusion;
- Analytical aspects, with recommendations on the scope and scale of the maximum al-lowed concentrations of potential pollutants;
- Risk assessment, elaborating on some of the risks to assess when conducting MAR operations, considering dependent habitats;
- Others, including relevant topics difficult to include in previous blocks as well as MIR broad blocks that need consideration, such as standardization and interoperability, contaminants of emerging concern, economic aspects, public participation, and active stakeholder engagement.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Dillon, P.; Toze, S.; Page, D.; Vanderzalm, J.; Bekele, E.; Sidhu, J.; Rinck-Pfeiffer, S. Managed Aquifer Recharge: Rediscovering Nature as a Leading Edge Technology. Water Sci. Technol. 2010, 62, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.; Pavelic, P.; Page, D.; Beringen, H.; Ward, J. Managed Aquifer Recharge: An Introduction; Waterlines Report Series No. 13; NRMMC; EPHC: Camberra, Australia, 2009; p. R126. [Google Scholar]
- Ministerio de Agricultura y Ganadería (ENIP) Ecuador-European Commission-AECID. La Vigencia de las Prácticas Ancestrales para la Agricultura en el Manejo del Agua (The Validity of Ancestral Water Management Practices for Agriculture); ENIP: Quito, Ecuador, 2021; ISBN 978-9942-8975-1-0. Available online: Http://balcon.mag.gob.ec/onr/wp-content/uploads/2021/12/Practicas-Ancestrales-de-Riego.pdf (accessed on 1 October 2022).
- Ochoa-Tocachi, B.F.; Bardales, J.D.; Antiporta, J.; Pérez, K.; Acosta, L.; Mao, F.; Zulkafli, Z.; Gil-Ríos, J.; Angulo, O.; Grainger, S.; et al. Potential Contributions of Pre-Inca Infiltration Infrastructure to Andean Water Security. Nat. Sustain. 2019, 2, 584–593. [Google Scholar] [CrossRef]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernández, E.; et al. Sixty Years of Global Progress in Managed Aquifer Recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Reedy, R.C.; Faunt, C.C.; Pool, D.; Uhlman, K. Enhancing Drought Resilience with Conjunctive Use and Managed Aquifer Recharge in California and Arizona. Environ. Res. Lett. 2016, 11, 035013. [Google Scholar] [CrossRef] [Green Version]
- Wendt, D.E.; Van Loon, A.F.; Scanlon, B.R.; Hannah, D.M. Managed Aquifer Recharge as a Drought Mitigation Strategy in Heavily-Stressed Aquifers. Environ. Res. Lett. 2021, 16, 014046. [Google Scholar] [CrossRef]
- Zhao, M.; Boll, J.; Adam, J.C.; Beall King, A. Can Managed Aquifer Recharge Overcome Multiple Droughts? Water 2021, 13, 2278. [Google Scholar] [CrossRef]
- Gupta, A.; Ronghang, M.; Kumar, P.; Mehrotra, I.; Kumar, S.; Grischek, T.; Sandhu, C.; Knoeller, K. Nitrate Contamination of Riverbank Filtrate at Srinagar, Uttarakhand, India: A Case of Geogenic Mineralization. J. Hydrol. 2015, 531, 626–637. [Google Scholar] [CrossRef]
- Tzoraki, O.; Dokou, Z.; Christodoulou, G.; Gaganis, P.; Karatzas, G. Assessing the Efficiency of a Coastal Managed Aquifer Recharge (MAR) System in Cyprus. Sci. Total Environ. 2018, 626, 875–886. [Google Scholar] [CrossRef]
- Borsi, I.; Mazzanti, G.; Barbagli, A.; Rossetto, R. The Riverbank Filtration Plant in S. Alessio (Lucca): Monitoring and Modeling Activity within EU the FP7 MARSOL Project. Acque Sotter.-Ital. J. Groundw. 2014, 3, 67–70. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, S.G.; Kang, P.P.; Fu, Y.Z.; Wang, T.X. Impacts of Artificial Underground Reservoir on Groundwater Environment in the Reservoir and Downstream Area. Int. J. Environ. Res. Public Health 2019, 16, 1921. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cruz, M.S.; Barceló, D. Trace Organic Chemicals Contamination in Ground Water Recharge. Chemosphere 2008, 72, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Fan, G.; Na, W.; Liu, J.; Cui, J.; Li, H. Past, Present, and Future of Groundwater Remediation Research: A Scientometric Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3975. [Google Scholar] [CrossRef] [Green Version]
- Casanova, J.; Devau, N.; Pettenati, M. Managed Aquifer Recharge: An Overview of Issues and Options. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 413–434. ISBN 978-3-319-23575-2. [Google Scholar]
- Regnery, J.; Gerba, C.P.; Dickenson, E.R.V.; Drewes, J.E. The Importance of Key Attenuation Factors for Microbial and Chemical Contaminants during Managed Aquifer Recharge: A Review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1409–1452. [Google Scholar] [CrossRef]
- Yuan, J.; Van Dyke, M.I.; Huck, P.M. Identification of Critical Contaminants in Wastewater Effluent for Managed Aquifer Recharge. Chemosphere 2017, 172, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.B.; Maillard, J.-Y.; Simões, L.C.; Simões, M. Emerging Contaminants Affect the Microbiome of Water Systems—Strategies for Their Mitigation. NPJ Clean Water 2020, 3, 39. [Google Scholar] [CrossRef]
- Vasilachi, I.; Asiminicesei, D.; Fertu, D.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Ghasemizade, M.; Asante, K.O.; Petersen, C.; Kocis, T.; Dahlke, H.E.; Harter, T. An Integrated Approach Toward Sustainability via Groundwater Banking in the Southern Central Valley, California. Water Resour. Res. 2019, 55, 2742–2759. [Google Scholar] [CrossRef]
- Fernández Escalante, A.E. Practical Management to Minimize the Effects of Clogging in Managed Aquifer Recharge Wells at Two Sites in the Guadiana Basin, Spain. J. Hydrol. Eng. 2015, 20, B5014002. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Jun, S.-C.; Cheon, J.-Y.; Park, M. A Review on Clogging Mechanisms and Managements in Aquifer Storage and Recovery (ASR) Applications. Geosci. J. 2018, 22, 667–679. [Google Scholar] [CrossRef]
- Martin, R. Clogging Issues Associated with Managed Aquifer Recharge Methods; IAH Commission on Managing Aquifer Recharge: Adelaide, Australia, 2013. [Google Scholar]
- Stefan, C.; Ansems, N. Web-Based Global Inventory of Managed Aquifer Recharge Applications. Sustain. Water Resour. Manag. 2018, 4, 153–162. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Kanyerere, T. A Review of the Managed Aquifer Recharge: Historical Development, Current Situation and Perspectives. Phys. Chem. Earth Parts A/B/C 2020, 118, 102887. [Google Scholar] [CrossRef]
- Naser, A.M.; Doza, S.; Rahman, M.; Unicomb, L.; Ahmed, K.M.; Anand, S.; Selim, S.; Shamsudduha, M.; Narayan, K.V.; Chang, H.; et al. Consequences of Access to Water from Managed Aquifer Recharge Systems for Blood Pressure and Proteinuria in South-West Coastal Bangladesh: A Stepped-Wedge Cluster-Randomized Trial. Int. J. Epidemiol. 2021, 50, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.; Page, D.; Vanderzalm, J.; Toze, S.; Simmons, C.; Hose, G.; Martin, R.; Johnston, K.; Higginson, S.; Morris, R. Lessons from 10 Years of Experience with Australia’s Risk-Based Guidelines for Managed Aquifer Recharge. Water 2020, 12, 537. [Google Scholar] [CrossRef] [Green Version]
- European Comission. Technical Guidance on the Application of “Do No Significant Harm” under the Recovery and Resilience Facility Regulation. Commission Notice. Brussels. Available online: https://ec.europa.eu/info/sites/default/files/c2021_1054_en.pdf (accessed on 1 October 2022).
- Capone, F.; Bonfanti, M.B. Legislative Framework Review and Analysis; MARSOL Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; Scuola Superiore Sant’anna: Pisa, Italy, 2015. [Google Scholar]
- Fernández Escalante, E.; Henao Casas, J.D.; Vidal Medeiros, A.M.; San Sebastián Sauto, J.S.S.S. Regulations and Guidelines on Water Quality Requirements for Managed Aquifer Recharge. International Comparison. Acque Sotter.-Ital. J. Groundw. 2020, 9, 7–22. [Google Scholar] [CrossRef]
- Imig, A.; Szabó, Z.; Halytsia, O.; Vrachioli, M.; Kleinert, V.; Rein, A. A Review on Risk Assessment in Managed Aquifer Recharge. Integr. Envir. Assess. Manag. 2022, 1–17. [Google Scholar] [CrossRef]
- Yuan, J.; Van Dyke, M.I.; Huck, P.M. Water Reuse through Managed Aquifer Recharge (MAR): Assessment of Regulations/Guidelines and Case Studies. Water Qual. Res. J. 2016, 51, 357–376. [Google Scholar] [CrossRef]
- Mara, D.D.; Cairncross, S. Guidelines for the Safe Use of Wastewater and Excreta in Agriculture and Aquaculture: Measures for Public Health Protection; World Health Organization: Geneva, Switzerland, 1989; ISBN 978-92-4-154248-7. [Google Scholar]
- WHO. WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater, 3rd ed.; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Aertgeerts, R.; Angelakis, A. State of the Art Report Health Risks in Aquifer Recharge Using Reclaimed Water; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- European Parliament and Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council; EU: Brussels, Belgium, 2000. [Google Scholar]
- European Parliament and Council of the European Union. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater against Pollution and Deterioration; Official Journal European Union: Brussels, Belgium, 2006; Volume 13. [Google Scholar]
- European Parliament and Council of the European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water PolicyText with EEA Relevance; EU: Brussels, Belgium, 2013; p. 17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2006:372:FULL&from=ET (accessed on 26 October 2022).
- European Parliament and Council of the European Union. Official Journal European Union: Brussels, Belgium, 2020; Volume, 24. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=OJ:C:2020:024:TOC (accessed on 26 October 2022).
- CIS Guidelines on Integrating Water Reuse into Water Planning and Management in the Context of the WFD; Common Implementation Strategy for the Water Framework Directive and the Floods Directive; EU: Brussels, Belgium, 2016.
- Henao Casas, J.D.; Fernández Escalante, E.; Calero Gil, R. Sugerencias para las futuras directrices europeas de recarga intencionada de acuíferos con agua regeneradas y de otras fuentes (Suggestions for future European guidelines for intentional recharge of aquifers with reclaimed and other water sources). IDiAgua 2021, 3, 15–18. [Google Scholar]
- NRMMC; EPHC. NHMRC Australian Guidelines for Water Recycling, Managing Health and Environmental Risks. In Natural Resource Management Ministerial Council, Environment Protection and Heritage Council National Health and Medical Research Council; NRMMC; EPHC: Camberra, Australia, 2009; Volume 2C. [Google Scholar]
- Dillon, P.; Vanderzalm, J.; Sidhu, J.; Page, D.; Chadha, D. A Water Quality Guide to Managed Aquifer Recharge in India; CSIRO Land and Water Flagship: Camberra, Australia, 2014; p. 73. [Google Scholar]
- USEPA. Underground Injection Control Regulations and Safe Drinking Water Act Provisions; USEPA: Washington, DC, USA, 1974. Available online: https://www.epa.gov/uic/underground-injection-control-regulations-and-safe-drinking-water-act-provisions (accessed on 25 October 2022).
- Maliva, R.G. Anthropogenic Aquifer Recharge: WSP Methods in Water Resources Evaluation Series No. 5; Springer Hydrogeology; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-11083-3. [Google Scholar]
- USEPA. Aquifer Recharge and Aquifer Storage and Recovery Baseline Parameter List. Rule; USEPA: Washington, DC, USA, 2019. Available online: https://www.epa.gov/sites/default/files/2020-07/documents/inventoryinformationrequestv2.pdf (accessed on 25 October 2022).
- Arizona State Legislature Underground Water Storage, Savings and Replenishment; 1994 (Revised). Available online: https://leap.unep.org/countries/us/national-legislation/underground-water-storage-savings-and-replenishment-arizona (accessed on 1 October 2022).
- State of California Draft Proposed Groundwater Recharge Regulation; The State of California Department of Health Services, Division of Drinking Water and Environmental Management: Sacramento, CA, USA, 1993.
- State Water Resources Control Board. General Waste Discharge Requirements for Aquifer Storage and Recovery Projects that Inject Drinking Water into Groundwater; California Water Boards: Sacramento, CA, USA, 2012; p. 77.
- Florida Department of Environmental Protection Reuse of Reclaimed Water and Land Application; FDEPR: Miami, FL, USA, 1999; Volume 62-610.
- Shaleen-Hansen, M. Guidance for Aquifer Storage and Recovery AKART Analysis and Overriding Consideration of Public Interest Demonstration; Washington State Department of Ecology: Olympia, WA, USA, 2017; p. 71. [Google Scholar]
- ASCE Standard Guidelines for Managed Aquifer Recharge, 69th ed.; American Society of Civil Engineers: Reston, VA, USA, 2020; ISBN 978-0-7844-1528-3.
- Shubo, T.; Fernandes, L.; Montenegro, S.G. An Overview of Managed Aquifer Recharge in Brazil. Water 2020, 12, 1072. [Google Scholar] [CrossRef] [Green Version]
- CNR. Guía Metodológica—Marco Operativo para Proyectos de Recarga Artificial de Acuíferos (Methodological Guidance—Operational Framework for Artificial Aquifer Recharge Projects); Consejo Nacional de Riego—CSIRO: Santiago, Chile, 2020. [Google Scholar]
- Ministerio de Obras Públicas Decreto 203—Reglamento Sobre Normas de Exploración y Explotación de Aguas Subterráneas; MPO: Santiago, Chile, 2014; p. 16.
- CGWB Manual on Artificial Recharge of Ground Water; Central Ground Water Board: New Delhi, India, 2007.
- Ministero dell’Ambiente e della Tutela del Territorio e del Mare Decreto 2 Maggio 2016, n. 100; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2016.
- Ministero dell’Ambiente e della Tutela del Territorio e del Mare Decreto Legislativo 3 Aprile 2006; n. 152; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2006.
- NOM-014-CONAGUA-2003; Requisitos para la Recarga Artificial de Acuíferos con Agua Residual Tratada. CONAGUA NORMA Oficial Mexicana: Mexico City, Mexico, 2009.
- NOM-015-CONAGUA-2007; Infiltración Artificial de Agua a Los Acuíferos.-Características y Especificaciones de las Obras y del Agua. CONAGUA NORMA Oficial Mexicana: Mexico City, Mexico, 2007.
- Ministério do Ambiente e do Ordenamiento do Território Decreto-Lei n.o 69/2000 de 3 de Maio; Diário da la República—I Série-A; MATTM: Lisbon, Portugal, 2000; p. 18.
- Ministerio de la Presidencia, RD 1620/2007, BOE 294. MP-BOE: Madrid, Spain, 2007; pp. 50639–50661. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2007-21092 (accessed on 1 October 2022).
- Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer Infiltratiebesluit Bodembescherming; MVRO: Amsterdam, The Netherlands, 1993.
- Department of Groundwater Resources (DGR). Standard Guidelines for Artificial Groundwater Recharge in Thailand; Ministry of Natural Resources and Environment: Vientiane, Thailand, 2022; (In Thai, English version on production). [Google Scholar]
- San-Sebastián-Sauto, J.; Fernández Escalante, E.; Calero-Gil, R.; Carvalho, T.; Rodríguez-Escales, P. Characterization and Benchmarking of Seven Managed Aquifer Recharge Systems in South-Western Europe. Sustain. Water Resour. Manag. 2018, 4, 193–215. [Google Scholar] [CrossRef]
- DINA-MAR. La Gestión de La Recarga de Acuíferos En El Marco Del Desarrollo Sostenible: Desarrollo Tecnológico; Fernández Escalante, E., Ed.; GRAFINAT: Madrid, Spain, 2010; ISBN 978-84-614-5123-4. [Google Scholar]
- Fernández Escalante, A.E.; Calero Gil, R.; Villanueva Lago, M.; San Sebastian Sauto, J. Managed Aquifer Recharge to Combat Groundwater Overexploitation at the Los Arenales Site, Castilla y León, Spain; MARSOL Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; MARSOL: Madrid, Spain, 2016; p. 70. [Google Scholar]
- Fernández Escalante, E.; Foster, S.; Navarro-Benegas, R. Evolution and Sustainability of Groundwater Use from the Ica Aquifers for the Most Profitable Agriculture in Peru. Hydrogeol. J. 2020, 28, 2601–2612. [Google Scholar] [CrossRef]
- Pistocchi, A.; Aloe, A.; Dorati, C.; Alcalde Sanz, L.; Bouraoui, F.; Gawlik, B.M.; Grizzetti, B.; Pastori, M.; Vigiak, O. The Potential of Water Reuse for Agricultural Irrigation in the EU a Hydro-Economic Analysis; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-77210-8. [Google Scholar]
- Jodar-Abellan, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Wastewater Treatment and Water Reuse in Spain. Current Situation and Perspectives. Water 2019, 11, 1551. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the Impact of Biochar Additions on Soil Hydraulic Properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Page, D.; Vanderzalm, J.; Dillon, P.; Gonzalez, D.; Barry, K. Stormwater Quality Review to Evaluate Treatment for Drinking Water Supply via Managed Aquifer Recharge. Water Air. Soil. Pollut. 2016, 227, 322. [Google Scholar] [CrossRef]
- Valhondo, C.; Carrera, J.; Martínez-Landa, L.; Wang, J.; Amalfitano, S.; Levantesi, C.; Diaz-Cruz, M.S. Reactive Barriers for Renaturalization of Reclaimed Water during Soil Aquifer Treatment. Water 2020, 12, 1012. [Google Scholar] [CrossRef] [Green Version]
- Bekele, E.; Toze, S.; Patterson, B.; Higginson, S. Managed Aquifer Recharge of Treated Wastewater: Water Quality Changes Resulting from Infiltration through the Vadose Zone. Water Res. 2011, 45, 5764–5772. [Google Scholar] [CrossRef] [PubMed]
- Regnery, J.; Wing, A.D.; Kautz, J.; Drewes, J.E. Introducing Sequential Managed Aquifer Recharge Technology (SMART)—From Laboratory to Full-Scale Application. Chemosphere 2016, 154, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laws, B.V.; Dickenson, E.R.V.; Johnson, T.A.; Snyder, S.A.; Drewes, J.E. Attenuation of Contaminants of Emerging Concern during Surface-Spreading Aquifer Recharge. Sci. Total Environ. 2011, 409, 1087–1094. [Google Scholar] [CrossRef]
- Goren, O.; Burg, A.; Gavrieli, I.; Negev, I.; Guttman, J.; Kraitzer, T.; Kloppmann, W.; Lazar, B. Biogeochemical Processes in Infiltration Basins and Their Impact on the Recharging Effluent, the Soil Aquifer Treatment (SAT) System of the Shafdan Plant, Israel. Appl. Geochem. 2014, 48, 58–69. [Google Scholar] [CrossRef]
- Henao Casas, J.D.; Fernández Escalante, E.; Ayuga, F. Alleviating Drought and Water Scarcity in the Mediterranean Region through Managed Aquifer Recharge. Hydrogeol. J. 2022, 30, 1685–1699. [Google Scholar] [CrossRef]
- Gale, I. Strategies for Managed Aquifer Recharge (MAR) in Semi-Arid Areas; UNESCO: Paris, France, 2005; p. 33. [Google Scholar]
- IGRAC. Artificial Recharge of Groundwater in the World; International groundwater Resources Assessment Centre (IGRAC): Delft, The Netherlands, 2007; p. 92. [Google Scholar]
- TRAGSA. Innovación en la Planificación y Gestión del Agua. El Grupo Tragsa y La Recarga Gestionada de Acuíferos (Innovation in Water Planning and Management_The Tragsa Group and Managed Aquifer Recharge); Tragsa, Madrid, Spain. 2020. Available online: https://dinamar.tragsa.es/file.axd?file=/PDFS/Recarga%20Gestionada%20de%20Acu%C3%ADferos-Grupo%20Tragsa.pdf (accessed on 25 October 2022).
- Fernández Escalante, E.; Calero Gil, R.; San Miguel Fraile, M.; Sánchez-Serrano, F. Economic Assessment of Opportunities for Managed Aquifer Recharge Techniques in Spain Using an Advanced Geographic Information System (GIS). Water 2014, 6, 2021–2040. [Google Scholar] [CrossRef] [Green Version]
- Henao Casas, J.D.; Fernández Escalante, E.; Calero Gil, R. La estandarización e interoperabilidad como tecnologías tics facilitadoras de la recarga gestionada de acuíferos (Standardisation and interoperability as enabling ICT technologies for Managed Aquifer Recharge). IDiAgua 2022. in print. [Google Scholar]
- Managing Aquifer Recharge: A Showcase for Resilience and Sustainability; UNESCO: Paris, France, 2021; ISBN 978-92-3-100488-9. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000379962 (accessed on 1 October 2022).
- Van der Veer, H.; Wiles, A. Achieving Technical Interoperability—The ETSI Approach; European Telecommunications Standards Institute: Cedex, France, 2008; p. 30. [Google Scholar]
- UNE 318002-3:2021. Irrigation Techniques. Remote Control of Irrigable Areas. Part 3: Interoperability. Available online: https://www.en-standard.eu/une-318002-3-2021-tecnicas-de-riego-telecontrol-de-zonas-regables-parte-3-interoperabilidad/ (accessed on 1 October 2022).
- Giordano, R.; Máñez Costa, M.; Pagano, A.; Mayor Rodriguez, B.; Zorrilla-Miras, P.; Gomez, E.; Lopez-Gunn, E. Combining Social Network Analysis and Agent-Based Model for Enabling Nature-Based Solution Implementation: The Case of Medina Del Campo (Spain). Sci. Total Environ. 2021, 801, 149734. [Google Scholar] [CrossRef] [PubMed]
- Fernández Escalante, E.; López-Gunn, E. Co-Managed Aquifer Recharge: Case Studies from Castilla y León (Spain). In The Role of Sound Groundwater Resources Management and Governance to Achieve Water Security; Choi, S.H., Shin, E., Makarigakis, A.K., Sohn, O., Clench, C., Trudeau, M., Eds.; Global Water Security Issues (GWSI) Series; UNESCO: Paris, France, 2021; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000379093 (accessed on 1 October 2022).
- Henao Casas, J.D.; Fernández Escalante, E.; Ayuga, F. Increasing Groundwater Storage and Maintaining Irrigation through Managed Aquifer Recharge. Groundw. Sustain. Dev. 2022, 19, 100842. [Google Scholar] [CrossRef]
- Fakhreddine, S.; Prommer, H.; Scanlon, B.R.; Ying, S.C.; Nicot, J.-P. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review. Environ. Sci. Technol. 2021, 55, 2208–2223. [Google Scholar] [CrossRef] [PubMed]
- Sauvé, S.; Desrosiers, M. A Review of What Is an Emerging Contaminant. Chem. Cent. J. 2014, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Filter, J.; Zhiteneva, V.; Vick, C.; Ruhl, A.S.; Jekel, M.; Hübner, U.; Drewes, J.E. Varying Attenuation of Trace Organic Chemicals in Natural Treatment Systems—A Review of Key Influential Factors. Chemosphere 2021, 274, 129774. [Google Scholar] [CrossRef]
- Stuyfzand, P.J.; Segers, W.; Van Rooijen, N. Behavior of Pharmaceuticals and Other Emerging Pollutants in Various Artificial Recharge Systems in the Netherlands. In Proceedings of the ISMAR6-6th International Symposium in Managed Aquifer Recharge-Management of Aquifer Recharge for Sustainability, Phoenix, AZ, USA, 28 October–2 November 2007; pp. 231–245. [Google Scholar]
- NRMMC; EPHC; NHMRC. Australian Guidelines for Water Reciclying: Managing Health and Environmental Risks (Phase 2) Managed Aquifer Recharge; National Water Quality Management Strategy; NRMMC: Camberra, Australia, 2009; ISBN 1 921173 46 7. [Google Scholar]
- Nandha, M.; Berry, M.; Jefferson, B.; Jeffrey, P. Risk Assessment Frameworks for MAR Schemes in the UK. Environ. Earth Sci. 2015, 73, 7747–7757. [Google Scholar] [CrossRef]
- Rodríguez-Escales, P.; Canelles, A.; Sanchez-Vila, X.; Folch, A.; Kurtzman, D.; Rossetto, R.; Fernández Escalante, E.; Lobo-Ferreira, J.; Sapiano, M.; San-Sebastián, J.; et al. A Risk Assessment Methodology to Evaluate the Risk Failure of Managed Aquifer Recharge in the Mediterranean Basin. Hydrol. Earth Syst. Sci. 2018, 22, 3213–3227. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Gonzalez, D.; Bennison, G.; Burrull, C.; Claro, E.; Jara, M.; Valenzuela, G. Progress in the Development of Risk-Based Guidelines to Support Managed Aquifer Recharge for Agriculture in Chile. Water Cycle 2020, 1, 136–145. [Google Scholar] [CrossRef]
- Fernández Escalante, E.; Henao Casas, J.D.; San Sebastian Sauto, J.; Calero Gil, R. Monitored Intentional Recharge (MIR). Methodological Approach and Guidelines. In International Symposium on Managed Aquifer Recharge; ISMAR 11 Abstracts Book; IAH Commission on Managing Aquifer Recharge: Long Beach, CA, USA, 2022; Available online: https://recharge.iah.org/files/2022/09/ISMAR11-abstracts-book.pdf (accessed on 25 October 2022).
Country | Scope | Severity | Type | Year | MACs 2 |
---|---|---|---|---|---|
Arizona (USA) | Regional | Hard | Guideline | 1994 | N |
Australia | National | Soft | Guideline | 2009 | Y |
Belgium (Torreele) | Local | Hard | Operator rule | 2012 | Y |
Brazil | National | Soft | Regulation | 2019 | N |
California (USA) | Regional | Hard | Guideline | 2012 | Y |
Chile | National | Soft | Regulation | 2013 | N |
China | National | Soft | Guideline draft | 2014 | N |
Florida (USA) | Regional | Soft | Guidelines | 1999 | Y |
India | National | Soft | Guidelines draft | 2014 | N |
Italy | National | Hard | Regulation | 2016 | Y |
Israel (Shafdan) | Local–National 1 | Hard | Operator rule | 1966 | Y |
Mexico | National | Hard | Regulation | 2003–2009 | Y |
Namibia (Windhoek) | National | - | Guidelines. Regulation proposal | 2004 | N |
New Zealand | National | Soft | Technical guidance | 2017 | Y |
Portugal | National | Hard | Regulation | 2000 | N |
South Africa | National | Hard | Regulation draft | 2004 | N |
Spain | National | Hard | Regulation | 2007 | Y |
Thailand | National | Hard | Guideline | 2022 | ? |
The Netherlands | National | Hard | Regulation | 1993 | Y |
USA (ASCE) | National | Soft | Regulation | 1974–2019 | Y |
WFD (EU) | International | Soft | Regulation | 2000 | N |
WHO | International | Soft | Guideline | 2001 | N |
Numerical Category | |
---|---|
0 | No mention |
1 | The aspect is mentioned |
2 | The aspect is discussed |
3 | The aspect has its own section |
4 | The aspect has its own section and is comprehensively discussed |
Group | Aspect | Score |
---|---|---|
General context | Wastewater reuse, including water sources and final uses | 28 |
Risk and impact assessment | Health protection | 27 |
MAR planning | Review of policy and legal framework | 24 |
Operation aspects | Monitoring and pilot testing | 24 |
Receiving medium | Groundwater source protection | 22 |
Risk and impact assessment | Agriculture supply protection | 22 |
Risk and impact assessment | Risk assessment | 21 |
Risk and impact assessment | maximum allowable concentration (MACs) list | 21 |
MAR planning | MAR system design and characteristics | 20 |
General context | Definition of terms | 19 |
Social aspects | Water management framework, including entities and their duties | 19 |
Financial issues | Funding/financial issues/costs | 18 |
Risk and impact assessment | Dependent ecosystems protection | 18 |
Receiving medium | Recharged water—unsaturated zone interaction | 17 |
Operation aspects | Operation and maintenance plan (O + M) | 17 |
MAR planning | Administrative components | 15 |
MAR planning | Planning activities and considerations | 15 |
Risk and impact assessment | Sanitary and environmental risks assessment | 15 |
General context | Successful MAR case studies | 14 |
MAR Category | MAR Type |
---|---|
Water spreading | - Infiltration ponds/wetlands - Channels and infiltration ditches - Ridges/soil and aquifer treatment techniques - Infiltration fields (controlled flooding) |
River channels | - Reservoir dams and dams - Permeable dams - Levees - Riverbed scarification - Sub-surface/underground dams - Drilled dams |
Targeted recharge | - Qanats (underground galleries) - Open infiltration wells, shafts - Deep wells and boreholes - Boreholes - Sinkholes, collapses - Aquifer storage and recovery (ASR) - Aquifer storage, transfer, and recovery (ASTR) |
Filtration | - Riverbank filtration (RBF) - Interdune filtration - Underground irrigation |
Rain based systems | - Rainwater harvesting systems - Sustainable urban drainage systems (SUDS) |
Accidental recharge | - Accidental recharge from pipes and sewer systems - Accidental recharge by irrigation return |
Realm (Earth-Sphere) | Property |
---|---|
Environmental conditions (atmosphere and hydrosphere) | - Flow rates and discharge - Soil infiltration/seepage rates - Precipitation - Solar radiation - Wind speed and direction - Relative humidity - Other meteorological variables |
Unsaturated zone (pedosphere) | - Volumetric water content (VWC) - Soil electrical properties (dielectric permittivity, resistivity, and conductivity) - Water potential - Vapor pressure - Conductivity - Temperature |
Saturated zone (lithosphere) | - Water level - Temperature - Conductivity - pH - Oxidation-reduction potential (ORP) [83] - Turbidity - Total dissolved solids (TDS) - Total suspended solids (TSS) - Other physicochemical properties - Salinity - Hydrogeochemical parameters |
Technical Aspects | “Non-Technical” Aspects [95,97] | |
---|---|---|
Design and construction | - Legal constraints - Economic constraints - Lack of social acceptance - Weak water governance | - Availability of water source - Concessions or water rights constraints - Water scarcity - Hydrogeological assessment - Lack of infrastructure - Dependence of valuable habitats |
Operation (and management) | - Legal constraints - Economic constraints - Lack of social acceptance - Weak water governance | - Structural damage - Water shortage and volume constraints at the source - Drought - Clogging - Unacceptable water quality in a sensitive location - Specific objectives - Distortion of local ecological relations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández Escalante, E.; Henao Casas, J.D.; San Sebastián Sauto, J.; Calero Gil, R. Monitored and Intentional Recharge (MIR): A Model for Managed Aquifer Recharge (MAR) Guideline and Regulation Formulation. Water 2022, 14, 3405. https://doi.org/10.3390/w14213405
Fernández Escalante E, Henao Casas JD, San Sebastián Sauto J, Calero Gil R. Monitored and Intentional Recharge (MIR): A Model for Managed Aquifer Recharge (MAR) Guideline and Regulation Formulation. Water. 2022; 14(21):3405. https://doi.org/10.3390/w14213405
Chicago/Turabian StyleFernández Escalante, Enrique, José David Henao Casas, Jon San Sebastián Sauto, and Rodrigo Calero Gil. 2022. "Monitored and Intentional Recharge (MIR): A Model for Managed Aquifer Recharge (MAR) Guideline and Regulation Formulation" Water 14, no. 21: 3405. https://doi.org/10.3390/w14213405
APA StyleFernández Escalante, E., Henao Casas, J. D., San Sebastián Sauto, J., & Calero Gil, R. (2022). Monitored and Intentional Recharge (MIR): A Model for Managed Aquifer Recharge (MAR) Guideline and Regulation Formulation. Water, 14(21), 3405. https://doi.org/10.3390/w14213405