Flood Risk Assessment and Mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic Approach and Multi-Criterion Decision-Making Method
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.3. Development of Indicators of Flood Risk
2.3.1. Selection of Flood Hazard Indicators
2.3.2. Selection of Flood Vulnerability Indicators
2.4. Normalization of Flood Hazard and Vulnerability Indicators
2.5. Assigning Weights Using Analytical Hierarchical Process
2.6. Derivation of Flood Hazard and Flood Vulnerability Index
Flood Risk Indicators and Flood Risk Index
2.7. Validation of Flood Risk Map
3. Results
3.1. Flood Hazard Indicators
3.1.1. Elevation
3.1.2. Slope
3.1.3. Mean Annual Rainfall
3.1.4. Soil Type
3.1.5. Drainage Density
3.1.6. Flow Accumulation
3.1.7. Distance from Rivers
3.2. Socio-Economic Flood Vulnerability Indicators
3.2.1. Population Density
3.2.2. Female Population Density
3.2.3. Literacy Rate
3.2.4. Land Use
3.2.5. Road Network Density
3.2.6. Employment Rate
3.3. Normalized Flood Hazard and Vulnerability Indicators
3.4. Weight Assignment Using GIS-Based AHP
3.5. Flood Hazard Map
3.6. Flood Vulnerability Map
3.7. Flood Risk Map
3.8. Validation of Flood Risk Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danumah, J.H.; Odai, S.N.; Saley, B.M.; Szarzynski, J.; Thiel, M.; Kwaku, A.; Kouame, F.K.; Akpa, L.Y. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire). Geoenviron. Disasters 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2016, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Kar, S.K. Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat. Hazards 2018, 94, 349–368. [Google Scholar] [CrossRef]
- Seejata, K.; Yodying, A.; Wongthadam, T.; Mahavik, N.; Tantanee, S. Sciencedirect sciencedirect sciencedirect assessment of flood hazard areas using analytical hierarchy assessment of flood hazard areas using analytical hierarchy process over the Lower Yom Basin, Sukhothai Province Process over the Lower Yom Basin, Sukh. Procedia Eng. 2018, 212, 340–347. [Google Scholar] [CrossRef]
- Alfa, M.I.; Ajibike, M.A.; Daffi, R.E. Application of analytic hierarchy process and geographic information system techniques in flood risk assessment: A case of Ofu River Catchment in application of analytic hierarchy process and geographic information system techniques in flood risk assessm. J. Degrad. Min. Lands Manag. 2018, 5, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Mukhopadhyay, S. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application. Nat. Hazards 2019, 99, 247–274. [Google Scholar] [CrossRef]
- Mishra, K.; Sinha, R. Geomorphology Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology 2020, 350, 106861. [Google Scholar] [CrossRef]
- Tariq, A.; Yan, J.; Ghaffar, B.; Qin, S.; Mousa, B.G.; Sharifi, A.; Huq, M.E.; Aslam, M. Flash flood susceptibility assessment and zonation by integrating analytic hierarchy process and frequency ratio. Water 2022, 14, 3069. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Sun, W.-J.; Shen, S.-L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef]
- Pinos, J.; Quesada-Román, A. Flood risk-related research trends in Latin America and the Caribbean. Water 2022, 14, 10. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Campos-Durán, D. Natural disaster risk inequalities in Central America. Pap. Appl. Geogr. 2022, 1–13. [Google Scholar] [CrossRef]
- Vishwanath, V.H.; Tomaszewski, B. Flood Hazard, Vulnerability and Risk Assessments for Uttarakhand State in India. In Proceedings of the Geospatial Technologies and Geographic Information Science for Crisis Management (GIS), 15th ISCRAM Conference, Rochester, NY, USA, 20–23 May 2018; pp. 10–11. [Google Scholar]
- Zeleňáková, M.; Fijko, R.; Labant, S.; Weiss, E.; Markovič, G.; Weiss, R. Flood risk modelling of the slatvinec stream in Kružlov Village, Slovakia. J. Clean. Prod. 2018, 212, 109–118. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Sevigné-Itoiz, E.; Rojas-Gutierrez, L.A.; Barbassa, A.P.; Josa, A.; Rieradevall, J.; Gabarrell, X. Floods and consequential life cycle assessment: Integrating flood damage into the environmental assessment of stormwater Best Management Practices. J. Clean. Prod. 2017, 162, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Zehra, D.; Mbatha, S.; Campos, L.C.; Queface, A.; Beleza, A.; Cavoli, C.; Achuthan, K.; Parikh, P. Rapid flood risk assessment of informal urban settlements in Maputo, Mozambique: The case of Maxaquene A. Int. J. Disaster Risk Reduct. 2019, 40, 101270. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Adegoke, J.; Sylla, M.B.; Taylor, C.; Klein, C.; Bossa, A.; Ogunjobi, K.; Adounkpe, J. Chapter 1: On the 2017 Rainy Season Intensity and Subsequent Flood Events Over West Africa. Reg. Clim. Chang. Ser. Floods 2019, 10–15. [Google Scholar] [CrossRef]
- Behanzin, I.D.; Thiel, M.; Szarzynski, J.; Boko, M. GIS-Based Mapping of Flood Vulnerability and Risk in the Bénin Niger River Valley. Int. J. Geomat. Geosci. 2016, 6, 1653–1669. [Google Scholar]
- Ntajal, J.; Lamptey, B.L.; Mahamadou, I.B.; Nyarko, B.K. Flood disaster risk mapping in the Lower Mono River Basin in Togo, West Africa. Int. J. Disaster Risk Reduct. 2017, 23, 93–103. [Google Scholar] [CrossRef]
- Adegboyega, S.A.; Onuoha, O.C.; Komolafe, A.A.; Olajuyigbe, A.E.; Adebola, A.O.; Ibitoye, M.O. An integrated approach to modelling of flood hazards in the rapidly growing city of Osogbo, Osun State, Nigeria. Am. J. Space Sci. 2018, 4, 1–15. [Google Scholar] [CrossRef]
- WHO. Nigeria Rushes into Current Flash Flooding to Mitigate Health Hazards | WHO | Regional Office for Africa. 2018. Available online: https://www.afro.who.int/news/nigeria-rushes-current-flash-flooding-mitigate-health-hazards (accessed on 10 February 2020).
- Iliyasu, U. Flood Risk Assessment in Parts of Hadejia- Jama ’ are River Basin (HJRB) of Jigawa State, Nigeria. Master’s Thesis, Department of Geography, Faculty of Earth and Environmental Sciences, Bayero University, Kano, Nigeria, 2017. [Google Scholar]
- Rana, I.A.; Routray, J.K. Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Nat. Hazards 2017, 91, 239–266. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; Volume 1, pp. 27–31. [Google Scholar]
- Isma’il, M.; Saanyol, I.O. Application of Remote Sensing (RS) and Geographic Information Systems (GIS) in flood vulnerability mapping: Case study of River Kaduna. Int. J. Geomat. Geosci. 2013, 3, 618–627. [Google Scholar]
- Vu, T.T.; Ranzi, R. Flood risk assessment and coping capacity of floods in central Vietnam. J. Hydro-Environ. Res. 2016, 14, 44–60. [Google Scholar] [CrossRef]
- Li, W.; Lin, K.; Zhao, T.; Lan, T.; Chen, X.; Du, H.; Chen, H. Risk assessment and sensitivity analysis of fl ash fl oods in ungauged basins using coupled hydrologic and hydrodynamic models. J. Hydrol. 2019, 572, 108–120. [Google Scholar] [CrossRef]
- Youssef, A.M.; Hegab, M.A. Flood-Hazard Assessment Modeling Using Multicriteria Analysis and GIS: A Case Study—Ras Gharib Area, Egypt; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Abdulrahman, S.; Bwambale, J. A review on flood risk assessment using multicriteria decision making technique. World Water Policy 2021, 7, 209–221. [Google Scholar] [CrossRef]
- Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood hazard mapping methods: A review. J. Hydrol. 2021, 603, 126846. [Google Scholar] [CrossRef]
- Quesada-Román, A. Disaster risk assessment of informal settlements in the global south. Sustainability 2022, 14, 10261. [Google Scholar] [CrossRef]
- Quesada Román, A. Landslides and floods zonation using geomorphological analyses in a dynamic basin of Costa Rica. Rev. Cart. 2021, 102, 125–138. [Google Scholar] [CrossRef]
- Quesada-Román, A. Flood risk index development at the municipal level in Costa Rica: A methodological framework. Environ. Sci. Policy 2022, 133, 98–106. [Google Scholar] [CrossRef]
- Ikirri, M.; Faik, F.; Echogdali, F.Z.; Antunes, I.M.H.R.; Abioui, M.; Abdelrahman, K.; Fnais, M.; Wanaim, A.; Id-Belqas, M.; Boutaleb, S.; et al. Flood hazard index application in arid catchments: Case of the taguenit wadi watershed, Lakhssas, Morocco. Land 2022, 11, 1178. [Google Scholar] [CrossRef]
- Rincón, D.; Khan, U.T.; Armenakis, C. Flood risk mapping using GIS and multi-criteria analysis: A greater toronto area case study. Geosci. 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Alexandridis, V.; Theodoridou, T. Flood exposure of residential areas and infrastructure in Greece. Hydrology 2022, 9, 145. [Google Scholar] [CrossRef]
- Qiang, Y. Flood exposure of critical infrastructures in the United States. Int. J. Disaster Risk Reduct. 2019, 39, 101240. [Google Scholar] [CrossRef]
- Yahaya, S.; Ahmad, N.; Abdallahi, R.F. Multicriteria analysis for flood vulnerable areas in hadejia-jama’are river Basin, Nigeria. Eur. J. Sci. Res. 2010, 42, 71–83. [Google Scholar]
- Abubakar, S.K. Flood simulation using shuttle radar topographic mission digital elevation model in Hadejia River basin, Nigeria. Master’s Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2013. [Google Scholar]
- Ibrahim, U.A.; Yadima, S.G.; Nur Alkali, A. Flood Frequency Analysis at Hadejia River in Hadejia–Jama’ are River Basin, Nigeria. Civ. Enviromental Res. 2016, 8, 124–131. [Google Scholar]
- Sobowale, A.; Ramalan, A.A.; Mudiare, O.J.; Oyebode, M.A. Sustainability of Water Quality and Ecology Groundwater recharge studies in irrigated lands in Nigeria: Implications for basin sustainability. Sustain. Water Qual. Ecol. 2014, 3–4, 124–132. [Google Scholar] [CrossRef]
- Umar DU, A.; Ramli, M.F.; Aris, A.Z.; Jamil, N.; Tukur, A.I. Surface water resources management along Hadejia River Basin, northwestern Nigeria. H2Open J. 2019, 2, 184–199. [Google Scholar] [CrossRef] [Green Version]
- Ramli, M.F.; Aris, A.Z.; Jamil, N.R.; Abdulkareem, J.H. Runoff irregularities, trends, and variations in tropical semi-arid river catchment. J. Hydrol. Reg. Stud. 2018, 19, 335–348. [Google Scholar]
- Goes, B.J.M. Effects of river regulation on aquatic macrophyte growth and floods in the Hadejia-Nguru wetlands and flow in the Yobe River, northern Nigeria; implications for future water management. River Res. Appl. 2002, 18, 81–95. [Google Scholar] [CrossRef]
- Odunuga, S.; Okeke, I.; Omojola, A.; Oyebande, L. Hydro-climatic variability of the Hadejia-Jama’ are river systems in north-central Nigeria. In Hydro-Climatology: Variability and Change, Proceedings of the Symposium JHO2, Melbourne, Australia, 27 June–8 July 2011; IAHS Press: Wallingford, UK, 2011; pp. 163–168. [Google Scholar]
- Sobowale, A.; Adewumi, J.K.; Okuofu, C.A.; Otun, J.A. Water resources potentials of Hadejia River Sub-catchment of Komadugu Yobe Water Resources Potentials of Hadejia River Sub-Catchment of Komadugu Yobe River Basin in Nigeria. Agric. Eng. Int. CIGR Ejournal. Manuscr. 1065 2010, 12, 1–6. [Google Scholar]
- Ikusemoran, M.; Ezekiel, Y. Remotely Sensed Data and Geographic Information System Techniques for Monitoring the Shrinking Hadejia–Nguru. Lagos J. Geo-Inf. Sci. (LJGIS) 2011, 1, 73–86. [Google Scholar]
- Adakayi, P.E. An Assessment of the Rainfall and Temperature Variations in Parts of Northern Nigeria. Ph.D. Thesis, University of Jos, Jos, Nigeria, 2012. [Google Scholar]
- Ahmed, S.D.; Agodzo, S.K.; Adjei, K.A.; Deinmodei, M.; Ameso, V.C. Preliminary investigation of flooding problems and the occurrence of kidney disease around Hadejia-Nguru wetlands, Nigeria and the need for an ecohydrology solution. Ecohydrol. Hydrobiol. 2018, 18, 212–224. [Google Scholar] [CrossRef]
- Chen, Y. Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA) techniques. J. Hydrol. 2022, 612, 128268. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Shivaprasad Sharma, S.V.; Roy, P.S.; Chakravarthi, V.; Srinivasa Rao, G. Flood risk assessment using multi-criteria analysis: A case study from Kopili river basin, Assam, India. Geomat. Nat. Hazards Risk 2018, 9, 79–93. [Google Scholar]
- Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Bin Ahmed, B. A systematic review on approaches and methods used for flood vulnerability assessment: Framework for future research. Nat. Hazards 2019, 96, 975–998. [Google Scholar] [CrossRef]
- Hu, S.; Cheng, X.; Zhou, D.; Zhang, H. GIS-based flood risk assessment in suburban areas: A case study of the Fangshan District, Beijing. Nat. Hazards 2017, 87, 1525–1543. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Ibrahim, B.A.; Tiki, D.; Mamdem, L.; Leumbe, O.L.; Bitom, D.; Lazar, G. MultiCriteria Analysis (MCA) approach and GIS for flood risk assessment and mapping in mayo kani division, far north region of Cameroon. Int. J. Adv. Remote Sens. GIS 2018, 7, 2793–2808. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Waghwala, R.K.; Agnihotri, P.G. Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. Int. J. Disaster Risk Reduct. 2019, 40, 101155. [Google Scholar] [CrossRef]
- Abdullahi, S.; Isa, I.; Ayodele, S.; Muhammad, B. Investigation of groundwater quality for domestic and irrigation purposes around gubrunde and environs, northeastern Nigeria. Energy 2010, 6, 664–672. [Google Scholar]
- Roy, D.C.; Blaschke, T. Spatial vulnerability assessment of floods in the coastal regions of Bangladesh. Geomat. Nat. Hazards Risk 2015, 6, 21–44. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop fl ood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys. 2019, 67, 215–229. [Google Scholar] [CrossRef]
- Mind’Je, R.; Li, L.; Amanambu, A.C.; Nahayo, L.; Nsengiyumva, J.B.; Gasirabo, A.; Mindje, M. Flood susceptibility modeling and hazard perception in Rwanda. Int. J. Disaster Risk Reduct. 2019, 38, 101211. [Google Scholar] [CrossRef]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.; Ward, P.J. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef]
- Kang, S.-J.; Lee, S.-J.; Lee, K.-H. A Study on the Implementation of Non-Structural Measures to Reduce Urban Flood Damage -Focused on the Survey Results of the Experts-. J. Asian Arch. Build. Eng. 2009, 8, 385–392. [Google Scholar] [CrossRef]
- Khunwishit, S.; Choosuk, C.; Webb, G. Flood Resilience Building in Thailand: Assessing Progress and the Effect of Leadership. Int. J. Disaster Risk Sci. 2018, 9, 44–54. [Google Scholar] [CrossRef]
Relative Importance | Definition |
---|---|
1 | Equal importance |
2 | Equal-to-moderate importance |
3 | Moderate importance |
4 | Moderate-to-strong importance |
5 | Strong importance |
6 | Strong-to-very strong importance |
7 | Very strong importance |
8 | Very-to-extremely strong importance |
9 | Extreme importance |
Number of Criteria | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 |
Flood Hazard Indicators | Elevation | Slope | Drainage Density | Soil Type | Mean Annual Rainfall | Flow Accumulation | Distance from Rivers |
---|---|---|---|---|---|---|---|
Elevation | 1 | 2 | 3 | 3 | 4 | 5 | 7 |
Slope | 0.5 | 1 | 2 | 2 | 3 | 6 | 7 |
Drainage Density | 0.33 | 0.5 | 1 | 2 | 3 | 3 | 6 |
Soil Type | 0.33 | 0.5 | 0.5 | 1 | 2 | 3 | 4 |
Mean Annual Rainfall | 0.25 | 0.33 | 0.33 | 0.5 | 1 | 2 | 3 |
Flow Accumulation | 0.20 | 0.17 | 0.33 | 0.33 | 0.5 | 1 | 2 |
Distance from Rivers | 0.14 | 0.14 | 0.17 | 0.25 | 0.33 | 0.5 | 1 |
Total | 2.76 | 4.64 | 7.33 | 9.08 | 13.83 | 20.5 | 30 |
Flood Vulnerability Indicators | Population Density | Female Population Density | Land Use | Road Network Density | Literacy Rate | Employment Rate |
---|---|---|---|---|---|---|
Population Density | 1 | 2 | 3 | 3 | 4 | 6 |
Female Population Density | 0.5 | 1 | 2 | 3 | 3 | 6 |
Land Use | 0.33 | 0.5 | 1 | 2 | 2 | 4 |
Road Network Density | 0.33 | 0.33 | 0.5 | 1 | 2 | 3 |
Literacy Rate | 0.25 | 0.33 | 0.5 | 0.5 | 1 | 2 |
Employment Rate | 0.17 | 0.17 | 0.25 | 0.33 | 0.5 | 1 |
Total | 2.58 | 4.33 | 7.25 | 9.83 | 12.5 | 22 |
Indicator | Relative Weight | Reclassified Indicator | Ranking | Hazard |
---|---|---|---|---|
Elevation (m) | 33% | 539–673 | 1 | Very low |
486–538 | 2 | Low | ||
431–485 | 3 | Moderate | ||
384–430 | 4 | High | ||
338–383 | 5 | Very high | ||
Slope (°) | 23% | 11.6–42.5 | 1 | Very low |
4.51–11.5 | 2 | Low | ||
2.68–4.50 | 3 | Moderate | ||
1.34–2.67 | 4 | High | ||
0.00–1.33 | 5 | Very high | ||
Drainage density (Km/Km2) | 16% | 0.00–0.032 | 1 | Very low |
0.033–0.081 | 2 | Low | ||
0.082–0.130 | 3 | Moderate | ||
0.140–0.180 | 4 | High | ||
0.190–0.310 | 5 | Very high | ||
Soil type | 12% | Luvisol (loamy sand) | 1 | Very low |
Gleysol (sandy clay loam) | 4 | High | ||
Arenosol (sandy loam) | 4 | High | ||
Fluvisol (clay/sandy clay) | 5 | Very high | ||
Mean annual rainfall (mm) | 8% | 757–833 | 1 | Very low |
834–875 | 2 | Low | ||
876–919 | 3 | Moderate | ||
920–967 | 4 | High | ||
968–1030 | 5 | Very high | ||
Flow accumulation (px) | 5% | 0–839 | 1 | Very low |
839.1–3785 | 2 | Low | ||
3786–8828 | 3 | Moderate | ||
8829–13,220 | 4 | High | ||
13,230–23,800 | 5 | Very high | ||
Distance from Rivers (m) | 3% | >5000 | 1 | Very low |
4000–5000 | 2 | Low | ||
3000–4000 | 3 | Moderate | ||
2000–3000 | 4 | High | ||
<1000 | 5 | Very high |
Indicator | Relative Weight | Reclassified Indicator | Ranking | Hazard |
---|---|---|---|---|
Population density (persons/square kilometre) | 36% | 78–210 | 1 | Very low |
211–305 | 2 | Low | ||
306–449 | 3 | Moderate | ||
450–777 | 4 | High | ||
778–31,504 | 5 | Very high | ||
Female population density (females/square kilometre) | 25% | 40–105 | 1 | Very low |
106–154 | 2 | Low | ||
155–204 | 3 | Moderate | ||
205–379 | 4 | High | ||
340–14,403 | 5 | Very high | ||
Land use | 15% | Water Bodies | 1 | Very low |
Wood and Grass | 1 | Very low | ||
Grassland | 1 | Very low | ||
Shrubland | 2 | Low | ||
Bare soil | 3 | Moderate | ||
Irrigated Cropland | 4 | High | ||
Rainfed Cropland | 5 | Very high | ||
Built-up | 5 | Very high | ||
Road network density (Km/Km2) | 11% | 0.240–0.640 | 1 | Very low |
0.150–0.230 | 2 | Low | ||
0.097–0.140 | 3 | Moderate | ||
0.059–0.096 | 4 | High | ||
0.000–0.058 | 5 | Very high | ||
Literacy rate (%) | 8% | 58.2–58.3 | 1 | Very low |
53.7–58.1 | 2 | Low | ||
39.9–53.6 | 3 | Moderate | ||
37.5–39.8 | 4 | High | ||
0.00–37.4 | 5 | Very high | ||
Employment rate (%) | 4% | 72.0–78.7 | 1 | Very low |
64.5–71.9 | 2 | Low | ||
64.2–64.4 | 3 | Moderate | ||
58.7–64.1 | 4 | High | ||
0.00–58.6 | 5 | Very high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuaibu, A.; Hounkpè, J.; Bossa, Y.A.; Kalin, R.M. Flood Risk Assessment and Mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic Approach and Multi-Criterion Decision-Making Method. Water 2022, 14, 3709. https://doi.org/10.3390/w14223709
Shuaibu A, Hounkpè J, Bossa YA, Kalin RM. Flood Risk Assessment and Mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic Approach and Multi-Criterion Decision-Making Method. Water. 2022; 14(22):3709. https://doi.org/10.3390/w14223709
Chicago/Turabian StyleShuaibu, Abdulrahman, Jean Hounkpè, Yaovi Aymar Bossa, and Robert M. Kalin. 2022. "Flood Risk Assessment and Mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic Approach and Multi-Criterion Decision-Making Method" Water 14, no. 22: 3709. https://doi.org/10.3390/w14223709
APA StyleShuaibu, A., Hounkpè, J., Bossa, Y. A., & Kalin, R. M. (2022). Flood Risk Assessment and Mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic Approach and Multi-Criterion Decision-Making Method. Water, 14(22), 3709. https://doi.org/10.3390/w14223709