Erosion Failure of Slope in a Dump with Ground Fissure under Heavy Rain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Data Analysis
3. Results
3.1. Wetting Front
3.2. Soil Erosion Process
3.3. Runoff and Sediment
3.4. Soil Denudation Rate
4. Discussion
4.1. Influence of Wetting Front on Soil Erosion
4.2. Effect of Ground Fissure on Erosion Failure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Tu, K.; Zeng, Y.F.; Liu, S.Q. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China. J. China Coal Soc. 2019, 44, 1625–1636. (In Chinese) [Google Scholar]
- Liu, F.; Guo, L.F.; Zhao, L.Z. Research on coal safety range and green low-carbon technology path under the dual-carbon background. J. China Coal Soc. 2022, 47, 1–15. (In Chinese) [Google Scholar]
- Xie, H.P.; Wu, L.X.; Zheng, D.H. Prediction on the energy consumption and coal demand of China in 2025. J. China Coal Soc. 2019, 44, 1949–1960. (In Chinese) [Google Scholar]
- Zhao, Z.Q.; Shahrour, I.; Bai, Z.K.; Fan, W.X.; Feng, L.R.; Li, H.F. Soils development in opencast coal mine spoils reclaimed for 1-13 years in the West-Northern Loess Plateau of China. Eur. J. Soil Biol. 2013, 55, 40–46. [Google Scholar] [CrossRef]
- Wang, J.M.; Liu, W.H.; Yang, R.X.; Zhang, L.; Ma, J.J. Assessment of the potential ecological risk of heavy metals in reclaimed soils at an opencast coal mine. Disaster Adv. 2013, 6, 366–377. [Google Scholar]
- He, F.; Xu, Y.N.; Qiao, G.; Chen, H.Q.; Liu, R.P. Distribution characteristics of mine geological hazards in China. Geol. Bull. China 2012, 31, 476–485. (In Chinese) [Google Scholar]
- Evans, K.G.; Martin, P.; Moliere, D.R.; Saynor, M.J.; Prendergast, J.B.; Erskine, W.D. Erosion risk assessment of the Jabiluka Mine Site, Northern Territory, Australia. J. Hydrol. Eng. 2004, 9, 512–522. [Google Scholar] [CrossRef]
- Biemelt, D.; Schapp, A.; Kleeberg, A.; Grunewald, U. Overland flow, erosion, and related phosphorus and iron fluxes at plot scale: A case study from a non-vegetated lignite mining dump in Lusatia. Geoderma 2005, 129, 4–18. [Google Scholar] [CrossRef]
- Mukaro, E.; Nyakudya, I.W.; Jimu, L. Edaphic Conditions, Aboveground Carbon Stocks and Plant Diversity on Nickel Mine Tailings Dump Vegetated with Senegalia polyacantha (Willd) Seigler and Ebinger. Land Degrad. Dev. 2017, 28, 1641–1651. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.M.; Bai, Z.K.; Lv, C.J. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Bai, Z.K. The concept and measures of runoff-dispersing on water erosion control in the large dump of opencast mine. J. China Coal Soc. 2003, 28, 486–490. (In Chinese) [Google Scholar]
- Bai, Z.K.; Wang, Z.G.; Zhao, J.K.; Tong, Z.A.; Chen, J.J. Charateristics of soil erosion and its control in Antaibao open-pit mine. J. China Coal Soc. 1997, 22, 96–101. (In Chinese) [Google Scholar]
- Wei, Z.Y.; Hu, Z.Q.; Bai, Z.K. The loose-heaped-ground method of soil reconstruction on the stackpiles of open-pit coal mine. J. China Coal Soc. 2001, 38, 18–21. (In Chinese) [Google Scholar]
- Kleeberg, A.; Schapp, A.; Biemelt, D. Phosphorus and iron erosion from non-vegetated sites in a post-mining landscape, Lusatia, Germany: Impact on aborning mining lakes. Catena 2008, 72, 315–324. [Google Scholar] [CrossRef]
- Guo, M.M.; Wang, W.L.; Li, J.M.; Huang, P.F.; Bai, Y.; Shi, Q.H.; Kang, H.L.; Li, Y.F. Erosion on dunes of overburden and waste slag in Shenfu coalfield and prediction. Acta Pedol. Sin. 2015, 52, 1044–1057. (In Chinese) [Google Scholar]
- Yang, J.H.; Yu, X.; Yang, Y.; Yang, Z.Q. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining. PLoS ONE 2018, 13, e0192886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Bi, Y.L.; Chen, S.L.; Wang, J.; Han, B.; Feng, Y.B. Effects of Subsidence fracture caused by coal-mining on soil moisture content in semi-arid windy desert area. Environ. Sci. Technol. 2015, 38, 11–14. [Google Scholar]
- Li, Y.X.; Lv, G.; Wang, D.H.; Diao, L.F.; Li, C.H.; Dong, L.; Du, X.P. Morphological characteristics of ground fissures at surface coal mine dump in northern grassland of China. J. China Coal Soc. 2020, 45, 3781–3792. (In Chinese) [Google Scholar]
- Li, Y.X.; Wang, D.H.; Lv, G.; Diao, L.F.; Dong, L.; Du, X.P. A review of soil mass cracks characteristics and their eco-environmental effects in coal mining area. Chin. J. Ecol. 2018, 37, 273–283. (In Chinese) [Google Scholar]
- Díaz-Fernández, M.E.; Álvarez-Fernández, M.I.; Álvarez-Vigil, A.E. Computation of influence functions for automatic mining subsidence prediction. Comput. Geosci. 2010, 14, 83–103. [Google Scholar] [CrossRef]
- Li, J. Field Experimental Study and Numerical Simulation of Seepage in Saturated/Unsaturated Cracked Soil. Master’s Thesis, Hong Kong University of Science and Technology, Hong Kong, China, 2009. (In Chinese). [Google Scholar]
- Zhang, G.; Wang, R.; Qian, J.; Zhang, J.M.; Qian, J.G. Effect study of cracks on behavior of soil slope under rainfall conditions. Soils Found. 2012, 52, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Wang, H.J.; Wang, G.; Li, R.J.; Zhang, Z.; Huo, X.T. Field model experiments and numerical analysis of rainfall-induced shallow loess landslides. Eng. Geol. 2021, 295, 106411. [Google Scholar] [CrossRef]
- Kukemilks, K.; Wagner, J.F.; Saks, T.; Brunner, P. Conceptualization of preferential flow for hillslope stability assessment. Hydrogeol. J. 2017, 26, 439–450. [Google Scholar] [CrossRef]
- Riley, S.J. Aspects of the differences in the erodibility of the waste rock dump and natural surfaces, Ranger Uranium Mine, Northern Territory, Australia. Appl. Geogr. 1995, 15, 309–323. [Google Scholar] [CrossRef]
- Guo, W.Z.; Kang, H.L.; Yu, X.; Wang, W.L.; Tian, P. Influences of rock fragments on the hydraulics and erosion of concentrated runoff in steep spoil heaps on the Loess Plateau of China. Int. J. Sediment Res. 2022, 37, 553–562. [Google Scholar] [CrossRef]
- Lv, G.; Li, H.Z.; Dong, L.; Du, X.P.; Li, Y.X. Characteristics and source analysis of erosion sediment in dump of open pit coal mine based on REE tracing. J. China Coal Soc. 2022, 47, 225–234. (In Chinese) [Google Scholar]
- Su, H.; Wang, W.L.; Kang, H.L.; Bai, Y.; Guo, M.M.; Chen, Z.X. Erosion morphology and runoff and sediment yielding characteristics of platform slope system in opencast coal mine. Chin. J. Appl. Ecol. 2020, 31, 3194–3206. (In Chinese) [Google Scholar]
- Lv, G.; Li, Y.X.; Ning, B.K.; Wei, Z.P.; Wang, D.H. Soil erosion process of platform-slope system of dump under heavy rain. J. China Coal Soc. 2021, 46, 1463–1476. (In Chinese) [Google Scholar]
- Lv, G.; He, C.; Du, X.; Li, Y. Simulation Study on hydrological process of soil cracks in open-pit coal mine dump. Water 2022, 14, 2302. [Google Scholar] [CrossRef]
- Liu, H.; Lei, S.G.; Deng, K.Z.; Yu, Y.; Wang, Y.X. Research on ground fissure treatment filling with super-high-water material. J. China Coal Soc. 2014, 39, 72–77. (In Chinese) [Google Scholar]
- Peng, X.D.; Shi, D.M.; Jiang, D.; Wang, S.S.; Li, Y.X. Runoff erosion process on different underlying surfaces from disturbed soils in the Three Gorges Reservoir Area, China. Catena 2014, 123, 215–224. [Google Scholar] [CrossRef]
- Zhang, L.T.; Gao, Z.L.; Yang, S.W.; Li, Y.H.; Tian, H.W. Dynamic processes of soil erosion by runoff on engineered landforms derived from expressway construction: A case study of typical steep spoil heap. Catena 2015, 128, 108–121. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Wu, P.; Zhao, X. Application of neural network and grey relational analysis in ranking the factors affecting runoff and sediment yield under simulated rainfall. Soil Res. 2016, 54, 291. [Google Scholar] [CrossRef]
- Rahardjo, H.; Leong, E.C.; Rezaur, R.B. Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes under tropical rainfall. Hydrol. Process. 2010, 22, 506–523. [Google Scholar] [CrossRef]
- Krzeminska, D.M.; Bogaard, T.A.; Van Asch, T.W.J.; Van Beek, L.P.H. A conceptual model of the hydrological influence of fissures on landslide activity. Hydrol. Earth Syst. Sci. 2012, 16, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- He, Z.M.; Xiao, P.Q.; Jia, G.D.; Liu, Z.Q.; Yu, X.X. Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrol. Process. 2020, 34, 4904–4919. [Google Scholar] [CrossRef]
- Li, Y.X.; Lv, G.; Shao, H.B.; Dai, Q.H.; Du, X.P.; Dong, L.; Kuang, S.P.; Wang, D.H. Determining the influencing factors of preferential flow in ground fissures for coal mine dump eco-engineering. PeerJ 2021, 9, e10547. [Google Scholar] [CrossRef] [PubMed]
- Ahirwal, J.; Maiti, S.K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena 2016, 140, 155–163. [Google Scholar] [CrossRef]
- Bogner, C.; Mirzaei, M.; Ruy, S. Microtopography, water storage and flow patterns in a fine-textured soil under agricultural use. Hydrol. Process. 2013, 27, 1797–1806. [Google Scholar] [CrossRef]
- Guebert, M.D.; Gardner, T.W. Macropore flow on a reclaimed surface mine: Infiltration and hillslope hydrology. Geomorphology 2001, 39, 151–169. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Chen, H.S.; Xu, Q.X.; Jia, J.T.; Wang, S.; Wang, K.L. Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: Implications of field rainfall simulation experiments. Hydrol. Process. 2016, 30, 795–811. [Google Scholar] [CrossRef]
- Guo, Q.L.; Su, N.; Ding, B.; Yang, Y.S. Characteristics of preferential flow in the soil cracks of a coal mining subsidence area. Sci. Soil Water Conserv. 2018, 16, 112–120. (In Chinese) [Google Scholar]
- Yan, J.P.; Chen, X.Y.; Cheng, F.K.; Huang, H.; Fan, T.Y. Effect of soil fracture priority flow on soil ammonium nitrogen transfer and soil structure in mining area. Trans. Chin. Soc. Agric. Eng. 2018, 34, 120–126. (In Chinese) [Google Scholar]
- Yang, B. The Erosion Reduction Effect and Mechanism of Different Vegetation Allocation Patterns on the Slope of Mine Dump. Master’s Thesis, Northwest Agriculture and Forestry University, Yangling, China, 2019. (In Chinese). [Google Scholar]
- Zheng, K.H.; Luo, Z.Q.; Luo, C.Y.; Wen, L. Layered gravel soil slope stability of a waste dump considering long-term hard rain. Chin. J. Eng. 2016, 38, 1204–1211. (In Chinese) [Google Scholar]
- Pu, X.; Wan, L.; Wang, P. Initiation mechanism of mudflow-like loess landslide induced by the combined effect of earthquakes and rainfall. Nat. Hazards 2021, 105, 3079–3097. [Google Scholar] [CrossRef]
- Xin, P.; Shuren, W.U.; Shi, J.; Wang, T.; Shi, L. Comment on the progress in, problems and countermeasure on mudflow induced by rainfall. Geol. Rev. 2015, 61, 485–493. [Google Scholar]
- Xu, X.Z.; Liu, Z.Y.; Wang, W.L.; Zhang, H.W.; Yan, Q.; Zhao, C.; Guo, W.Z. Which is more hazardous: Avalanche, landslide, or mudslide? Nat. Hazards 2015, 76, 1939–1945. [Google Scholar] [CrossRef]
- Picarelli, L.; Olivares, L.; Comegna, L.; Damiano, E. Mechanical aspects of flow-like movements in granular and fine grained soils. Rock Mech. Rock Eng. 2008, 41, 179–197. [Google Scholar] [CrossRef]
Test | Dimension (cm) | Ground Fissure Depth (cm) | Ground Fissure Volume (cm3) | Platform Catchment Area (cm2) |
---|---|---|---|---|
GF1 | 110 × 50 × 50 | 5 | 375 | 2000 |
GF2 | 110 × 50 × 50 | 10 | 750 | 2000 |
GF3 | 110 × 50 × 50 | 15 | 1250 | 2000 |
GF4 | 110 × 50 × 50 | 20 | 1500 | 2000 |
Plots | Parameter | Flow Velocity | Flow Shear Stress | Runoff Power | Reynolds Number | Froude Number | Darcy–Weisbach Roughness Coefficient |
---|---|---|---|---|---|---|---|
GF1 | R | −0.243 | 0.427 | 0.330 | 0.496 b | −0.631 a | 0.680 a |
p | 0.301 | 0.061 | 0.155 | 0.026 | 0.003 | 0.001 | |
n | 20 | 20 | 20 | 20 | 20 | 20 | |
GF2 | R | 0.792 a | 0.984 a | 0.988 a | 0.447 b | 0.596 a | −0.485 b |
p | 0.000 | 0.000 | 0.000 | 0.048 | 0.006 | 0.030 | |
n | 20 | 20 | 20 | 20 | 20 | 20 | |
GF3 | R | 0.639 a | -0.206 | 0.060 | 0.026 | 0.438 | −0.560 b |
p | 0.002 | 0.384 | 0.801 | 0.915 | 0.054 | 0.010 | |
n | 20 | 20 | 20 | 20 | 20 | 20 | |
GF4 | R | 0.774 a | 0.423 | 0.654 a | 0.701 a | 0.373 | −0.429 |
p | 0.000 | 0.063 | 0.002 | 0.001 | 0.106 | 0.059 | |
n | 20 | 20 | 20 | 20 | 20 | 20 | |
All the fissure | R | 0.764 a | 0.659 a | 0.771 a | 0.709 a | 0.327 a | −0.326 a |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.003 | |
n | 80 | 80 | 80 | 80 | 80 | 80 |
Flow Velocity | Flow Shear Stress | Runoff Power | Reynolds Number | Froude Number | Darcy-Weisbach Roughness Coefficient |
---|---|---|---|---|---|
0.781 | 0.851 | 0.866 | 0.801 | 0.763 | 0.716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lv, G.; Wang, D.; Su, W.; Wei, Z. Erosion Failure of Slope in a Dump with Ground Fissure under Heavy Rain. Water 2022, 14, 3425. https://doi.org/10.3390/w14213425
Li Y, Lv G, Wang D, Su W, Wei Z. Erosion Failure of Slope in a Dump with Ground Fissure under Heavy Rain. Water. 2022; 14(21):3425. https://doi.org/10.3390/w14213425
Chicago/Turabian StyleLi, Yexin, Gang Lv, Daohan Wang, Wenxuan Su, and Zhongping Wei. 2022. "Erosion Failure of Slope in a Dump with Ground Fissure under Heavy Rain" Water 14, no. 21: 3425. https://doi.org/10.3390/w14213425
APA StyleLi, Y., Lv, G., Wang, D., Su, W., & Wei, Z. (2022). Erosion Failure of Slope in a Dump with Ground Fissure under Heavy Rain. Water, 14(21), 3425. https://doi.org/10.3390/w14213425