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Abstract: Real-time in situ measurements are increasingly being used to improve the estimations
of simulation models via data assimilation techniques such as particle filter. However, models that
describe complex processes such as water flow contain a large number of parameters while the data
available are typically very limited. In such situations, applying particle filter to a large, fixed set
of parameters chosen a priori can lead to unstable behavior, i.e., inconsistent adjustment of some of
the parameters that have only limited impact on the states that are being measured. To prevent this,
in this study correlation-based variable selection is embedded in the particle filter, so that at each
step only a subset of the most influential parameters is adjusted. The particle filter used in this study
includes genetic algorithm operators and Monte Carlo Markov Chain for alleviating filter degeneracy
and sample impoverishment. The proposed method was applied to a water flow model (Hydrus-1D)
in which soil water content at various depths and soil hydraulic parameters were updated. Two
case studies are presented. Overall, the proposed method yielded parameters and states estimates
that were more accurate and more consistent than those obtained when adjusting all the parameters.
Furthermore, the results show that the higher the influence of a parameter on the model output under
the current conditions, the better the estimation of this parameter is.

Keywords: Hydrus-1D; particle filter; soil hydrology

1. Introduction

Accurate and proper estimation of prognostic variables (e.g., soil moisture) has been
receiving increasing attention in the past years. The mathematical models that describe such
complex processes (e.g., Hydrus [1]) contain a large number of parameters. Calibrating such
models, which are non-linear, is far from trivial, especially since in real settings the data
available for the task are limited. Therefore, real-time in situ measurements are increasingly
being used to improve the estimations of such simulation models via data assimilation
techniques [2–8].

One of the most widely used data assimilation (DA) methods is the ensemble Kalman
filter (EnKF) [8–10]. Despite the popularity of EnKF, this technique requires determining
some factors, such as covariance inflation and covariance localization, which strongly
influence the behavior of the EnKF. To overcome these limitations, particle filter (PF) has
been increasingly used as an alternative data assimilation method [11–13].

A main drawback of PF is particle degeneracy as some particles become associated
with negligible weights. Several methods have been suggested to mitigate this problem.
Moradkhani et al. [14], who worked with a hydrological model, suggested perturbing the
parameters using Gaussian noise. Another method suggested to handle weight degeneracy
is the combination of PF with Monte Carlo Markov Chain (MCMC) [15,16]. This integration
helps the PF to replace low probability particles with particles that have higher probabilities.
On the other hand, intelligent search and optimization methods, such as Genetic algorithm
(GA), have been used as well to alleviate the degeneracy problem. Jamal and Linker [13]
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showed the usefulness combining MCMC and PF with Genetic operators of GA (named
GPFM). This approach was applied to simultaneous estimation of state variables and
parameters in a crop growth model.

As mentioned above, the models that describe complex processes such as water flow
and/or crop development (e.g., Soil Water Atmosphere Plant (SWAP) model [17]) contain
a large number of parameters and the data available are rarely sufficient for calibrating
all the parameters at once. In such cases, a sub-set of the most influential parameters
should be calibrated rather than attempting to calibrate all the parameters at once. This
process of parameter selection can be performed beforehand via sensitivity analysis [18–21].
However, the results of the sensitivity analysis can be somehow misleading or irrelevant
since the “importance” of a specific parameter depends on the state of the system. For
instance, in soil hydrology, the residual water content has a strong influence on the model
behavior during dry periods while its value is basically irrelevant during wet periods.
Similarly, hydraulic conductivity can be more influential during wet periods than during
dry ones [22]. Therefore, the calibration of the residual water content during wet periods is
at best unnecessary and can even cause a degradation of the estimated value [13]. Therefore,
when data assimilation (rather than off-line batch calibration) is considered, the sensitivity
of the parameters should be determined dynamically in real-time.

A number of studies have considered the concept of real-time sensitivity analysis for
model calibration. In [23], the running period was split into sub-periods and the corre-
sponding influential parameters were calibrated. In [24], integrating real-time sensitivity
with data assimilation in irrigation scheduling was shown to result in an improvement in
profit. In [25], particle filter was linked to a sensitivity analysis for improving the accuracy
of AquaCrop, and the results showed superior estimations in comparison to the conven-
tional particle filter. Furthermore, it was found that capturing the varying parameters
sensitivity requires real-time sensitivity analysis.

While performing “true” sensitivity analysis in real-time is accompanied with high
computational burden, an alternative is to use correlation analysis [26] for quantifying
the sensitivity of the parameters. Many authors refer to a parameter as ‘sensitive’, ‘most
influential‘, or ‘correlate’, when a model result can be highly correlated with an input
parameter so that small changes in the parameter value results in significant changes in
the outputs [18]. The concept of correlation analysis is to evaluate the correlation between
the updated variables and the measured ones, which in turn can be used to identify the
most influential parameters. The usage of correlation analysis for parameter selection in
data assimilation is limited. However, correlation analysis is used somehow in Kalman
filters through the Kalman gain calculation. Hu et al. [27], who reported data assimilation
in a crop model, suggested using states correlations, in addition to the traditional use of
correlation analysis for determining the Kalman gain, in order to prevent updating poorly
correlated states. State variables with low correlation to the measurements (or measured
states) are updated less frequently than the highly correlated ones.

In traditional particle filters, the whole set of parameters is updated, regardless of
the sensitivity or correlation of each parameter inside this set to the available measure-
ments [7,15]. This study presents a novel particle filter in which correlation-based variable
selection is embedded. Whenever measurements become available, the most influential
(i.e., the most highly correlated) parameters are determined by correlation analysis, and
only these parameters are updated by PF. More specifically, the data assimilation technique
of genetic-operator-based PF with Monte Carlo Markov Chain (based on [13]) is combined
with calculation of the correlation between each parameter and each measured state. Then,
only highly correlated parameters are involved in the selection, mutation, crossover and
resampling operations of the PF, leading to the novel approach denoted C-GPFM. The
proposed method is applied to a water flow model (Hydrus-1D) in which states (soil water
contents) and parameters (soil hydraulic parameters) are updated via data assimilation.
Hydrus-1D numerically solves the Richards equation for saturated–unsaturated water flow
and Fickian-based advection dispersion equations for heat and solute transport. The model
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parameters are the soil hydraulic parameters of van Genuchten-Mualem equation [1]. Two
case studies were generated and analyzed in order to investigate the performance of the
proposed method. The results of the proposed method are compared to the case where the
whole set of parameters is updated.

2. Methods
2.1. Particle Filtering

Nonlinear dynamic systems are often described by the following finite difference
equations [28]:

xt = f (xt−1, ut−1, θt−1) + ωt (1)

yt = h(xt) + υt (2)

where f ( ) denotes the model, h( ) denotes the measurements operator, xt ∈ Rn denotes
the state vector at time t, ut is the (uncertain) forcing input, θ ∈ Rd is the vector of model
parameters, yt ∈ Rm is the vector of measured variables. ωt and υt are the process and
measurements noise, respectively, which are assumed to be white noises with zero mean
and covariance Qt and Rt, respectively. In addition, they are assumed to be independent.
Based on Bayesian estimation, given a measurement yt at time t the posterior distribution
of the state at time t is as follows [29]:

p(xt|yt) = p(xt|y1:t−1, yt) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(3)

p(xt|y1:t−1) =
∫

p(xt, xt−1|y1:t−1)dxt =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (4)

where p(yt|xt) is the likelihood of the observed measurement given the estimated state at
time t, p(xt|y1:t−1) is the prior distribution of the state, and p(yt|y1:t−1) is a normalization
factor. The marginal likelihood function p(y1:t) can be computed as:

p(y1:t) = p(y1)∏ p(yt|y1:t−1) (5)

The analytical solution of (3) cannot be obtained due to the non-linearity of the process
and the multi-dimensionality of the problem. In procedures based on particle filter, the
posterior distribution is approximated using an ensemble of particles, that is by running
an ensemble of models in parallel. Whenever a measurement becomes available, the
state probability for each particle is estimated using (3). Each particle consists of a state
and parameter set. Based on the probabilities, the weight associated with each particle is
calculated. The higher the weight, the higher the probability that the particle is representing
the posterior and the higher the importance of the particle [13]. The reader is referred
to [14] for a more detailed description of particle filters.

The specific PF procedure implemented in this work was the genetic operator-based
particle filter combined with Markov Chain Monte Carlo (GPFM), described in [13]. This
procedure integrates GA operators and MCMC within the PF. The integration of GA
operators with particle filter enables the generation of new offspring models from a high-
weight models. The MCMC was used for dropping low-weight models and keeping
high-weight models. By these methods, the so-called sample impoverishment and filter
degeneracy are alleviated [13]. Notice that the final resampling operation, which was
defined as optional in [13], was implemented in the present study via stochastic universal
resampling [30].

2.2. Correlation Analysis

As mentioned in the Introduction, the main novelty in this work is the combination of
correlation analysis with the particle filter, in-real time. The purpose is to involve only a
subset of the parameters in the crossover and mutation operations, in the MCMC and in
the resampling process steps of the GPFM procedure.
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In order to determine the parameters most highly correlated with the available mea-
surements, the correlation coefficient [31] between each parameter and each measured state
is calculated using the particle set while running the particle filter, as follows:

cori,j
t ,=

∣∣∣∣∣ 1
N−1

∑N
k=1(θk

i,t−θi,t)
(

h(xk
t )j−h(xt)j

)
σθi,t

σh(xt)j

∣∣∣∣∣
θi,t =

∑N
k=1 θk

i,t
N , h(xt)j =

∑N
k=1 h(xk

t )j
N

(6)

where θk
i,t denotes the i-th parameter in particle k at time t, h

(
xk

t

)
j
denotes the j-th predicted

measured state in particle k at time t and N is the ensemble size. σθi,t and σh(xt)j
are the

standard deviations of the i-th parameter and j-th predicted output at time t which are
calculated as follows:

σθi,t =

√
∑N

k=1(θk
i,t−θi,t)

2

N−1 ,

σh(xt)j
=

√
∑N

k=1

(
h(xk

t )j−h(xt)j

)2

N−1

(7)

The correlation coefficient ranges from 0 to 1, corresponding to weak and strong
correlation, respectively. A value of 0 means that there is no linear relation between the
variables, while 1 means that there is a fully linear relation between the variables. A
linear relation between a parameter and a state indicates that when the parameter changes,
the state changes accordingly. In this case, the parameter is highly sensitive [32]. After
the calculation of the correlation coefficients, the weighted average of the correlation
coefficients for each parameter is calculated in order to take into account the correlation of
the parameter with all of the measurements. These weights are dictated by the importance
of the measurements (or measured states) in the particles weights, i.e., the larger the value
of the weight of the measurement in the particle weights, the larger its weight in the
correlation coefficient. Therefore, the weight of each measured state correlation coefficient
was chosen according to the importance of the measurement in the particles’ weights
calculation. The weighted average of the correlation coefficient for each parameter is
calculated as follows:

cori
t =

M

∑
j=1

W j
t cori,j

t (8)

where cori
t is the correlation coefficient of parameter i at time t and L denotes the likelihood

function. W j
t is the importance of measurement j on time step t, which is calculated based

its relative contribution to the particle weight, as follows:

W j
t =

∑N
i=1 L

(
yj

t

∣∣∣xi
t, θi

t

)
∑M

j=1 ∑N
i=1 L

(
yj

t

∣∣∣xi
t, θi

t

) (9)

where L
(

yj
t

∣∣∣xi
t, θi

t

)
is the likelihood of measurement j given the state and parameter of

particle i. Noteworthy, cori
t is between 0 and 1. It is worth mentioning that the correlation

coefficients are calculated based on the prior ensemble (i.e., the particles before perform-
ing the crossover and mutation operations) since the proposal parameters are directly
influenced by crossover and mutation while the prior ensemble is more physically driven.
Physically driven particles (prior) have the real correlation, but operator-driven particles
(posterior) include the randomness of the operators [13].

After the calculation of cori for each parameter, the parameters are ranked from highly
influential to low importance based on their correlation coefficients and only the parameters
with correlation coefficients above a given threshold are chosen for crossover, mutation,
MCMC and resampling. Figure 1 describes the overall framework. The first step (Step A) is



Water 2022, 14, 3606 5 of 15

to perform one-step-ahead predictions with the whole ensemble and compute the weight
associated with each particle. The second step is to calculate the correlation coefficients
and select the most influential parameters (Step B). The third step (Step C) is to select
particles by roulette wheel selection. Crossover and mutation are then applied on the most
influential parameters from Step B (Step D). One-step predictions are performed with the
new ensemble (Step E) and the results of each pair of prior/proposal particles are compared
to determine which particle must be retained (Step F). Finally, resampling is applied (Step
G) over the state and most influential parameters to generate the new particles.
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3. Case Studies

The method described above was tested with a synthetic case study of a 1D soil profile
with three layers. Two models were created, denoted ‘true’ and ‘biased’. Simulations
with the ‘true’ model were performed to generate synthetic measurements and the data
assimilation procedure was applied to a model which was initialized as the ‘biased’ model.
The estimations of the parameters were restricted to an interval of ±40% around the values
of the parameters of the ‘biased’ model. The soil hydraulic properties of the two models are
described in Table 1. The parameter values were such that the flow is highly dynamic (sand
to loamy sand, using the Rosetta tool from Hydrus-1D [33]) and therefore the problem is
challenging. The lower bound condition was set to free drainage, and the initial conditions
were set as 0.35 and 0.20 soil water content for the whole profile for the ’true’ and ’biased’
models, respectively. Soil water content at 18 cm and 42 cm were ‘measured’ daily with
white Gaussian noise with a standard deviation of 1%.

Table 1. The soil parameters used in the case studies.

Parameter Description Depth ‘True’ ‘Biased’

θsat
Saturated water

content

0–20 cm
21–40 cm
41–60 cm

0.43
0.41
0.43

0.48
0.36
0.48

α
Air entrance value

parameters

0–20 cm
21–40 cm
41–60 cm

2.68
2.10
2.68

2.1
2.5
2.1

Ksat
Saturated hydraulic

conductivity [cm/day]

0–20 cm
21–40 cm
41–60 cm

713
230
713

613
270
613

θres
Residual water

content

0–20 cm
21–40 cm
41–60 cm

0.045
0.061
0.045

n Shape parameter
0–20 cm
21–40 cm
41–60 cm

0.14
0.10
0.14

The ensemble size N was chosen as 100. The crossover factor for state and parameters
were set to 0.01 and 0.05, respectively. For the mutation for the state and parameters, 10%
standard deviation was chosen. Larger crossover was set for the parameters than for the
state in order to favor improvement of the model’s dynamics over mere instantaneous
adjustment of the state. The threshold of correlation in Equation (8) was set arbitrarily to
0.2, which corresponds to a non-negligible linear relationship [34].

A first study was conducted with random precipitation as a boundary condition,
which mimics a typical rainy period. A second analysis was carried out with boundary
conditions consisting of ten days irrigation–drainage cycles. This analysis was conducted
to evaluate the performance of the method under clearly defined variations of soil moisture
(and therefore influential parameters). The main difference between the two case studies
is in the water content values. In the first case study a wet soil is expected, and in the
second case study periods of wetting and drying are alternating. This difference might lead
to different involvement of the parameters throughout the running period and different
behaviors. The second case study is experimental rather than realistic, and might result
in important insights for designing efficient experiments. The boundary condition of the
precipitations that were applied on the two case studies is described in Figure 2.
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4. Results
4.1. Case Study #1—Random Boundary Condition

The ability of the model ensemble to accurately predict future variations of soil mois-
ture depends directly on the accuracy of the parameter estimates, which can be appreciated
from Figure 3. In this figure, the average of the parameters estimation (posterior) at each
time step is presented. In most of the time steps, the estimation of the parameters in
C-GPFM is improved compared to the ’biased’ (no assimilation) case. More importantly,
the estimations of C-GPFM are superior and more consistent than GPFM. This can be
attributed to the fact that when a parameter is non-influential, C-GPFM does not involve it
in the assimilation process. For example, the parameters of the middle layer are less corre-
lated with the measurements than the other parameters, which was to be expected since
measurements were performed only in the top and bottom layers. Therefore, the estimation
of the middle layer parameters by GPFM is erratic and inconsistent. By comparison, when
applying C-GPFM, these parameters remain mostly constant as they are rarely involved in
the data assimilation procedure. Overall, the estimations of a and θsat were better than Ksat
in both methods due to the high influence of these parameters on the water content [21].
However, the estimations of θsat by C-GPFM are superior to GPFM at the middle layer.

Despite the intensive precipitation amounts, the water content was around 0.14, which
is closer to the dryness than to the saturation. In such situations, the sensitiveness of the
near-dryness influencing parameters is greater than those of the near-saturation, hence
the improvements in these influencing parameters [27]. Therefore, a is estimated more
accurately than the other parameters. For stronger enhancement of the other parameters,
wetter soil should be used, which would be the case in heavier soils (e.g., clay) or with less
permeable lower boundaries.

The accuracy of the estimation of the parameters is reflected on the estimation of the
current state, i.e., water content (Figure 4). The top frame shows the absolute estimation
error integrated over the whole soil profile (averaged over the 100 models of the ensemble)
while the other frames show the absolute estimation error at the middle of each layer
(averaged over 1 cm depth). The consistency and accuracy of the C-GPFM can be clearly
observed in all three layers. The most noticeable improvement is observed in the second
layer, which agrees with the previous observation regarding the “stability” of the parameter
estimations in that layer (Figure 3).
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The superiority of C-GPFM in estimating the whole moisture profile is further demon-
strated in Figure 5, which shows snapshots at selected days. The main advantage of
C-GPFM is at the mid-layer although C-GPFM is also slightly better at the other layers. In
addition, the estimates obtained by C-GPFM are consistently improved, while the results
obtained by GPFM are not consistent.
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The ability of the data-assimilated models to accurately predict soil moisture evolution
in response to future precipitation events was further tested as follows. At each assimilation
day, the average ensemble of posterior parameters was used to predict the soil water content
for the next 20 days. The results are shown in Figure 6. Compared to GPFM, C-GPFM
improved the prediction accuracy in the middle layer significantly, and this improvement
remained quite stable throughout the whole period. By comparison, starting from day
20 there is a significant degradation of the predictions of GPFM. This agrees with the
degradation in the current state estimation observed in Figures 4 and 5. The estimation
for the top and bottom layers were good in all methods due to the improved estimations
of the current state (Figure 4) and parameters (Figure 3). Notably, despite the inconsistent
improvement in the saturated hydraulic conductivity and saturated soil moisture (Figure 3),
the accuracy of the prediction is still accurate. This is due to the low influence of these
parameters in the prediction period, in which the soil moisture is similar to the residual
water content.

In order to neutralize the effect of the current state on future predictions and test solely
the impact of parameters estimations on predictions, an additional test was conducted. In
this test, on each assimilation day, the average of the set of the posterior parameters was
used to predict the soil water content for a 20-day period. To test the robustness of the
methods under different initial conditions and different irrigation schedules, one hundred
runs were conducted, in which the initial conditions were set as the true values corrupted
by white Gaussian noise with a standard deviation of 10%. In addition, the probability
of precipitation on each day was set to 50% and the precipitation amount on those days
was sampled from a uniform distribution between 0 and 10 cm. The error (averaged over
time, depth and runs) of the ensemble at days 31, 33, 35, 37 and 39, normalized with
respect to the ’biased’ model error on the same day is presented in Figure 7. Compared to
the ’biased’ model (no assimilation), both assimilation approaches (GPFM and C-GPFM)
reduced the prediction errors by about 40%. However, C-GPFM is 5–10% more accurate
than GPFM in all of the time steps. Figure 8, which shows the percentage of runs in which
C-GPFM outperformed GPFM, shows that C-GPFM performed better than GPFM not only
on average but also on the vast majority of single runs (about 80% of the runs).
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Results for the models obtained on days #31, #33, #35, #37 and #39 for Case Study #1.

The superiority of the C-GPFM over GPFM stems only from the dynamic selection
of specific parameters according to their correlation with the available measurements. In
order to further investigate the relation between the accuracy of parameter estimation and
selection frequency (i.e., parameter influence), the relative absolute error of each parameter
(averaged over time) was plotted after sorting the parameters according to the number of
times they were selected for adjustment (Figure 9). In addition, the number of times the
parameter was selected for adjustment by C-GPFM is presented on the top of the figure.
The relative error obtained by GPFM is also shown for comparison. Overall, the parameters
selected more frequently are estimated more accurately than the parameters selected less
frequently, which validates the motivation for the proposed approach, namely that the more
strongly a parameter is correlated with measurements, the more influential the parameter
is, and the more its estimation can be improved. As shown previously, the superiority
of C-GPFM over GPFM in estimating most of the parameters is clear. Again, overall, the
shape parameter is more accurate than the others using both methods, as the soil moisture
is closer to the residual water content than to the saturated water content.
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4.2. Case Study #2—Cyclic Boundary Condition

The general trend of the results was similar to that observed in Case Study #1. Since
the irrigation applied was lower than in Case Study #1, in which the soil moisture was
close to residual water content (Figure 5), the soil moisture was also close to residual water
content here. Therefore, similarly to Case Study #1, the estimation of the saturated water
content and the saturated hydraulic conductivity did not follow any clear trend and did
not converge. Hence, the main difference between the two case studies is reflected in the
estimation of α, which is presented and discussed below. For brevity, only the ability of the
ensemble to predict soil moisture in response to future wetting events and the estimations
of α are presented and discussed below. Figure 10 shows the average prediction accuracy of
each ensemble when used to predict soil moisture for the next 20 days. Similar to Figure 6,
this figure shows the overall prediction error as well as the prediction error for each layer,
both for C-GPFM and GPFM. The superiority of C-GPFM, mainly on the mid-layer, agrees
with the results of Case Study #1 (Figure 6). In particular, it is interesting to observe the
results of the models that have been adjusted using at least one full wetting-drying cycle,
i.e., the models obtained from Day 20 onward: clearly, the model obtained by C-GPFM is
able to predict the evolution of soil moisture during the second and third wetting-drying
cycles much more accurately.
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In this case study, in contrast to case study #1, the influence of the soil parameters is
cyclic following the cyclic nature of the wetting–drying periods. The influence of parame-
ters such as saturated hydraulic conductivity and saturated water content is high during
near saturation periods, while other parameters such as the shape parameters are more
influential during near dry periods [27]. Therefore, in cases where the water content is near
saturation or residual water content, the corresponding parameters are be improved. As
mentioned, in this case study the water content was not near saturation during the wetting
periods (days 1–10, 21–30), but the water content was near residual water content during
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the drying periods (days 11–20, 31–40). Therefore, when involving all the parameters (using
GPFM), the shape parameter of α is improved during the drying periods while worsening
during the wetting periods. Since the soil moisture was not near saturation, the actual
value of saturated hydraulic conductivity had little impact on the results and therefore
could not be estimated accurately.

In Table 2, the absolute error ratio between the end and the beginning of each dry-
ing/wetting period at each layer is presented. Whenever this value is below 1, this indicates
that there was an improvement of the parameter estimation during this period, and vice
versa. During the drying periods, an improvement is observed in all the layers, while dur-
ing the wetting periods the accuracy degrades. This behavior highlights that a parameter’s
estimation improvement is conditional on its high sensitivity. At the bottom layer, this
phenomenon is not as clear-cut since the bottom layer is wetter and farther from residual
water content in comparison to the upper layers. This demonstrates the importance of
using a quantitative approach for accurately identifying the influential parameters.

Table 2. The absolute error ratio of the parameter α between the end and the beginning of the drying
and wetting periods using GPFM.

Period 0–20 cm Layer 21–40 cm Layer 41–60 cm Layer

Days 1–10 (wetting) 2.63 1.42 0.71

Days 11–20 (drying) 0.36 0.24 0.77

Days 21–30 (wetting) 1.52 11.6 2.62

Days 31–40 (drying) 0.78 0.72 1.39

Ratios Multiplication 1.12 2.85 1.99

The multiplication of all error ratios provides an indication regarding the improvement
during the total running period. As all the values are above 1, there is no improvement
in the estimation of α using GPFM. In contrast, using C-GPFM these multiplications are
0.98, 0.25 and 0.90 at the upper, middle and bottom layers, clearly showing very significant
improvement for the middle layer. This emphasizes the advantage of performing real-time
estimation of the parameters’ influence together with data assimilation.

5. Conclusions

This study presented a novel particle filter in which only a subset of the parameters
was adjusted at each data assimilation step. The selection of the parameters was achieved
by correlation analysis rather than sensitivity analysis in order to avoid a high computation
burden. Using correlations for identifying the influential parameters was used as an alterna-
tive to sensitivity analysis techniques. Genetic-operator-based PF with Monte Carlo Markov
Chain (based on [13]) was used as the data assimilation technique. The uniqueness of the
proposed method is the ability to identify the highly influential parameters dynamically
and in real-time with only marginal additional computational costs. The proposed method
was applied to a water flow model (Hydrus-1D) in which states (soil water contents) and
parameters (soil hydraulic parameters) were updated via data assimilation. Overall, the
proposed method yielded state estimates and parameter estimates that were more accurate
and more robust (consistent) than those obtained when adjusting all the parameters at each
data assimilation step. The shape parameter α was significantly improved during drying
periods and in dry layers. Parameters highly sensitive near saturation conditions were less
significantly improved when the soil was far from saturation, even during wetting periods.
Therefore, designing experiments with near saturation and near residual water content is
crucial for fast and good convergence of the parameters’ estimates. For further applications,
this method could be used for designing experiments in such a way that small sub-sets of
influential parameters are estimated efficiently in sequential periods.
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