Efficient Removal of Micropollutants by Novel Carbon Materials Using Nitrogen-Rich Bio-Based Metal-Organic Framework (MOFs) as Precursors
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemical Agents
2.2. Synthesis of Bio-27 and Its Derivatives Bio-C Materials
2.3. Synthesis of ZIF-8 and Its Derivatized Carbon-Based Materials (ZIF-8-C)
2.4. Characterization
2.5. Adsorption Experiment
2.6. Instrumental Analysis for Pharmaceuticals
3. Results and Discussion
3.1. Characterizations of Bio-C-T
3.1.1. Structural and Porous Properties
3.1.2. Morphology of the Samples
3.1.3. Fourier Transform Infrared (FTIR) Spectrum of Bio-27-Derived Carbon
3.2. Adsorption Experiments
3.2.1. Pseudo-Second-Order Adsorption Kinetics of SMX
3.2.2. Effect of Reaction Time
3.2.3. Effect of Initial Concentration
3.3. Exploring the Adsorption Mechanism for Micropollutants
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A. review. Sci. Total Environ. 2017, 596, 303–320. [Google Scholar] [CrossRef]
- Priya, A.K.; Gnanasekaran, L.; Rajendran, S.; Qin, J.Q.; Vasseghian, Y. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment—A review. Environ. Res. 2022, 204, 15. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.J.; Brain, R.A.; Usenko, S.; Mottaleb, M.A.; O’Donnell, J.G.; Stahl, L.L.; Wathen, J.B.; Snyder, B.D.; Pitt, J.L.; Perez-Hurtado, P.; et al. Occurrence of pharmaceuticals and personal care products in fish: Results of a national pilot study in the united states. Environ. Toxicol. Chem. 2009, 28, 2587. [Google Scholar] [CrossRef] [PubMed]
- Bonvin, F.; Omlin, J.; Rutler, R.; Schweizer, W.B.; Alaimo, P.J.; Strathmann, T.J.; McNeill, K.; Kohn, T. Direct Photolysis of Human Metabolites of the Antibiotic Sulfamethoxazole: Evidence for abiotic Back-Transformation. Environ. Sci. Technol. 2013, 47, 6746–6755. [Google Scholar] [CrossRef] [PubMed]
- Abusin, S.; Johnson, S. Sulfamethoxazole/Trimethoprim induced liver failure: A case report. Cases J. 2008, 1, 44. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Ouyang, S.X.; Bi, Y.P.; Umezawa, N.; Oshikiri, M.; Ye, J.H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef]
- Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett. 2018, 16, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Q.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A. review. Environ. Pollut. 2014, 184, 620–639. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Khataee, A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. Sci. Total Environ. 2022, 838, 18. [Google Scholar] [CrossRef]
- Zhang, W.L.; Yin, J.; Wang, C.W.; Zhao, L.; Jian, W.B.; Lu, K.; Lin, H.B.; Qiu, X.Q.; Alshareef, H.N. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. Small Methods 2021, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Moulahcene, L.; Skiba, M.; Senhadji, O.; Milon, N.; Benamor, M.; Lahiani-Skiba, M. Inclusion and removal of pharmaceutical residues from aqueous solution using water-insoluble cyclodextrin polymers. Chem. Eng. Res. Des. 2015, 97, 145–158. [Google Scholar] [CrossRef]
- Margeta, K.; Vojnovic, B.; Logar, N.Z. Development of Natural Zeolites for Their Use in Water-Treatment Systems. Recent Pat. Nanotechnol. 2011, 5, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Wang, C.; Wu, Q.H.; Wang, Z. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Anal. Chim. Acta 2015, 870, 67–74. [Google Scholar] [CrossRef]
- Rodrigues, D.A.D.; da Cunha, C.; Freitas, M.G.; de Barros, A.L.C.; Castro, P.; Pereira, A.R.; Silva, S.D.; Santiago, A.D.; Afonso, R. Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. Sci. Total Environ. 2020, 749, 9. [Google Scholar] [CrossRef]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef]
- Li, S.Q.; Zhang, X.D.; Huang, Y.M. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 2017, 321, 711–719. [Google Scholar] [CrossRef]
- Jiao, C.N.; Wang, Y.N.; Li, M.H.; Wu, Q.H.; Wang, C.; Wang, Z. Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution. J. Magn. Magn. Mater. 2016, 407, 24–30. [Google Scholar] [CrossRef]
- Wang, L.H.; Ke, F.; Zhu, J.F. Metal-organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes. Dalton Trans. 2016, 45, 4541–4547. [Google Scholar] [CrossRef]
- Chen, D.Z.; Shen, W.S.; Wu, S.L.; Chen, C.Q.; Luo, X.B.; Guo, L. Ion exchange induced removal of Pb(II) by MOF-derived magnetic inorganic sorbents. Nanoscale 2016, 8, 7172–7179. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Young, C.; Tang, J.; Takei, T.; Ide, Y.; Kobayashi, N.; Yamauchi, Y. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem. Commun. 2016, 52, 4764–4767. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.L.; Li, X.J.; Yan, Z.F.; Komarneni, S. Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl. Surf. Sci. 2014, 308, 306–310. [Google Scholar] [CrossRef]
- Fang, X.Z.; Jiao, L.; Yu, S.H.; Jiang, H.L. Metal-Organic Framework-Derived FeCo-N-Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media. Chem. Sus. Chem. 2017, 10, 3019–3024. [Google Scholar] [CrossRef] [PubMed]
- Maity, R.; Singh, H.D.; Yadav, A.K.; Chakraborty, D.; Vaidhyanathan, R. Water-stable Adenine-based MOFs with Polar Pores for Selective CO2 Capture. Chem. Asian J. 2019, 14, 3736–3741. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Jhung, S.H. Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon. Microporous Mesoporous Mater. 2018, 270, 102–108. [Google Scholar] [CrossRef]
- Yin, P.Q.; Yao, T.; Wu, Y.; Zheng, L.R.; Lin, Y.; Liu, W.; Ju, H.X.; Zhu, J.F.; Hong, X.; Deng, Z.X.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Edit. 2016, 55, 10800–10805. [Google Scholar] [CrossRef]
- Han, S.-y.; Qiao, J.-q.; Zhang, Y.-y.; Lian, H.-z.; Ge, X. Determination of n-octanol/water partition coefficients of weak ionizable solutes by RP-HPLC with neutral model compounds. Talanta 2012, 97, 355–361. [Google Scholar] [CrossRef]
- Kitt, J.P.; Harris, J.M. Confocal Raman Microscopy for in Situ Measurement of Octanol–Water Partitioning within the Pores of Individual C18-Functionalized Chromatographic Particles. Anal. Chem. 2015, 87, 5340–5347. [Google Scholar] [CrossRef]
- Li, Y.H.; Shen, S.G.; Wang, C.Y.; Peng, X.; Yuan, S.J. The effect of difference in chemical composition between cellulose and lignin on carbon based solid acids applied for cellulose hydrolysis. Cellulose 2018, 25, 1851–1863. [Google Scholar] [CrossRef]
- Shi, Y.W.; Liu, G.Z.; Wang, L.; Zhang, X.W. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt. Chem. Eng. J. 2015, 259, 771–778. [Google Scholar] [CrossRef]
- Tsou, C.H.; An, Q.F.; Lo, S.C.; de Guzman, M.; Hung, W.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 2015, 477, 93–100. [Google Scholar] [CrossRef]
- Yang, X.M.; Salado-Leza, D.; Porcel, E.; Gonzalez-Vargas, C.R.; Savina, F.; Dragoe, D.; Remita, H.; Lacombe, S. A Facile One-Pot Synthesis of Versatile PEGylated Platinum Nanoflowers and Their Application in Radiation Therapy. Int. J. Mol. Sci. 2020, 21, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ain, Q.T.; Haq, S.H.; Alshammari, A.; Al-Mutlaq, M.A.; Anjum, M.N. The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein J. Nanotechnol. 2019, 10, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ding, Y.K.; Wang, J.C. Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners. Nanomaterials 2019, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Idris, S.A.; Alotaibi, K.M.; Peshkur, T.A.; Anderson, P.; Morris, M.; Gibson, L.T. Adsorption kinetic study: Effect of adsorbent pore size distribution on the rate of Cr (VI) uptake. Microporous Mesoporous Mater. 2013, 165, 99–105. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Huang, J.T.; Xue, Z.H.; Wang, X.M. Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone. Chem. Eng. J. 2016, 306, 99–106. [Google Scholar] [CrossRef]
- Nielsen, L.; Biggs, M.J.; Skinner, W.; Bandosz, T.J. The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon 2014, 80, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Song, X.L.; Zhang, Y.; Yan, C.Y.; Jiang, W.J.; Chang, C.M. The Langmuir monolayer adsorption model of organic matter into effective pores in activated carbon. J. Colloid Interface Sci. 2013, 389, 213–219. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zeng, Y.; Liao, J.X.; Chen, J.Q.; Du, Q. Efficient removal of sulfamethoxazole by resin-supported zero-valent iron composites with tunable structure: Performance, mechanisms, and degradation pathways. Chemosphere 2021, 269, 11. [Google Scholar] [CrossRef]
- Aronson, J.K. Sulfonamides. In Meyler’s Side Effects of Drugs, 16th ed.; Elsevier: Oxford, UK, 2016; pp. 555–569. [Google Scholar] [CrossRef]
- Hişmioğullari, Ş.E.; Yarsan, E. Spectrophotometric determination and stability studies of sulfamethoxazole and trimethoprim in oral suspension by classical least square calibration method. Hacet. Univ. J. Fac. Pharm. 2009, 2, 95–104. [Google Scholar]
- Yang, L.P.; Ke, H.; Yao, H.; Jiang, W. Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotube-Crosslinked Polymers. Angew. Chem. Int. Ed. 2021, 60, 21404–21411. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, H.; Ikejima, N.; Shimizu, Y.; Fukami, K.; Taniguchi, S.; Takanami, R.; Giri, R.R.; Matsui, S. Rejection of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) by low pressure reverse osmosis membranes. Water Sci. Technol. 2008, 58, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ngawhirunpat, T.; Panomsuk, S.; Opanasopit, P.; Rojanarata, T.; Hatanaka, T. Comparison of the percutaneous absorption of hydrophilic and lipophilic compounds in shed snake skin and human skin. Pharmazie 2006, 61, 331–335. [Google Scholar] [PubMed]
- Lin, H.; Huang, L.; Gao, Z.; Lin, W.; Ren, Y. Comparative analysis of the removal and transformation of 10 typical pharmaceutical and personal care products in secondary treatment of sewage: A case study of two biological treatment processes. J. Environ. Chem. Eng. 2022, 10, 107638. [Google Scholar] [CrossRef]
- Bui, T.X.; Pham, V.H.; Le, S.T.; Choi, H. Adsorption of pharmaceuticals onto trimethylsilylated mesoporous SBA-15. J. Hazard. Mater. 2013, 254–255, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Matsui, Y.; Nakao, S.; Sakamoto, A.; Taniguchi, T.; Pan, L.; Matsushita, T.; Shirasaki, N. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics. Water Res. 2015, 85, 95–102. [Google Scholar] [CrossRef]
Full Name | Abbra. | Molecular Weight | Log Kow | Chemical Structures |
---|---|---|---|---|
ketoprofen | KP | 257.3 | 3.12 | |
antipyrine | AT | 189.1 | −1.55 | |
ibuprofen | IBU | 205.1 | 0.45 | |
chloramphenicol | CAP | 321.0 | 1.1 | |
paracetamol | PC | 180.1 | 1.58 | |
sulfamethoxazole | SMX | 254.1 | 0.89 |
Materials | SBET (m2/g) | Vtotal (cm3/g) | Pore Width (nm) |
---|---|---|---|
Bio-27 | 76.5 | 0.054 | 2.890 |
Bio-27-500 | 90.2 | 0.160 | 3.698 |
Bio-27-800 | 204.2 | 0.108 | 0.783 |
Bio-27-900 | 980.4 | 0.496 | 0.852 |
Bio-27-1000 | 605.3 | 0.294 | 0.783 |
Materials | k (g/mg·min) | Qe (mg/g) | v0 (mg/g·min) | R2 |
---|---|---|---|---|
Bio-27-500 | —— | 1.65 | —— | 0.99 |
Bio-27-800 | 0.0059 | 27.27 | 4.38 | 0.98 |
Bio-27-900 | 0.031 | 100.85 | 315.29 | 0.93 |
Bio-27-1000 | 0.0021 | 70.79 | 10.52 | 0.98 |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
Sample | Qmax (mg/g) | KL (L/mg) | R2 | KF (mg g−1(L mg−1)1/n) | n | R2 |
Bio-C-900 | 350.90 | 0.061 | 0.99 | 53.23 | 2.47 | 0.96 |
AC | 76.96 | 0.025 | 0.98 | 29.79 | 4.03 | 0.82 |
ZIF-8-C | 26.44 | 0.027 | 0.99 | 10.88 | 4.32 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Li, X.; Wang, B. Efficient Removal of Micropollutants by Novel Carbon Materials Using Nitrogen-Rich Bio-Based Metal-Organic Framework (MOFs) as Precursors. Water 2022, 14, 3413. https://doi.org/10.3390/w14213413
Meng Y, Li X, Wang B. Efficient Removal of Micropollutants by Novel Carbon Materials Using Nitrogen-Rich Bio-Based Metal-Organic Framework (MOFs) as Precursors. Water. 2022; 14(21):3413. https://doi.org/10.3390/w14213413
Chicago/Turabian StyleMeng, Yazi, Xiang Li, and Bo Wang. 2022. "Efficient Removal of Micropollutants by Novel Carbon Materials Using Nitrogen-Rich Bio-Based Metal-Organic Framework (MOFs) as Precursors" Water 14, no. 21: 3413. https://doi.org/10.3390/w14213413
APA StyleMeng, Y., Li, X., & Wang, B. (2022). Efficient Removal of Micropollutants by Novel Carbon Materials Using Nitrogen-Rich Bio-Based Metal-Organic Framework (MOFs) as Precursors. Water, 14(21), 3413. https://doi.org/10.3390/w14213413