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Abstract: The emerging water crisis in India can be preempted by improving watershed management.
The data scare regions need open access satellite observations to mitigate watershed problems. The
water accounting plus (WA+) and open access earth observation datasets were applied to quantify
the beneficial and non-beneficial water consumption in the Betwa River basin, Central India. The
PERSIANN and CHIRPS precipitations were evaluated. Based on significant statistical relations
with IMD rainfall, CHIRPS was found to be the best precipitation product. The seasonal water
yield from PERSIANN depicts that the high water yield in the basin is associated with the July and
August months of the monsoon season, with water yields of 240 mm/month and 120 mm/month,
respectively, while CHIRPS showed higher water yields during the monsoon season, especially in
July and August, with water yield amounts of 290 mm/month and 200 mm/month, respectively. The
largest water consuming land use class is irrigated crops–cereals, which cover 62.06% of the total area
of the basin. The amount of non-beneficial ET is almost twice the beneficial ET. The outcomes of this
research will be helpful for sustainable water management, strategy development, and policy making.

Keywords: water accounting plus; beneficial ET; sustainable water management; satellite data;
river basin

1. Introduction

Water is a vital and finite natural resource. The water demand for different sectors, such
as agriculture, domestic, industry, and energy, is continuously rising to meet the needs of
the growing population [1]. Within the last 100 years, global water demand has escalated by
600% [2]. The shrinking supply and expanding demand of fresh water, due to rapid growth
in population, changing consumption patterns, and socio-economic development around
the world, poses formidable threats to the global fresh water systems [3]. Hence, managing
water resources is essential for sustaining lives on earth, socio-economic development, a
healthy environment, and the well-being of humans [4,5].

Water accounting opts for the water balance approach; hence, various domains of
inflows and outflows must be specified, according to the mass conservation approach [6].
It also helps recognize the intrinsic causes of problems pertinent to the water and provides
viable data and information for resolving obstacles in a particular area over time [7]. River
basins are natural, unique, hydrologically self-contained, and fundamental entities of water
resource planning and management [8–10]. They can be used to estimate the water budget
(water supply, demand, and storage) of regional water systems. Among the different water
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budgeting approaches, as described by Godfrey and Chalmers [11] and Karimi [12], nowa-
days, a new framework, namely water accounting plus (WA+), is being widely used [13] for
water accounting in river basins. The International Water Management Institute (IWMI)-
based WA tool, developed by Molden and Sakthivadivel [6], and the recently designed
WA+ framework replaced Molden [14]. IHE-Delft has developed the WA+ framework in
partnership with the World Water Assessment Program (WWAP), IWMI and FAO. It works
based on the method introduced by the IWMI [14]. WA+ is a novel water accounting frame-
work that relies on remote sensing data and combines the depletion method (e.g., IWMI
Water Accounting) of water accounting with the flow method (e.g., UN SEEA-WATER) of
water accounting [13]. The WA+ works on the water balance principle [15] and has been
specifically designed and built to exploit remote sensing measurements of hydrological
variables and land use in a spatio-temporally distributed manner. WA+ summarizes the
status of water resources in a basin using easily understandable spatial maps, tables, and
sheets. WA+ describes the water resource of river basins based on eight fact sheets [13].

Bastiaanssen and Chandrapala [16], Simons et al. [17], Karimi et al. [12], Shilpakar et al. [18],
Dost et al. [19], and Karimi et al. [13] used earth observation data to estimate the water ac-
counts of river basins in Sri Lanka, Okavango basin, Nile basin, East Rapti basin, Awash
basin, and Indus basin, respectively. The IHE Delft Institute with FAO has employed WA+
over the Nile River basin for a water accounting study using remotely sensed datasets [20],
and evapotranspiration (ETa) at the basin level was often recorded higher than the precipi-
tation from 2009 to 2019. The study also unveils that, from the water resource perspective,
the potential for agricultural expansion is limited in the Nile basin. The FAO and IHE
Delft [20] have also used WA+ in the Niger River basin and found a balanced water budget
throughout 2009–2015, despite the variability in the amount and distribution of the evapo-
transpiration and precipitation at the basin level. FAO and IHE Delft [20] have used WA+
in the basin of Awash River, Ethiopia. Analysis revealed that the spatial pattern of actual
evapotranspiration was almost consistent for the whole basin, except at the highlands,
where actual evapotranspiration exceeds precipitation in the basin. FAO and IHE Delft [20]
have employed WA+ for a water accounting study in the Jordan River basin, Jordan. It was
found that the Water Productivity (WaPOR) database of FAO was not uniformly applicable
and showed a noticeable discrepancy in the estimation of the water balance for the Jordan
River basin.

India has the highest freshwater demand, led by its burgeoning population, agricul-
tural expansion, socio-economic progress, rapid urban sprawl, and industrial develop-
ments [21]. According to World Resources Institute [22], 54% of India’s total geographical
area faces high to extremely high water stress. The water availability, in terms of per year
per capita in India, declined from 5177 m3 in 1951 to 1567 m3 in 2011 and is projected to
further dwindle to about 1140 m3 in 2050 [23,24]. Globally, the agriculture sector consumes
a major chunk of fresh water [25] and more so in India [26]. A study by National Bank for
Agriculture and Rural Development (NABARD) [27] revealed that the agriculture sector
ingests about 78% of the available fresh water resources of India. Despite this, till now,
only 48% of the net sown area, i.e., 68.6 million hectares of the country, gets irrigated and
the rest is rainfed [28]. Further, groundwater accounts for about 62% of the total fresh
water used for irrigation in India, contributing to the significant groundwater depletion
rate [29]. The Central Groundwater Board (CGWB) of India reported a sharp decline in the
groundwater tables between the years 2007 to 2017, especially in the northern region [29].
Sharma et al. [27] have reported that water availability would be the primary limiting factor
in Indian agriculture, rather than land. A recent study by the State of Food Security and
Nutrition in the World [30], released jointly by five UN organizations, states that India still
suffers from food and nutrition insecurity. In the Indian context, Amarasinghe et al. [31]
have analyzed the trends and patterns of important water demand drivers of India in
the recent past. Their study reveals that, with the current water use pattern of the coun-
try, meeting future food demands will lead to a severe water crisis. By the end of 2050,
physical water scarcity will be a common phenomenon in various river basins of India.
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Sakthivadivel et al. [32] have evaluated the performance of the Bhakra canal system in
Haryana, India and found that the practice of Warabandi principle-based allocation and
distribution of the canal water leads to high water productivity. Singh et al. [33] have
employed WA+ to estimate the total water consumption in the Subarnarekha basin, India,
using open source earth observation datasets.

A data scarce, semi-arid river basin has a challenge in accounting for the total water
depletion. The study area is a semi-arid river basin and will link with Ken River, India.
Hence, this study aimed to use the open access satellite precipitation products and to
assess the total water consumption and seasonal water yield in the basin using the WA+
framework, which is the novelty of this study.

2. Study Area Description
2.1. Location

The Betwa River basin (BRB) is an active segment of the Ganges river system. It is
spread between latitude 23◦5′ to 25◦55′ E and longitude 77◦15′ to 79◦45′ N in central India
(Figure 1). It originates from Dehgaon Bamori Forest Range of the Raisen district in Madhya
Pradesh, India. It is about 475 m above mean sea level (a.m.s.l.). It flows in a southwest
to northeast direction for 590 km and drains into river Yamuna at about 106 m a.m.s.l. in
district Hamirpur of Uttar Pradesh. It has a total drainage area of about 43,346 km2, out of
which 68.84% area is in Madhya Pradesh, and the rest of 32.16% area lies in Uttar Pradesh.
The sub-tributaries, namely Kaliasot, Sagar, Halali, and Bina, are located upstream, Narain,
Jamni, and Orr, are located midstream, and Dhasan and Birma are located downstream
of the Betwa River. The strike ridges of Vindhyan hills and Malwa Plateau are situated,
respectively, in the southwest and south margin of the basin, separating the Betwa River
basin from Narmada valley. The urban settlements, hills, industries, and forests dominate
the upstream regions of the basin, whereas the middle and downstream regions are covered
by agricultural activities, rural settlements, stone mining, rocky outcrops and stone crushing
industries, thermal power plants, and dams.
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2.2. Geology, Soil Types, and Climate

It drains through the hard rock terrain, comprising amphibolites, banded iron forma-
tion, calc-silicate rocks, granitoid, gneisses, syenites, tonalite–trondhjemite–granodiorite,
pillow lavas, basaltic metasediments, quartzites and Bundelkhand craton’s massive quartz
veins, terrigenous sediments of the Vindhyan Super Group, and the Deccan Trap’s basaltic
rocks [34,35]. The medium black cotton soil with abundant Kankar (montmorillonite and
yellow clay containing carbonate fragments) dominates over the areas in the upper Vind-
hyan reaches of the southern BRB. The middle reaches are dominated by mixed red and
black soil. Alluvial soil forms linear quartz reefs that dominate the northern lower part. As
per the National Bureau of Soil Survey and Land Use Planning (NBSSLUP), Nagpur, India,
the dominant soil types are clay, clay loam, sandy loam, and silty clay soils [36]. It receives
about 918 mm of average annual rainfall. During the monsoon months (July–September), it
receives 80% of the total rainfall. The basin’s average minimum and maximum tempera-
tures were recorded as 6.7 ◦C (mild winter) and 44.2 ◦C (hot summer), respectively. The
basin has an average population density of 295.9 people/km2, with a total population of
20.20 million [37,38].

3. Modeling

The WA+ is a python based framework that facilitates Water Management Classes
(WMC)-based estimations of the total water depletion (ET) from any region. The de-
tailed information about the WA+ tool can be acquired from the website: https://www.
wateraccounting.org/ (accessed on 3 January 2022) [39]. It is an open-access tool compatible
with various open-source earth observation data sets. Several open sources of freely accessi-
ble earth observation data sets at different spatio-temporal resolutions are available; a few
of them have been used in this study (Table 1).

Table 1. List of earth observation datasets used for estimating total water consumption in BRB.

Data Source Data Types Temporal
Resolution

Spatial
Resolution Avilable from Web Portal

WDPA World data on
protected areas Annual Shapefile -

https://www.protectedplanet.net/en/
thematic-areas/wdpa?tab=WDPA

(accessed on 6 January 2022)

GlobCover
LC v2 Glob cover Annual 300 m 1992–2015 http://due.esrin.esa.int/page_globcover.php

(accessed on 6 January 2022)

MODIS Land use/land cover Annual 500 m 2001-onwards https://lpdaac.usgs.gov/products/mcd1
2q1v006/ (accessed on 6 January 2022)

MIRCA
Monthly irrigated

and rainfed
crop areas

Annual 10 km 1998–2002 https://www.uni-frankfurt.de/45217893/5
_MIRCA? (accessed on 6 January 2022)

GMIA Global map of
irrigated areas Annual 5 arc-min 2013 https://www.fao.org/aquastat/en/

(accessed on 7 January 2022)

8daily LAI Lead area index 8 daily 500 m 2000 onwards https://lpdaac.usgs.gov/products/mcd1
5a2hv006/ (accessed on 7 January 2022)

8daily GPP Gross primary
production 8 daily 500 m 2000 onwards https://lpdaac.usgs.gov/products/mod1

7a2hv006/ (accessed on 7 January 2022)

Yearly NPP Net primary
production Annual 500 m 2000-onwards https://lpdaac.usgs.gov/products/mod1

7a3hv006/ (accessed on 7 January 2022)

IMD Precipitation Daily 0.25◦ 1901-onwards https://www.imdpune.gov.in/
(accessed on 7 January 2022)

PERSIANN Precipitation Daily 0.25◦ 2000-onwards https://chrsdata.eng.uci.edu/
(accessed on 7 January 2022)

CHIRPS Precipitation Daily 5 km 1981-onwards https://www.chc.ucsb.edu/data/chirps
(accessed on 7 January 2022)

https://www.wateraccounting.org/
https://www.wateraccounting.org/
https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA
https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA
http://due.esrin.esa.int/page_globcover.php
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://www.uni-frankfurt.de/45217893/5_MIRCA?
https://www.uni-frankfurt.de/45217893/5_MIRCA?
https://www.fao.org/aquastat/en/
https://lpdaac.usgs.gov/products/mcd15a2hv006/
https://lpdaac.usgs.gov/products/mcd15a2hv006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
https://lpdaac.usgs.gov/products/mod17a3hv006/
https://lpdaac.usgs.gov/products/mod17a3hv006/
https://www.imdpune.gov.in/
https://chrsdata.eng.uci.edu/
https://www.chc.ucsb.edu/data/chirps
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3.1. Satellte Products

Different satellite products, namely MODIS land use/land cover (LULC), Global Map
of Irrigation Areas (GMIA), and GlobCover LC v2, monthly irrigated and rainfed crop
areas (MIRCA), World Database on Protected Areas (WDPA) from (UNEP-WCMC), world
data on permanent water bodies (perWB), and population density data derived from
Indian census, were used for the analysis. The MODIS 8_daily LAI products (MOD15A2H,
version 6) were used to estimate LAI. Remotely sensed information using artificial neural
networks (PERSIANN) and Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) for the period of 15 years (2003–2019) were used for the estimation of the number
of rainy days. The CHIRPS is also free-of-cost, quasi-global rainfall data, which covers 50◦ S
to 50◦ N and has been available from 1981 to the near-present. CHIRPS was developed
by the United States Geological Survey (USGS) to support the United States Agency for
International Development Famine Early Warning Systems Network (FEWS NET). The
MODIS satellite 8_daily GPP and NPP products were converted into monthly data. Further,
monthly GPP and NPP data were used to derive the yearly net dry matter (NDM).

3.2. WA+ Modeling

The total water consumptions (km3/year) of BRB were evaluated as evapotranspira-
tion (ET), evaporation (E), transpiration (T), and interception (I) using the water accounting
plus (WA+) framework. We have used five python scripts as WALU map, LAI, rainy days,
NDM, and hyperloop in the study for the generation of sheet2, in the form of total water
consumption in the basin for four different water management classes [12,13,40–42]. The
hyperloop function evaluates water consumption based on WALU map, LAI, rainy days,
and NDM data. After successfully executing the hyperloop function, the WA+ tool provides
sheet 02 with land use categories (protected, utilized, modified, and managed land use),
based on details of the total evapotranspiration (ET) and the beneficial and non-beneficial
water components. WA+ quantifies total ET in the form of sheet 02 for any region using
steps viz., i.e., (i) generating water accounting and land use (WALU) map, (ii) estimating
monthly leaf area index (LAI), (iii) estimating the number of rainy days, (iv) calculating
net dry matter (NDM) using net primary product (NPP) and gross primary product (GPP),
and finally, generates Sheet 02 having detailed of total ET. The adopted methodology of
this study is shown in the schematic diagram (Appendix A).

4. Results and Discussion

This research aims to assess the WA+ based total water consumption (beneficial and
non-beneficial consumption) by estimating the total evapotranspiration from all types of
land use classes in the basin.

4.1. Generation of WA+ Based LULC Map (WALU-Water Accounting and Land Use)

The impact of land use and land cover (LULC) on the water balance, environment,
and regional climate and ecosystem services of a basin is significant. Land cover denotes a
biophysical state of earth’s ground surface, while land use refers to the way or manner in
which the land is being used [43]. Thus, the information of accurate and up-to-date land use
maps is explicitly required to run the WA+ water accounts. The WA+ framework classifies
LULC into broad groups of 80 possible classes. These LULC classes are further arranged into
four major water management categories (WMC), namely “Protected/Conserved Land Use”
(PLU), “Utilized Land Use” (ULU), “Modified Land Use” (MLU), and “Managed Water Use”
(MWU) (Table 2). These four WMC classes were developed based on common management
characteristics of LULC classes and their degree of influence on natural ‘hydrologic cycle’.
PLU corresponds to protected areas, viz. reserved forest areas, RAMSAR sites, national
parks, wildlife sanctuaries, and coastal protection zones, where anthropogenic interventions
are prohibited. The class ULU represents the area with minimal human intervention and
low to moderate resource utilization, such as woodlands, natural pastures, savannahs,
mountainous shrubs, riparian corridors, wetlands, etc. The water flow is essentially natural.



Water 2022, 14, 3473 6 of 23

The ‘MLU’ relates to the anthropogenic modification of land use to improved usages,
such as the land use that has been changed for livelihood, including urban encroachment,
biofuel crops, rainfed cropland, and timber plantations, etc. Water is not detoured, but land
use affects all physical processes in the unsaturated zone, including infiltration, storage,
percolation, and root hydration, affecting the soil water balance. The ‘MWU’ corresponds
to the elements of the landscape that are accountable to withdrawals using anthropogenic
infrastructure, such as dams, weirs, canals, irrigated agriculture, ditches, gates, pipes,
pumping stations, etc., to manage the water resources.

Table 2. Land use class categories with a likeness to ecosystem services, human interaction, provi-
sioning services, and interventions in the water cycle. These classes govern the management options
in WA+.

Managed Water Use Modified Land Use Utilized Land Use Conserved Land Use

Irrigated crops
Irrigated pastures
Irrigated biofuels
Reservoirs and canals
Irrigated fruit
Greenhouses
Aquaculture
Residential areas and homesteads
Industrial area
Irrigated recreational parks
Managed wetlands and swamps
Inundation areas
Mining
Evaporation ponds
Wastewater treatment beds
Power plants

Plantation trees
Rainfed pastures
Rainfed crops cereals
Rainfed fruit
Rainfed biofuels
Rainfed recreational parks
Fallow land
Dump sites
Oasis and wadis
Roads and lanes
Peri-urban areas

Closed natural forests
Tropical rain forest
Open natural forest
Woody savanna
Open savanna
Sparse savanna
Shrub land
Natural pastures
Deserts
Mountains
Rocks
Flood plains
Tidal flats
Bare land
Wasteland
Moore fields
Wetlands and swamps
Alien invasive species
Permafrosts

Reserves or national parks
Areas set aside for conservation
Glaciers
Coastal protection sites
Protected forests
Protected shrubland
Protected natural water bodies
Protected wetlands

The WMC-based LULC map for the WA+ tool has been prepared (Table 3). A total of
14 LULC types were incorporated in the WALU map of the BRB. PLU shares 3 WMC-based
LULC types (protected forest, protected shrubland, and protected natural water bodies) out
of the total 14 LULC types, covering 0.2% of the total basin area. The ULU also accounts for
3 WMC-based LULC types (closed deciduous forest, shrubland and mesquite and brooks,
rivers and waterfalls) out of the total 14 LULC types, occupying 25.25% of the total area
of BRB. The MLU shares a maximum of 5 WMC-based LULC types (forest plantation,
rainfed crops–cereals, rainfed crops-vegetables and melons, fallow and idle land, rainfed
industry parks, and outdoor) out of the total 14 LULC types, holding 11.1% of the total
area of the basin. The MWU shares 3 WMC-based LULC types out of the total 14 LULC
types (irrigated crops–cereals, irrigated homesteads and gardens (urban cities)–outdoor,
and irrigated homesteads and gardens (rural villages)–outdoor) and accounts for the
63.46% of the total area of the basin. Among all the WMC-based LULC types, the irrigated
crops–cereals LULC-type accounts for the highest of 62.06% of the total area of the basin,
followed by shrubland and mesquite LULC-type with 17.87% and rainfed crops –cereals
LULC types with 8.25% of the total area of the basin. Singh et al. [33] have also reported
agricultural land as the dominant LULC class of the BRB.
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Table 3. The area wise distribution of WALU-based land use classes in the study area.

Water Management Category (WMC) WALU Code WA+ Based LULC Area (km2) Area (%)

Protected Land Use
(PLU) (20%)

PLU1 Protected forests 16.92 0.04
PLU2 Protected shrubland 65.19 0.15
PLU3 Protected natural waterbodies 2.39 0.01

Utilized Land Use
(ULU) (25.25%)

ULU1 Closed deciduous forest 1435.65 3.32
ULU2 Shrub land and mesquite 7734.44 17.87
ULU3 Brooks, rivers, and waterfalls 1757.69 4.06

Modified Land Use
(MLU) (11.10%)

MLU1 Forest plantations 0.57 0.00
MLU2 Rainfed crops—cereals 3569.55 8.25

MLU3 Rainfed crops—vegetables
and melons 17.26 0.04

MLU4 Fallow and idle land 1178.07 2.72
MLU5 Rainfed industry parks—outdoor 37.93 0.09

Managed Water Use
(MWU) (63.46%)

MWU1 Irrigated crops—cereals 26,859.26 62.06

MWU2 Irrigated homesteads and gardens
(urban cities)–outdoor 211.54 0.49

MWU3 Irrigated homesteads and gardens
(rural cities)–outdoor 349.06 0.91

Total Area (km2) 43,280.54 100.00

4.2. Spatio-Temporal Distribution of Rainfall

The daily precipitation data of the PERSIANN [44] and CHIRPS was used to estimate
the number of rainy days. PERSIANN and CHIRPS daily precipitation data were down-
loaded from the Climate Engine [45] at a spatial scale of 0.25◦ × 0.25◦. It is freely available to
download from several web-based interfaces, including the Center for Hydrometeorology
and Remote Sensing (CHRS), USA [44,46–49]. The analysis of the precipitation data was
performed from 2003 to 2019, due to the availability of the observational data. Considering
the uncertainties associated with satellite-based rainfall data, their reliabilities must be vali-
dated with observed datasets [50]. The mean monthly precipitation derived from CHIRPS
showed variation in spatial distribution from 70 mm/month in the lower and middle
basins to 120 mm/month in the upper basin (Figure 2). The dry, average, and wet years
were reported for CHIRPS precipitation for 2015, 2018, and 2016, respectively (Figure 3).
However, the dry, average, and wet year for PERSIANN were found in 2014, 2006, and
2016, respectively. The mean monthly precipitation derived from PERSIANN data showed
lower variations, with a minimum of 76 mm/month to a maximum of 88 mm/month for
the lower middle and upper portions of the basin, respectively. The analysis showed that
the upper southeast portion of the basin receives higher precipitation, whereas the middle
and lower parts of the basin receive lesser precipitation. The average annual precipitation
derived from PERSIANN and CHIRPS datasets showed that the CHIRPS datasets had a
higher amount of precipitation than the PERSIANN datasets throughout the study period.
The maximum and minimum amounts of average annual precipitation in the basin derived
from CHIRPS precipitation data were 1510 and 840 mm/year, whereas PERSIANN showed
2040 and 680 mm/year, respectively (Figure 4).
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Validation of PERSIANN and CHIRPS with the IMD datasets

The PERSIANN and CHIRPS rainfall data sets were compared with the observed
gridded rainfall data of the Indian Meteorological Department (IMD), and their perfor-
mances were assessed through the goodness of fit statistics, including different statistical
criteria, such as root mean square error (RMSE), Pearson correlation coefficient, bias, and
Nash–Sutcliffe efficiency (NSE) (Table 4). The comparison of PERSIANN and IMD depicted
the R2, RMSE, NSE, and PBIAS values as 0.79, 44.09, 0.45, and−46.6, respectively. However,
the comparison of CHIRPS and IMD showed the R2, RMSE, NSE, and PBIAS values as
0.72, 48.77, 0.58, and −32.94, respectively, at the outlet (Figure 5). Further, the comparison
was also made for the entire basin. The comparison of PERSIANN and IMD showed R2,
RMSE, NSE, and PBIAS values as 0.83, 48.35, 0.81, and −6.75, respectively. However, the
comparison of CHIRPS and IMD showed a good correlation of R2, RMSE, NSE, and PBIAS
values as 0.94, 29.92, 0.92, and −7.80, respectively, for the entire basin (Figure 6). It was
found that CHIRPS precipitation showed its usefulness, followed by PERSIANN, over
the entire basin and at the outlet. Researchers such as Ali and Mishra [51], Prakash [52],
Musie et al. [53], Gupta et al. [54], and Dembele et al. [55] have also compared the CHIRPS
satellite-based precipitation data with IMD for hydrological analysis over different Indian
regions and reported a significant positive correlation between them. In this study, the
CHIRPS dataset showed better and positive correlation (>0.5) with IMD for the entire basin
and at the outlet, as compared to the PERSIANN, which showed the positive correlation.
Hence, the CHIRPS precipitation data was found to be more reliable for estimating total
water consumption in the basin.
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Table 4. Statistical parameters obtained after validation of CHIRPS and PERSIANN precipitation
datasets with the Indian Meteorological Department (IMD) precipitation data at a single location
(outlet of the basin) and for the entire basin (average of the different locations) in the basin.

Datasets Used for Comparison Locations R2 RMSE NSE BIAS (%)

Observed vs. PERSIANN
Basin Outlet

0.79 44.09 0.45 −46.6
Observed vs. CHIRPS 0.72 48.77 0.58 −32.94

Observed vs. PERSIANN
Entire Basin

0.83 48.35 0.81 −6.75
Observed vs. CHIRPS 0.94 29.92 0.92 −7.8
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The precipitation products from PERSIANN and CHIRPS were also evaluated for
their seasonality, maxima, and minima with IMD from 2003 to 2019. The time series plots
have been developed between the observed precipitation data of IMD, PERSIANN, and
CHIRPS precipitation datasets at the outlet of the basin (Figure 7) and for the entire basin
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(Figure 8). The time series plots depict the overestimation of precipitation by both PER-
SIANN and CHIRPS precipitation datasets, compared to observed data at the outlet of the
basin. Compared to the observed data, the PERSIANN precipitation data underestimated
the precipitation with bias of −6.75%, while CHIRPS precipitation data overestimated the
precipitation with bias of −07.80% over the entire basin. Analysis showed that CHIRPS
could detect a high percentage of precipitation in flat areas, but not in hills or moun-
tains [56]. Further, the accuracy of CHIRPS satellite-based precipitation data provided
a positive correlation of 0.94, compared to the positive correlation of 0.83 of PERSIANN
satellite-based precipitation data with the observed data of IMD. The analysis showed that
CHIRPS satellite-based precipitation data provided more reliable, temporally consistent,
and spatially distributed information about precipitation in the catchment, compared to
the PERSIANN satellite-based precipitation data.
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4.3. Spatio-Temporal Variability of Evapotranspiration and Water Yield in the Basin

Evapotranspiration (ET) defines the turbulent transfer of water in the form of tran-
spiration from vegetation surfaces and evaporation from ground surfaces [57]. It is one
of the important components of the hydrologic cycle. Calculation of ET is typically based
on the conservation of either energy or mass, or both. Evapotranspiration is one of the
important processes of energy balance because it requires latent heat (energy) to evapo-
rate. It is simply too expensive to install equipment measuring ETs in various locations
across river basins. To deal with such problems, the USGS Earth Resources Observation
and Science (EROS) Center estimates actual evapotranspiration based on surface energy
balance methods from the earth land surface using satellite remote sensing techniques
and the operational simplified surface energy balance (SSEBop) model. Senay et al. [58]
have developed a method to estimate the actual evapotranspiration, based on SSEBop
model, with a unique parameterization using (MODIS) land surface temperature (LST)
data. SSEBop’s ET was available publicly via the famine early warning system [48]. In
this study, seasonal and inter-annual variability of evapotranspiration ET of the basin was
calculated using SSEBop ET datasets. The maximum and minimum values of ET, that is,
125 mm/month and 12 mm/month in the basin, were obtained during May and November,
respectively (Figure 9). Higher and lower ET values in the basin were obtained during
post-monsoon and monsoon seasons, respectively. The analysis shows that the October
and November months of the post-monsoon season generate minimum ET from the basin.
The seasonal variability of water yield derived from PERSIANN precipitation data depicts
that the high water yield in the basin is associated with the July and August months of the
monsoon season, with water yields of 240 mm/month and 120 mm/month, respectively
(Figure 9). The analysis of PERSIANN precipitation data also shows that the pre-monsoon
and post-monsoon seasons generate almost zero to negative water yield in the basin. The
spatial variability in mean monthly water yield (mm/month) obtained from PERSIANN
precipitation data implies that the higher mean monthly water yield concentrates over the
upper part of the basin. The mean monthly water yield consistently decreases from the
upper reaches towards downstream and up to the outlet of the basin, reflecting a moderate
to very low mean monthly water yield from the middle and lower parts of the basin.

Further, inter-annual variability of water yield obtained from PERSIANN precipitation
datasets showed that higher water yield was associated with the wet period, and lower
water yield was associated with the dry period.

The seasonal water yield from CHIRPS precipitation showed higher water yield
during monsoons (July and August, with water yield amounts of 290 mm/month and
200 mm/month, respectively) (Figure 10).

The water yield obtained from CHIRPS precipitation data for the pre-monsoon and
post-monsoon seasons depicted very low water yield in the basin. The spatial variability
of mean monthly water yield derived from CHIRPS precipitation data showed that the
upper part of the basin, especially the southeast portion, has a higher mean monthly water
yield value (40–60 mm/month). In contrast, the middle and lower portions of the basin
have almost zero to negative water yield. The pattern of inter-annual variability of the
water yield derived from the CHIRPS precipitation datasets was almost similar to the
pattern derived from PERSIANN precipitation datasets. CHIRPS precipitation datasets
also showed higher water yield during the wet period and lower water yield during the
dry period. For a better understanding, we have assessed the water yields for the entire
basin and every individual year of the study period. Both precipitation datasets have
shown lower yearly water yield in the middle and lower portions of the basin during the
dry period (Figure 11). Where the wet period is concerned, both precipitation datasets
showed higher water yields in the upper portion of the basin. However, the value of
annual water yield derived from the CHIRPS precipitation datasets was larger than the
PERSIANN datasets.
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SSEBop ET, and water yield; (b) inter-annual variability in the precipitation, SSEBop ET, and water
yield; (c) mean water yield of period 2003–2019.



Water 2022, 14, 3473 14 of 23Water 2022, 14, x FOR PEER REVIEW 15 of 24 
 

 

 

 
Figure 11. The figures depict yearly average water yields in the basin for dry, wet, and average 
years, based on PERSIANN and CHIRPS precipitation datasets. 

4.4. Estimation of Total Water Consumption in the Basin (Sheet 2) 
The WA+ based sheet 2 was generated to estimate total water consumption (ET), 

evaporation (E), transpiration (T), and interception (I) from different water management 
classes in BRB. Sheet 2 was developed using the WALU map having four different water 
management classes. Total ET in the basin includes the amount of ET and T. The values 
of ET and T were evaluated for the non-manageable (actual evapotranspiration from 
PLU), manageable (actual evapotranspiration from ULU), and managed (actual evapo-
transpiration from MLU and MWU) types of WALU. The calculated values of ET and T 
of the basin were categorized according to the four water management classes (PLU, 
ULU, MLU, and MWU) of WALU. Since the precipitation years in the study were di-
vided into dry and wet years, sheet 2 for the wet and dry years was generated separately. 

Sheet 2, derived for PERSIANN precipitation dataset, based a dry year (2014–2015), 
showed a total water consumption of 36.2 BCM/year in the basin (Figure 12). The shares 
of non-manageable, manageable, and managed water consumptions in the total water 
consumption were 0.10 BCM/year, 09.80 BCM/year, and 26.30 BCM/year, respectively. 
Managed land use classes have consumed more water than manageable and 
non-manageable land use classes in the basin. The total water consumption, split as ET 
and T, for PLU, ULU, MLU, and MWU were 0.1 BCM/year and 0.0 BCM/year, 09.80 
BCM/year and 03.30 BCM/year, 04.10 BCM/year and 01.50 BMC/year, and 22.20 
BCM/year and 09.40 BMC/year, respectively. The evaporation from the soil, water, in-
terception, and transpiration was broken down as beneficial and non-beneficial ET. 
Non-beneficial ET includes evaporation from soil and open water bodies, interception 
from wet surfaces, such as leaves and canopies, buildings, roads, etc., and 
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based on PERSIANN and CHIRPS precipitation datasets.

4.4. Estimation of Total Water Consumption in the Basin (Sheet 2)

The WA+ based sheet 2 was generated to estimate total water consumption (ET),
evaporation (E), transpiration (T), and interception (I) from different water management
classes in BRB. Sheet 2 was developed using the WALU map having four different water
management classes. Total ET in the basin includes the amount of ET and T. The values of
ET and T were evaluated for the non-manageable (actual evapotranspiration from PLU),
manageable (actual evapotranspiration from ULU), and managed (actual evapotranspira-
tion from MLU and MWU) types of WALU. The calculated values of ET and T of the basin
were categorized according to the four water management classes (PLU, ULU, MLU, and
MWU) of WALU. Since the precipitation years in the study were divided into dry and wet
years, sheet 2 for the wet and dry years was generated separately.

Sheet 2, derived for PERSIANN precipitation dataset, based a dry year (2014–2015),
showed a total water consumption of 36.2 BCM/year in the basin (Figure 12). The
shares of non-manageable, manageable, and managed water consumptions in the to-
tal water consumption were 0.10 BCM/year, 09.80 BCM/year, and 26.30 BCM/year, re-
spectively. Managed land use classes have consumed more water than manageable and
non-manageable land use classes in the basin. The total water consumption, split as ET and
T, for PLU, ULU, MLU, and MWU were 0.1 BCM/year and 0.0 BCM/year, 09.80 BCM/year
and 03.30 BCM/year, 04.10 BCM/year and 01.50 BMC/year, and 22.20 BCM/year and
09.40 BMC/year, respectively. The evaporation from the soil, water, interception, and tran-
spiration was broken down as beneficial and non-beneficial ET. Non-beneficial ET includes
evaporation from soil and open water bodies, interception from wet surfaces, such as
leaves and canopies, buildings, roads, etc., and cropland-based weed infested transpiration,
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invasive species, or degraded species landscapes. The non-beneficial water consumption
in the basin shared 21.4 BCM/year of the total water consumption, among which, the
contributions from water, soil, and interception were 1.9 BCM/year, 18.4 BCM/year, and
1.5 BCM/year, respectively. Beneficial ET represents processes such as transpiration from
different vegetative covers, evaporation from hydropower reservoirs and cooling towers,
etc. WA+ regroups and labels beneficial consumptions as agricultural, environmental,
economical, energy, and leisure. The beneficial component was 14.8 BCM/year, among
which, the contribution from agriculture was 9.9 BCM/year. PERSIANN precipitation
dataset-based sheet 2 depicted that, among various water management classes in the basin,
the shrubland of ULU, rainfed crops of MLU, and irrigated crops of MWU consumed a
higher amount of water.
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Figure 12. Sheet 2 was generated using WA+ with details of total water consumption in the basin for
PERSIANN precipitation datasets based on dry year (2014–2015).

Sheet 2, generated for the wet period (2016–2017), using the PERSIANN precipitation
dataset, shows the amount of total water consumption in the basin as 29.50 BCM/year
(Figure 13). Wet period (2016–2017)-based sheet 2 depicts the amount of water con-
sumed by non-manageable, manageable, and managed land use classes as 0.10 BCM/year,
8.1 BCM/year, and 21.4 BCM/year, respectively. During the wet period, water consump-
tions by shrubland of ULU (5.10 BCM/year), rain-fed crops of MLU (2.40 BCM/year),
and irrigated crops of MWU (17.7 BCM/year) were found to be higher, compared to the
other land use classes of the basin. The ET and T by PLU, ULU, MLU, and MWU in the
basin were 00.10 BCM/year and 0.00 BCM/year, 08.10 BCM/year and 02.80 BMC/year,
3.30 BCM/year and 1.10 BMC/year, and 18.10 BCM/year and 6.80 BMC/year, respectively.
Sheet 2, of the wet period, showed a total evaporation of 18.8 BCM/year.

The non-beneficial component of total ET in the basin for the wet period was
18.3 BCM/year. It split evaporations by water, soil, and interception at 1.70 BCM/year,
17.00 BCM/year, and 0.00 BCM/year, respectively. The beneficial component of total ET
in the basin for the wet period was 11.3 BCM/year, and the agricultural contribution was
7.2 BCM/year. The analysis using PERSIANN precipitation showed that the non-beneficial
water consumptions in the basin were higher than the beneficial water consumption during
both the dry and wet periods. Additionally, the MWU showed maximum ET and T among
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all the categories in the basin. Hence, the PERSIANN precipitation dataset-based outcomes
suggest that the scope to improve water management exists in the basin by controlling the
major losses from the soil and wet surface. Further, stakeholders should opt for proper
planning and strategies to reduce the non-beneficial consumptions, especially under MWU
category, as well as to increase the beneficial consumptions in the basin.
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Sheet 2, derived from the CHIRPS precipitation, using the WA + framework, provides
different water consumption scenarios in the basin. Separate sheets 2 for the dry and
wet period were evaluated from CHIRPS precipitation dataset. The CHIRPS precipita-
tion data-based total water consumption in the basin during a dry year (2015–2016) was
25.4 BCM/year (Figure 14). During the dry period, the shares of non-manageable, man-
ageable, and managed water consumption in the basin were calculated as 0.1 BCM/year,
7.0 BCM/year, and 18.3 BCM/year, respectively.

The water consumptions, split as ET and T, for PLU, ULU, MLU, and MWU were
estimated to be 0.1 BCM/year and 0.0 BCM/year, 7.0 BCM/year and 1.8 BCM/year,
2.8 BCM/year and 0.8 BCM/year, and 15.5 BCM/year and 5.2 BCM/year, respectively,
in the basin. The land use under MWU showed maximum ET (15.5 BCM/year) and T
(5.2 BCM/year) among all the categories in the basin during the dry period of CHIRPS
precipitation datasets. The irrigated crops under MWU shared a maximum value of
ET, 15.1 BCM/year, followed by the shrubland under ULU (4.5 BCM/year) and rain-
fed crops under MLU (2.1 BCM/year). The CHIRPS precipitation data-based sheet 2 of
the dry period estimated evaporation in the basin to be 17.5 BCM/year. Soil evapora-
tion (14.7 BCM/year) has contributed the maximum in evaporation, followed by water
evaporation (1.5 BCM/year) and interception (1.3 BCM/year). Further, the total evapotran-
spiration of 25.4 BCM/year in the basin includes water consumption through transpiration
(7.9 BCM/year) and evaporation (17.5 BCM/year). The CHIRPS precipitation data-based
sheet 2 of the dry period showed that the non-beneficial and beneficial consumptions in
the basin were 17.0 BCM/year and 8.4 BCM/year, respectively.
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The CHIRPS precipitation-based outcomes for the wet year (2016–2017) in sheet 2 out-
lined the total water consumption in the basin as 29.5 BCM/year (Figure 15). The shares
of non-manageable, manageable, and managed water management classes in total water
consumption in the basin were 0.1 BCM/year, 8.1 BCM/year, and 21.4 BCM/year, respectively.
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Sheet 2 estimated the amount of water consumption by PLU, ULU, MLU, and MWU
water management classes, in the form of ET and T. The ET- and T-based water consump-
tion by PLU, ULU, MLU, and MWU in the basin were 0.1 BCM/year and 0.0 BCM/year,
8.1 BCM/year and 2.8 BCM/year, 3.3 BCM/year and 1.1 BCM/year, and 18.1 BCM/year
and 6.8 BCM/year, respectively. The soil (17.0 BCM/year)-, water (1.7 BCM/year)-, and
interception (0.1 BCM/year)-based water consumptions detailed in sheet 2 of the wet year
(2016–2017) contributed to the evaporation of 18.8 BCM/year in the basin. Total evapo-
transpiration of 29.5 BCM/year in the basin includes the evaporation of 18.8 BCM/year
and transpiration of 10.7 BCM/year. The CHIRPS precipitation-based outcome also ap-
proved the maximum water consumption by soil, followed by transpiration. The CHIRPS
precipitation-based outcomes for the wet year (2016–2017) in sheet 2 showed the non-
beneficial and beneficial consumptions in the basin as 18.3 BCM/year and 11.2 BCM/year,
respectively. Further, it was found that the non-beneficial components were higher than ben-
eficial for both satellite observations precipitations in the basin, along with the maximum
losses, in the form of evaporation, that occurred by the soil and wet surface.

Singh et al. [33] discovered that the non-beneficial component was greater than the
beneficial component in the Subarnarekha basin and advised limiting non-beneficial con-
sumptions from soil evaporation. Al-Bakri et al. [59] analyzed the beneficial components
of ET that accounted for 81% of total ET (146.0 BCM/year) in North Jordan Valley under
shortage irrigation scenarios. The study area is located in the semi-arid region (average
annual rainfall 918 mm), and it is a drought-prone river basin. Therefore, sustainable
measures should be promptly adopted to control the water losses from the bare soil and
wet surface and improve the beneficial consumptions. A majority of the population living
in the basin is rural, poor, and primarily depends on agriculture and livestock rearing
for their livelihoods [60]. BRB shows that low water productivity of agriculture in the
basin will lead to dire socio-economic and environmental consequences. Changing climate
(reduction in rainfall and rising temperature) will cascade the existing problem in the future.
Hence, managing water consumption in agriculture, without affecting the potential of food
production in the basin, is of the utmost importance. Water consumption in agriculture
can be improved by employing advanced farm management practices, such as high-tech
irrigation systems (drip and sprinkler), growing high yielding drought-tolerant crop vari-
eties, changes in cropping pattern, use of cover crops, and better crop rotation practices, etc.
It will help in reducing evaporative losses from agriculture in the basin. Further, the use
of new water supply sources, such as recycled wastewater for irrigation and maintaining
river’s environmental flow by afforestation along the river banks, building micro- and
small check dams on the tributaries, will enhance water availability in the basin. Soft
measures, such as increasing awareness among different stakeholders, capacity building,
and improvement in other human managed processes, will bring non-beneficial water
consumption down in the basin.

The transpiration fraction (TF), beneficial fraction (BF), and irrigated RT fraction
(IEF) indices were also calculated to summarize the non-beneficial and beneficial water
consumptions obtained from the evaporation sheet [13]. The beneficial fractions derived
from PERSIANN and CHIRPS precipitation dataset were 38.31% and 37.97% for the wet
period (Table 5) and 40.88% and 33.07% for the dry period, respectively (Table 6). The
PERSIANN precipitation dataset-based outcome indicated an increase in the beneficial
fraction of ET.
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Table 5. Performance indicators based on satellite precipitation datasets for wet year in the Betwa
River basin.

Evaporation For PERSIANN Precipitation For CHIRPS Precipitation Implication

Transpiration fraction(
T

total ET

)
× 100

36.27% 36.27%
Sufficient amount of transpiration
being generated from rainfed and
irrigated areas

Beneficial fraction(
ET bene f icial

total ET

)
× 100 38.31% 37.97% Poor utilization of

ET amounts

Agricultural ET fraction 24.41% 24.41% Area dominated by
agricultural activities

Irrigated ET fraction 60.00% 60.00% Large proportion of ET came from
irrigated areas

Rainfed ET Fraction 8.14% 8.14% Considerable proportion of ET came
from rainfed areas

Table 6. Performance indicators based on satellite precipitation datasets for dry year in the Betwa
River basin.

Evaporation For PERSIANN Precipitation For CHIRPS Precipitation Implication

Transpiration fraction(
T

total ET

)
× 100

39.50% 31.10%
Sufficient amount of transpiration
being generated from rainfed and
irrigated areas

Beneficial fraction(
ET bene f icial

total ET

)
× 100 40.88% 33.07% Poor utilization of

ET amounts
Agricultural ET
fraction 27.35% 21.65% Area dominated by

agricultural activities

Irrigated ET fraction 59.94% 59.45% Large proportion of ET being
generated from irrigated areas

Rainfed ET Fraction 8.29% 8.27% Considerable proportion of ET came
from rainfed areas

5. Conclusions

The WA+ is a comphrensive tool that integrates different fields of hydrology, water and
environmental management, water allocations, reporting and communication, and policy
decisions. It has limitations, as it can not replace hydrological models in their functions to
provide detailed information on flow component of a basin. The assumption in the WA+
framework is that it considers the basin, tributaries, and aquifer a bulk single system. The
satellite data parameters have uncertainity and errors in measuring the indirect hydrological
processes. Hence, the water accounting in a BRB was performed using earth observation
datasets and the WA+ framework. Total water consumptions by different land use classes in
the basin were calculated and summarized in sheet 2 of the WA+ framework. The CHIRPS
and PERSIANN satellite-based precipitation products were statistically compared with the
gridded IMD rainfall. The CHIRPS precipitation dataset was found close to the IMD. The
MWU is the largest water management category in BRB, which occupies a 63.46% area of
the basin. Irrigated crops–cereals are the largest land use class under MWU category, with
a cover of 62.02% of the total basin area. Further, irrigated crops–cereals and rainfed-cereals
account for 70.31% of the basin’s total area. Hence, agriculture under managed activity is
the main consumer of water and accounts maximum ET in the basin. The beneficial ETs
from agriculture were only 24.41% (for the wet period) and 21.65% (for the dry period)
of the total evapotranspiration for CHIRPS. Non-beneficial ET was higher than beneficial
ET in the form of evaporation by soil. The seasonal water yield from CHIRPS showed
greater than 150 mm/month during monsoons (July and August). The authors recommend
that the promotion of maize, sorghum, and millet crop cultivation, in the place of water
intensive crops, such as rice, sugarcane, and wheat cultivation, will substantially reduce
water consumption, without affecting the cereals production in the basin. The outcomes of
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the study will help government, concerned authorities, and other stakeholders formulate
sustainable plans, policies, and strategies to ensure water use in the most beneficial manner
in BRB. The future work will focus on estimating the vertical water balance component
for the unsaturated root zone of the river basin. This will help explain the exchanges
between land and atmosphere and segregate water balance component viz. infiltration and
surface runoff.
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