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Abstract: The choice of Z-R relationship is an essential source of error in radar Quantitative Pre-
cipitation Estimation (QPE). A QPE algorithm combining the Optimization process of precipitation
Classification and Dynamical adjustments (OCD) is proposed to improve the accuracy of QPE in
Yinchuan city, China. A detailed evaluation and study of Z = 300R1.4 (fixed Z-R), Optimization
Processing (OP), Optimization processing of Dynamical Adjustments (ODA) and OCD were per-
formed using various evaluation metrics. The results show that ODA and OCD can significantly
reduce the error of QPE, with OCD being the best estimator, reaching a correlation coefficient (CC) of
0.7 and reducing mean absolute error (MAE) and root mean square error (RMSE) by 31% and 34%,
respectively. OCD outperforms other algorithms in terms of MAE and RMSE for different rain rates
(RR), and the various assessment metrics at hourly scales are also more concentrated in reasonable
intervals. OP gives fair results at weaker rain rates (0.2 ≤ RR < 8 mm/h) but underestimates rainfall
more incorrectly at stronger rain rates (8 mm/h ≤ RR). Both the OCD and ODA provide a more
significant improvement in the estimation of the area and magnitude of strong rainfall, with the
OCD providing a better description of the local characteristics of the rainfall distribution, further
demonstrating the advantages of the ODA.

Keywords: Quantitative Precipitation Estimation; Optimization processing; precipitation classification

1. Introduction

Precipitation is an essential driver of the earth’s energy and water cycle, a direct
source of recharge for regional water resources, and has a dominant place in studies
related to hydrology and meteorology [1]. Heavy precipitation weather process is a major
driving factor of catastrophic floods, and its significant spatio-temporal variability and
sudden occurrence are the reasons leading to difficulties in rainstorm flood prediction and
simulation [2–4]. Quantitative Precipitation Estimation (QPE) based on weather radar can
quickly obtain the spatial distribution of regional precipitation, with the advantages of
high spatial and temporal resolution, wide observation range, and spatial continuity of
observation [5,6].

Radar Quantitative Precipitation Estimate is mainly based on the conversion rela-
tionship between radar reflectivity factor (Z, mm6·mm−3) and rain rates R (mm·h−1) [7].
Marshall and Palmer proposed in the 1940s to describe the distribution of the Drop Size
Distribution (DSD) using the M-P distribution and gave the classical exponential relation-
ship between radar reflectivity factor Z and rain rates R (Z = 300R1.4) [8]. In mainland
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China, the QPE system of the China New Generation Weather Radar (CINRAD) system
also obeys this classical fixed Z-R relationship. The QPE of the WSR-88D radar system
obeys a Z-R relationship of Z = 300R1.4 in temperate regions and Z = 250R1.2 in tropi-
cal regions [9,10]. However, Z-R relationships often produce different parameter values
in different regional and climatic environments, so the choice of parameters in the Z-R
relationship is a tremendous influence on the accuracy of the QPE [11–13].

Early research focused on the use of multiple methods to fit to obtain Z-R relationships
for different regions. The probabilistic pairing method treats the albedo factor Z and the
rainfall intensity R as two random variables in a rainfall event and determines the Z-R
relationship based on the principle of equal probability [14]. Although the probabilistic
pairing method reduces the rainfall estimation error to some extent, it requires a high
sample data size and is sensitive to the effects of anomalous data [15]. The optimization
process method first determines an initial Z-R relationship and a judgment function and
then determines a Z-R relationship that minimizes the judgment function by stepwise
iteration [16]. Alternatively, the Z-R relationship can be obtained by fitting high-accuracy
observations of reflectivity factor Z and rain rates R using a raindrop spectrometer [17].
However, since A and b in the Z-R relationship vary with geographical location and climatic
conditions, there are significant differences in different rainfall types, rainfall intensity, and
even the same rainfall field. A single Z-R relationship is difficult to accurately reflect the
complex situation of real rainfall [18–20].

A potentially more accurate and physically meaningful approach is to classify radar
echoes in real time, using a variety of Z-R relationships for rainfall estimation during the
rainfall process [21]. A commonly used approach is the rainfall classification method, which
at its core, uses radar echo characteristics to classify rainfall types (such as convective or
stratiform rainfall) and adopt different Z-R relationships for rainfall estimation [22–24].
This is mainly due to the fact that there are significant differences in raindrop particle
distribution characteristics between different rainfall types, which dictate that the Z-R
relationship should be matched to the rainfall types [25].

The radar reflectivity factor is proportional to the sixth power of the raindrop diameter,
and a higher radar reflectivity factor represents the potential occurrence of strong rainfall [8].
Therefore, some studies segment the radar reflectivity factor based on its intensity and
then fit the Z-R relationship for each intensity interval to finally obtain the precipitation
estimate [26–29]. For example, the dynamical Z-R relationship combined with the top height
classification of the echoes, which takes into account the evolution of the Z-R relationship
in time and space, shows better precipitation estimation [30]. This is mainly because the
echo top height is determined by the velocity of updrafts in storms, which can better reveal
the development of storm and precipitation systems and effectively improve the accuracy
of QPE. However, the above methods still lack detailed comparative evaluation and are
more difficult to deploy in actual operational operations. In order to better exploit the
advantages of various QPE algorithms, this study proposes a dynamical Z-R relationship
based on precipitation classification to improve the accuracy of QPE.

The main structure of this study is as follows: Firstly, a radar-rain gauge database
is constructed and divided into a training set and a test set. Second, a dynamical Z-R
relationship QPE algorithm based on precipitation classification is constructed using the
excellent relationship between the reflectivity factor Z and the Vertically Integrated Liquid
(VIL). In addition, various combination algorithms are also established. Finally, a detailed
comparative evaluation and analysis of these algorithms are carried out.

2. Study Area and Data
2.1. Study Area

The study area is located in Yinchuan city, Shizuishan city, and the surrounding areas
in the Ningxia Hui Autonomous Region. The geographical distribution is shown in Figure 1.
The geographical coordinates of the study area are located at 105◦–108◦ E and 37◦–40◦ N.
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The altitude is between 1000–3600 m, gradually decreasing from west to east, with the
eastern foot of Helan Mountain in the northwest and the Yinchuan Plain in the central part.

Water 2022, 14, x FOR PEER REVIEW 3 of 15 
 

 

(VIL). In addition, various combination algorithms are also established. Finally, a detailed 
comparative evaluation and analysis of these algorithms are carried out. 

2. Study Area and Data 
2.1. Study Area 

The study area is located in Yinchuan city, Shizuishan city, and the surrounding areas 
in the Ningxia Hui Autonomous Region. The geographical distribution is shown in Figure 
1. The geographical coordinates of the study area are located at 105°–108° E and 37°–40° 
N. The altitude is between 1000–3600 m, gradually decreasing from west to east, with the 
eastern foot of Helan Mountain in the northwest and the Yinchuan Plain in the central 
part. 

According to the weather stations, the average annual temperature in the study area 
is 9.5 °C, with the lowest temperatures occurring in January and extreme lows below −22 
°C. Annual sunshine hours range between 2800 and 3100 h, with average annual evapo-
ration of 1890 mm and average annual precipitation of 171 mm, with June, July, August, 
and September accounting for 77% of the annual precipitation. The climate is character-
ized by windy and low rainfall, high evaporation, long sunshine hours, long winters and 
short summers, and large temperature differences between day and night. Due to the to-
pography and subsurface, the eastern foothills of the Helan Mountains region are highly 
susceptible to extreme rainfall events [31]. Natural disasters such as flash floods, mud-
slides, and landslides caused by extreme rainfall have caused serious damage every year. 

 
Figure 1. Spatial map showing the elevation of the study area, together with rain gauges and 
weather radar. 

2.2. Data 
As shown in Table 1, the rain gauge data in this study were derived from historical 

observations of 10 rainfall events collected in 2018–2019 at UTC. The geographical distri-
bution of the rain gauges is shown in Figure 1, with a temporal resolution of 60 min and 
detection accuracy of 0.2 mm. The weather radar is a C-band Doppler weather radar from 

Figure 1. Spatial map showing the elevation of the study area, together with rain gauges and
weather radar.

According to the weather stations, the average annual temperature in the study area is
9.5 ◦C, with the lowest temperatures occurring in January and extreme lows below −22 ◦C.
Annual sunshine hours range between 2800 and 3100 h, with average annual evaporation
of 1890 mm and average annual precipitation of 171 mm, with June, July, August, and
September accounting for 77% of the annual precipitation. The climate is characterized
by windy and low rainfall, high evaporation, long sunshine hours, long winters and short
summers, and large temperature differences between day and night. Due to the topography
and subsurface, the eastern foothills of the Helan Mountains region are highly susceptible
to extreme rainfall events [31]. Natural disasters such as flash floods, mudslides, and
landslides caused by extreme rainfall have caused serious damage every year.

2.2. Data

As shown in Table 1, the rain gauge data in this study were derived from historical ob-
servations of 10 rainfall events collected in 2018–2019 at UTC. The geographical distribution
of the rain gauges is shown in Figure 1, with a temporal resolution of 60 min and detection
accuracy of 0.2 mm. The weather radar is a C-band Doppler weather radar from Yinchuan
station in China’s New Generation Weather Radar (CINRAD) system, and the data time is
consistent with the rain gauge time. The radar data is a 3D regularized grid product after
quality control and interpolation. The radar data have a temporal resolution of approxi-
mately 6 min, a horizontal resolution of 1 km × 1 km, and a 3 km height layer selected in
the vertical direction, with weaker reflectivity of less than 10 dBZ being disregarded.

The radar and rain gauge data should be matched to each other in time and space
to build and evaluate the QPE algorithm more accurately. Firstly, the reflectivity factor
Z at the corresponding grid point of the rain gauge is determined according to the time,
latitude, and longitude of the rain gauge, ensuring that several reflectivity factor profiles
are collected for each hour of the rain gauge. Secondly, the average value of the reflectivity
factor Z at that grid point and the eight surrounding grid points at any given moment is
obtained. Finally, the mean value is used as the radar-echo intensity value at the location of
the rain gauge, thus constituting the radar-rain gauge database [32].
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Table 1. Details of 10 rainfall events.

Event Date Start Time Duration (hours) Max Rain
Rates (mm/h)

Average Rain
Rates (mm/h) Type Note

1 12 April 2018 5:00 14 13.4 1.25 Stratiform train
2 19 April 2018 10:00 15 28.4 1.87 Stratocumulus train
3 18 May 2018 17:00 8 8 1.21 Stratiform test
4 30 June 2018 19:00 24 37.6 2.37 Convective train
5 22 July 2018 11:00 29 53 4.83 Convective test
6 15 August 2018 9:00 41 25.2 1.23 Stratocumulus train
7 26 April 2019 11:00 7 27.6 2.04 Stratocumulus test
8 18 June 2019 23:00 39 3.4 0.49 Stratiform test
9 11 September 2019 23:00 22 5.6 1.58 Stratiform test
10 18 September 2019 12:00 10 3 0.57 Stratiform train

A total of 209 h of data were collected, and a database of 12,291 radar-rain gauges was
established. As shown in Table 1, a total of 104 h of data from five rainfall events were
selected to construct the QPE algorithm, and the remaining 105 h of data were used to test
the performance of the algorithm.

3. Methodology
3.1. Optimization Process (OP)

Optimization Processes (OP) have achieved better results in fitting the Z-R relationship
and have been widely used. In this study, the optimization method will be used to obtain
the appropriate Z-R relationship. First, a Z-R relationship (Z = ARb) is assumed, and a
number of reflectivity factors in any hour are converted into radar-estimated rainfall Ri and
integrated in time to obtain the hourly radar estimate Ri. Then, a Target Function (TF) is
selected, the radar estimate Ri and rain gauge observation Gi at each point are substituted
into the TF, and the parameters A and b in the Z-R relationship are adjusted by cycling.
Finally, parameters A and b are optimal when the target discriminant function TF reaches
its minimum value.

TF = min
{∫ n

i=1
(R i −Gi)

2+ | Ri −Gi |
}

. (1)

where n is the number of rain gauge-radar pairs, and i is their serial number. Parameters A
and b are limited to take values in the range (10–1200) in steps of 0.1 and the parameter b
in the range (0.5–5) in steps of 0.1 when performing numerical calculations to ensure the
actual calculation efficiency.

3.2. Optimization Process of Dynamical Adjustment (ODA)

The variation of rainfall intensity is highly correlated with radar-echo intensity, and
different radar-echo intensities may actually represent different rainfall intensities, so the
corresponding Z-R relationship should be used in different radar-echo intensity ranges.
First, the radar-rain gauge data pairs are divided into different intensity intervals using
the hourly reflectivity factor average (dBZhour_average) in 10 dBZ intervals. Then, a set of
Z-R relationships for the different intervals is calculated by OP. Finally, this set of Z-R
relationships is used to obtain radar rainfall estimates.

The hourly reflectivity factor mean (dBZhour_average) is calculated as follows:

dBZhour_average =
dBZ1 +dBZ2 + . . . . . .+dBZn

n
. (2)

where n is the number of radar reflectivity factors in hours. Compared to the full range
of radar-echo intensity Z-R relationship optimization, this method divides the radar-echo
intensity into multiple intervals to optimize the Z-R relationship and then uses OP to obtain
the Z-R relationship in different radar-echo intensity ranges to improve the QPE accuracy.
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3.3. Optimization Process of Precipitation Classification and Dynamical Adjustments (OCD)

Water vapor content is necessary for the production of clouds and precipitation.
Dramatic changes in water vapor convergence often lead to disturbances in the spatial
structure of the atmosphere and are an important driver for the occurrence and evolution of
many catastrophic weather processes. The richer the water vapor content of the atmosphere,
the more unstable it is, and the more unstable the atmosphere is prone to convective rainfall
under the action of weather systems. Therefore, Vertically Integrated Liquid (VIL) in the
atmosphere is an important indicator of the likelihood of convective rainfall [33].

Considering that radar reflectivity factors can be well-correlated with liquid water
content, the use of reflectivity factors to differentiate between convective and stratified
rainfall is a reasonable and convenient to implement method [34]. In this study, stratiform
and convective rainfall are distinguished according to the magnitude of VIL. The Liquid
Water (LW) is first calculated using Equation (3), and the VIL is obtained by doing the
accumulation of LW in the vertical direction (Equation (4)). In order to better classify the
radar-rain gauge data, it is stipulated that when the vertical liquid VIL is greater than
3 kg/m2 at any time, the radar-rain gauge data in that hour is identified as convective
precipitation. Otherwise, it is stratocumulus precipitation.

LW = 3.44 × 103Z4/7 (3)

VIL =∑ n
i=1LWi × DBi. (4)

where DB is the altitude (km) at which the reflectivity factor is located, VIL is in kg/m2 [34],
and n is the altitude layer of the radar data. Through the above operations, radar-rain
gauge data under convective and stratiform rainfall types can be obtained. Then ODA is
used to complete the dynamic adjustment and optimization processes for the two types
of rainfall separately, and finally, a QPE algorithm combining the Optimization process of
precipitation Classification and Dynamical adjustments (OCD) can be established.

Figure 2 gives a schematic diagram of the processes of OCD, ODA, and OP. It can be
seen that OCD actually uses two classification methods, automatic rainfall type recognition
classification, and dynamic adjustment, and combines them with an Optimization Process
(OP) to create the QPE algorithm.
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3.4. Evaluation Indicators

The Correlation Coefficient (CC) is used to reflect the closeness of the correlation
between radar rainfall values and rain gauge observations.

CC =
∑m

i=1 ∑n
j=1

(
R(i,j) −

−
Ri

)(
G(i,j) −

−
Gi

)
√

∑m
i=1 ∑n

j=1

(
R(i,j) −

−
Ri

)2(
G(i,j) −

−
Gi

)2
(5)

R(i, j) is the jth radar estimate at time i, and G(i, j) is the corresponding surface rain
gauge observation; m is the total number of rainfall hours involved in the assessment, and
n is the total number of rain gauges involved in the assessment. The range of values for
CC is [−1, 1]. Larger values indicate that the radar estimate is closer to the rain gauge
observation and the algorithm is more effective. Otherwise, they are less similar.

Bias Ratio (BIAS) evaluates the difference in total rainfall by calculating the ratio
of the total radar estimate to the total rain gauge observation. The closer the BIAS is
to one, the closer the radar estimate is to the rain gauge observation. Greater than one
indicates an overestimate of the radar, while less than one indicates an underestimate of
the apparent radar.

BIAS =
∑m

i=1 ∑n
j=1 R(i,j)

∑m
i=1 ∑n

j=1 G(i,j)
(6)

Mean Absolute Error (MAE) indicates the mean value of the absolute error between
the radar estimate and the rain gauge observation. The lower the MAE value, the lower the
error between the radar estimate and the rain gauge observation.

MAE =
1

m× n ∑ m
i = 1 ∑ n

j = 1

∣∣∣R(i,j) −G(i,j)

∣∣∣ (7)

Root Mean Square Error (RMSE) measures the deviation between the observed value
and the rain gauge observation.

RMSE =

√
1

m× n ∑ m
i = 1 ∑ n

j = 1

(
R(i,j) −G(i,j)

)2
(8)

4. Results and Discussion
4.1. Scatter Distribution of Inversion Results by Algorithms

The results for the fixed Z-R relationship, OP, ODA, and OCD on the test set are given
in Figure 3. It can be seen that compared to the fixed Z-R relationship, OP improves the
estimation of rain gauge observations, with the CC improving from 0.35 to 0.41, MAE
decreasing from 1.72 to 1.61, and RMSE decreasing from 4.82 to 4.65. The scatter distribution
of OP is loose and not significantly regular. There is no significant change compared to the
fixed Z-R relationship, and the improvement effect of OP is not significant. The number of
samples with anomalously high or low OP is very large, with most of the data lying below
the 45◦ line and the slope of the fitted curve slope k being 0.16. The OP has a significant
underestimation of rainfall.

Compared to the fixed Z-R relationship and OP, both ODA and OCD show good
improvements in all assessment indicators, with OCD achieving 0.7 and 0.65 for CC and
BIAS, respectively, and 31% and 34% reductions in MAE and RMSE, respectively, all of
which are better than ODA. The results of OCD have a greater linear relationship with rain
gauge observations. Most of the sample data can be evenly distributed on both sides of the
45◦ line, and the rainfall estimates are better.
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Overall, both OCD and ODA are effective in improving QPE accuracy, with ODA
having better rainfall estimation and being more trusted and used. This is because ODA
takes into account the physical characteristics of the radar echoes, classifies the rainfall, and
classifies the reflectivity factor of the sample data before fitting the Z-R relationship, thus,
significantly improving the rainfall estimation.

4.2. Evaluation Indicators Distribution of the Algorithms

Figure 4 gives the distribution of fixed Z-R relationship, OP, ODA, and OCD for each
evaluation metric in the test set (105 h). For each box, the center of the box indicates the
mean, the horizontal line indicates the median, and the top and bottom edges of the box
are the 25th and 75th percentiles. For most of the fixed Z-R relationships and OP, the
CCs were in the range of 0.2–0.4, while the CC for ODA and OCD were largely in the
range of 0.4–0.8, with the mean and median for OCD, in particular, remaining around 0.6,
indicating that the results for ODA and OCD were more stable and reliable. For BIAS, all
four algorithms have more outliers, with OCD having the best results, with BIAS mostly
staying between 0.5–1.1 and a median of 0.71. The fixed Z-R relationship and OP have the
next best performance, with BIAS distributed between 0.3–1.1. OP has the worst results,
with BIAS mainly distributed between 0.3–0.7, indicating that the rainfall underestimation
of OP. The phenomenon is very obvious.
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For MAE and RMSE, the mean and median values of OCD are the lowest, with OCD
being more concentrated in the lower areas, indicating that OCD has the lowest error and
demonstrates good rainfall estimation ability. This suggests that the uncertainty in ODA
is somewhat higher, which may be due to the fact that some of the higher or lower radar
reflectivity factors do not match well with their corresponding surface rainfall when the
radar reflectivity factor is graded, resulting in biased rainfall estimates. For the fixed Z-R
relationship, the MAE and RMSE perform the least well, with a relatively wide distribution
range along with the highest mean and median values, suggesting that fixed Z-R introduces
significant bias in rainfall estimates.

4.3. Performance of Algorithms under Different Rain Rates

To better investigate the fixed Z-R relationship, we examined the performance of OP,
ODA, and OCD under different rain rates (RR). The data in the test set were classified
into samples according to R1 (0.2 ≤ RR < 2.5 mm/h), R2 (2.5 ≤ RR < 8 mm/h), R3
(8 ≤ R < 16 mm/h), R4 (16 ≤ RR < 25 mm/h) and R5 (25 mm/h ≤ RR). The results of MAE
and RMSE for different algorithms for the five scenarios are shown in Figure 5.

It can be seen that the MAE and RMSE of ODA and OCD are both lower than the
fixed Z-R relationship and OP under different rain rates, with the MAE and RMSE of OCD
being significantly lower than those of ODA, indicating that OCD has better stability and
better rainfall estimation capability under different rain rates. The results of ODA are not
so obvious, especially for weaker rainfall (R1 and R2), and the estimation ability of ODA
for weaker rainfall needs to be further improved.

OP has a fair estimation capability for weaker rainfall (R1 and R2), with both MAE and
RMSE slightly lower than the fixed Z-R relationship, but both MAE and RMSE for stronger
rainfall (R3, R4, and R5) are higher for OP than the fixed Z-R relationship, indicating
that OP leads to greater errors. This is due to the fact that the OP will focus more on the
optimum in the presence of a large amount of weaker rainfall data during the search for
parameters A and b and ignore the stronger rainfall data, which is eventually reflected
in the OP’s wrong estimation of the stronger rainfall. In practical operational work, one
would prefer to obtain optimal estimates of stronger rainfall rather than weaker rainfall,
and the inappropriate use of OP may exacerbate this phenomenon.
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4.4. Case Analysis of Rainfall Event

Studying the hourly evolution characteristics of different QPE algorithms in rainfall
events can intuitively evaluate the performance of QPE algorithms. Therefore, two rain
gauges with longer recorded data during a convective rainfall event (22 July 2018, number
5) were selected to carry out an evaluation of the effect of fixed Z-R relationship, OP, ODA,
and OCD, and the results are shown in Figures 6 and 7.

As can be seen from Figure 6a, the actual rain rates at the beginning of the rainfall
process (1–5 h) are all below 5 mm/h, but the fixed Z-R relationship produces an anomalous
overestimation of rainfall, corresponding to a very significant change in the cumulative
rainfall curve at this time in Figure 6b. In contrast, by the middle and late stages of the
rainfall process (12–16 h), the fixed Z-R relationship produces a much lower estimate of
strong rainfall than the rain gauge. Similar results are clearly shown in Figure 7a for another
rain gauge, where the fixed Z-R relationship is estimated to be 10 mm for 2 mm of rainfall at
4 h, and the false underestimation of strong rainfall is also very evident later in the rainfall
process. This suggests that the fixed Z-R relationship overestimates rainfall at low rain
rates and underestimates it at higher rain rates.

OP is relatively close to the rain gauge observations at the beginning of the rainfall
process and fits well with the changes in the cumulative rainfall curve, with the OP
achieving better results at lower rain rates. However, in the middle and late stages of the
rainfall process, OP estimates deviate extremely remarkably, even exceeding the fixed Z-R
relationship. This indicates that OP does not capture the variability of strong rainfall well,
which better validates the analysis in Section 4.3 that OP has a poor ability to estimate
strong rainfall.
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As can be seen from Figures 6 and 7, the ODA and OCD rainfall estimates for dif-
ferent periods are significantly less biased than the fixed Z-R relationship and OP, with
no abnormal overestimation or underestimation, and the cumulative rainfall curves are
closer to the rain gauge observations, indicating that ODA and OCD have more stable and
accurate rainfall estimation capabilities. In the middle and late stages of rainfall, ODA is
more biased at some points, while OCD is closer to the rain gauge observations, indicating
that OCD has a better estimate of strong rainfall and demonstrating the importance of
precipitation classification.

Overall, ODA and OCD can effectively improve the accuracy and stability of OP by fur-
ther combining precipitation classification and dynamical adjustment methods, especially
OCD is more capable of estimating strong rainfall events. However, all four algorithms
produce different degrees of underestimation of the final cumulative rainfall, with OCD,
which has the best rainfall estimation capability, also underestimating 12.6% and 7.4% of
the rainfall, and further improvement of the algorithms is expected in subsequent work.

Radar Quantitative Precipitation Estimate can better reflect the spatial distribution
characteristics of rainfall, which is one of the advantages of radar equipment detection,
and the description of spatial rainfall distribution by radar rainfall is also an important
component in the assessment of the effectiveness of radar rainfall inversion. Therefore,
the inverse distance weighting method was used to spatially interpolate the accumulated
rainfall observed by the rain gauge, and the results obtained were used as the true rainfall
field and compared with the fixed Z-R relationship, OP, ODA, and OCD, to analyze the
advantages and disadvantages of the four algorithms in describing the spatial distribution
of regional accumulated rainfall, and the results are shown in Figure 8.
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Firstly, it can be seen that the regional cumulative rainfall shows a distribution char-
acteristic of gradually increasing from south to north, and the area of strong rainfall is
mainly distributed around the eastern foothills of the Helan Mountains (38◦40′–39◦20′ N,
106◦–106◦20′ E), with the cumulative rainfall in most areas exceeding 100 mm. The fixed
Z-R relationship and OP do not portray the central distribution of strong rainfall well.
OCD and ODA provide a significant improvement in the regional distribution and mag-
nitude of strong rainfall, as well as a better description of the local characteristics of
rainfall distribution.

ODA further demonstrates the advantages of ODA by providing a better and more
accurate estimate of the overall spatial distribution of rainfall, although it does not reflect
the distribution of a small proportion of strong rainfall overall.

5. Conclusions

The purpose of this study is to construct a dynamic Z-R relationship based on precipi-
tation classification to improve the accuracy of QPE, and a comparative study with some
existing QPE algorithms is conducted, with the following main findings.

OP can improve the QPE errors brought about by the fixed Z-R relationship, but the
improvement is not significant (MAE and RMSE are reduced by 6% and 3%, respectively).
OP has a large number of abnormally high or abnormally low data, which significantly
underestimates rainfall. ODA and OCD significantly reduce the QPE error, with OCD
being the best estimate, achieving a CC of 0.7 and a 31% and 34% reduction in MAE and
RMSE, respectively.

For hourly CC and BIAS, OCD concentrates the distribution in a more reasonable
interval, with both mean and median significantly better than other QPE algorithms. The
distribution of BIAS for ODA concentrates in the range of 0.3–0.6, which is worse than the
fixed Z-R relationship and OP, indicating higher uncertainty for ODA. For both hourly
MAE and RMSE, OCD is concentrated in the region of lower values, which indicates that
OCD has the lowest error and OCD is the more reliable algorithm.

The MAE and RMSE of both ODA and OCD are lower than those of the fixed Z-R
relationship and OP for different rain rates, with the MAE and RMSE of OCD being
significantly lower than those of ODA, indicating that OCD has better stability and QPE
capability. The estimation capability of OP for weaker rainfall is fair, but the estimation
error of OP for stronger rainfall is higher than that of the fixed Z-R relationship. This is due
to the fact that the OP may fall into a local optimum during the search for parameters A
and b. The OP will focus more on the optimum, where there is a large amount of weaker
rainfall, and ignore the stronger rainfall.

If fixed the Z-R relationship will produce the overestimation for stronger rainfall
and the underestimation for weaker rainfall. The OP will not capture the variability of
stronger rainfall well and will underestimate rainfall even more incorrectly for stronger
rainfall. OCD is the best-performing of the four QPE algorithms in terms of accuracy
and stability, and the distribution and magnitude of strong rainfall areas are significantly
improved for both OCD and ODA. Both have improved more significantly, with OCD
having a better description of the local characteristics of the rainfall distribution, further
reflecting the advantages of ODA. However, four QPE algorithms produce different degrees
of underestimation of cumulative rainfall, and we will also further improve the capabilities
of the algorithms in subsequent work.
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