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Abstract: Soil water potential (SWP) is vital for controlling the various biological and non-biological
processes occurring through and across the soil-plant-atmosphere continuum (SPAC). Although
the dynamics and mechanisms of SWP have been investigated for several decades, they are not as
widely explored in ecohydrology research as soil moisture, due at least partly to the limitation of field
observation methods. This limitation restricts the understanding of the responses of plant physiology
and ecological processes to the SWP gradient and the ecohydrological functions of SWP dynamics
in different contexts. Hence, in this work, we first briefly revisit the origin and development of the
concept of SWP and then analyze the comprehensive factors that influence SWP and the improvement
of SWP observation techniques at field scales, as well as strategies for developing new sensors for
soil water status. We also propose views of focusing on the response characteristics of plant lateral
roots, rather than taproots, to SWP dynamics, and using hormone signaling research to evaluate plant
response signals to water stress. We end by providing potential challenges and insights that remain in
related research, such as the limitations of the SWP evaluation methods and the future development
direction of SWP data collection, management, and analysis. We also emphasize directions for
the application of SWP in controlling plant pathogens and promoting the efficiency of resource
acquisition by plants. In short, these reflections revisit the unique role of SWP in eco-hydrological
processes, provide an update on the development of SWP research, and support the assessment of
plant drought vulnerability under current and future climatic conditions.

Keywords: soil water potential; soil moisture; plant physiology; soil-plant-atmosphere continuum;
ecohydrological cycle

1. Introduction

Although the amount of water stored in soil is much less than that stored in the
oceans, fluxes of water into and out of soils can be large, making soil water important in
the exchange of mass and energy in the soil-plant-atmosphere continuum (SPAC) system.
Soil water status is characterized by both the amount of water present (soil water content,
SWC) and the energy with which the water is held (soil water potential, SWP) [1,2]. Like
all other matter, soil water tends to move from regions of higher SWP to regions of lower
SWP, in pursuit of equilibrium with its surroundings [3]. The magnitude of the driving
force behind this spontaneous motion is the difference in potential energy across a distance
between two points of interest [4]. Accordingly, SWC tells us how much water there is, but
SWP gives information about the availability of the water for plant uptake or microbial
activity, the movement of the water in the soil, and in particular, how the soil retains and

Water 2022, 14, 3721. https://doi.org/10.3390/w14223721 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14223721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4263-7926
https://orcid.org/0000-0003-3821-4058
https://orcid.org/0000-0003-1593-3519
https://doi.org/10.3390/w14223721
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14223721?type=check_update&version=1


Water 2022, 14, 3721 2 of 17

releases water in the SPAC [5]. It is clear that SWP is an equally critical soil parameter,
and a quantitative evaluation of it is needed for almost every aspect of soil and related
sciences, from those dealing with soil organisms and plant growth to those dealing with
environmental concerns [6]. Historically, however, fewer works have reported on SWP
than on SWC, especially in terms of observations and experiments [7], even though the
concept of SWP has existed since the early 18th century. This situation is due at least partly
to the lack of effective and convenient techniques for measuring SWP [8], but the situation
has improved during the last two decades, as various automated and flexible techniques
and tools have been developed [9]. In contrast to SWP measurement technologies, SWP
modeling—which also has a long history—has been utilized in many more studies [10].
Since Gardner et al. [11] first proposed a model of soil water movement corresponding to
the special case using ψ ∝ θ−1/3, K ∝ θ, and hence D ∝ θ−1/3 (ψ, capillary head; θ, water
content; K, hydraulic conductivity; D, soil diffusivity), considerable progress has been
made in SWP modeling. For example, Richards [12] proposed a partial differential equa-
tion for describing water movement in unsaturated soils; Klute [13] rewrote Richards [12]
formulation for three-dimensional unsaturated flow in a diffusion form and more recently,
SWP was incorporated into the conceptual framework of SPAC, to understand the re-
sponses of plant physiology, morphology, phytochemistry, and phytopathology to soil
water dynamics [14–17].

Knowledge regarding the improvements in SWP definition and measurement has
been advanced by several researchers. For instance, Luo et al. [18] and Novick et al. [6]
summarized the comprehensive description of the definition of SWP; Campbell [19] and
Clark [20] reviewed the most widely used instruments and theories for determining SWP,
and Bittelli [21] and Bianchi et al. [8] reviewed the application of SWP measurement
technology and its potential application in agricultural water management. These works,
however, are limited as they failed to describe in detail the conditions for SWP dynamics
to trigger plant physiological and ecological activities in different water-stressed habitats.
These aspects of SWP, in which complex interactions between different stress combinations
may arise, remain poorly understood. This oversight brings up new questions; for example,
are the changes in plant physiology and ecology dominated by water stress or by plant
self-regulation? This question is vital for plants in dry areas where water is scarce but
where small changes in SWC often correspond to large changes in SWP [22]. Moreover,
slow versus rapid fluctuations of SWP have completely different effects on plants, but how
plants interpret the different water signals of SWP and perceive SWP changes remains
unknown [23], leading to uncertainty in model outputs. The development of research
on plant perception of water potential at the cellular and organ scales in recent years has
provided the means to explore this problem—a turning point in the development of SWP
research [24]. Besides, not all SWP changes are involved in plant adaptation processes;
some of them are short-term adaptations, or even permanent deleterious reactions [25].
Therefore, it is necessary to consider the effects of SWP dynamics on plant physiology
and eco-hydrological processes, from the individual-plant scale up to the field or even
larger scales (e.g., landscape scales), for example, the as-yet-unknown mechanism of SWP
dynamics participating in the interactions between plant and soil [26,27], the quantification
of its effect on carbon decomposition and fixation [28], and the kinetic mechanisms of soil
organic element migration and nutrient acquisition by plants [29,30]. Thus, we conduct a
review of measurement methods and models for evaluating SWP and focus on the role of
SWP in ecohydrological cycling. We propose general factors that affect SWP dynamics and
special plant strategies in response to the SWP gradient. We also highlight the challenges
and provide insights for future research, especially concerning the development of SWP
evaluation methods and the role of SWP dynamics in soil-plant-water relationships.
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2. Influencing Factors and Evaluation Methods
2.1. Influencing Factors

The datum for SWP is taken to be the potential of a ‘free’ water surface, subject
to atmospheric pressure at the same height as the point of concern in the soil; when
the soil water is saturated or in equilibrium with ‘free’ water, it has an SWP of zero;
while as the soil dries or the total SWC decreases, the SWP of the soil sample becomes
progressively negative [5]. The total SWP can be considered as comprising a component
caused by the mutual attraction between water and soil particles, a gravity component, and
a soluble-salt component [5] (Figure 1). However, the last two components are negligible
in unsaturated soils without salt problems, compared to the first component, making
SWC, soil properties, and soil temperature the first-order controlling factors of SWP [31].
The relationship between SWP and the corresponding values of SWC is also called the
water release characteristic (in drying soil), the water retention function, and the soil
water retention curve, or the pF curve [32]. This relationship is often used to describe
the influence of intrinsic soil properties such as texture and structure on the soil moisture
regime, e.g., under certain SWC, an increase in clay content usually leads to an increase
in suction [33]. Soil temperature also influences this relationship either by controlling
the surface tension or by affecting the apparent contact angle, and thus the soil water
suction usually decreases with increasing temperature [34]. Other environmental variables,
including soil salinity, soil organisms, microbial activities, etc., are second-order factors
that affect SWP [35–38] (Figure 2). In salt-affected soils, soluble salts also cause a reduction
in SWP similar to the one arising from droughts, mainly through lowering the osmotic
potential [35]. Soil organisms (e.g., termites and earthworms) and the physiological activity
of plants (e.g., root development and nodule formation) might affect the pF curve by
changing the soil macrostructures via physiological activities [5]. The increase in microbial
biomass and the corresponding production of exopolysaccharides also affect the pF curve
by changing soil microstructures and increasing the stability of soil aggregates [39]. Notably,
the combined influence of multiple factors complicates the research of SWP dynamics and
is mainly reflected in that some factors (e.g., temperature and biological activities) disturb
the evaluation methods of SWP and bring uncertainty to the research results. In recent
years, the SWP evaluation methods have improved the evaluation accuracy and reduced
the disturbing influence of redundant factors, mainly in the measurement and simulation
of SWP, as discussed in the next section.
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2.2. Evaluation Methods

Various techniques and methods have been developed during the past decades to
determine SWP. These can be roughly categorized into (i) traditional techniques, (ii) new
modern techniques, and (iii) simulation methods [21]. The traditional SWP measurement
techniques include tensiometers, piezometers, dielectric sensors, heat dissipation sensors,
etc. The new modern techniques utilize microbial sensors and micro SWP sensors, as
described in the following. However, both traditional and modern techniques exhibit
uncertainty related to their precision, coverage, and sensitivity of measurement under the
influence of many factors (e.g., soil temperature and salt concentration), which can also
cause deviations in the results of the simulation methods.

2.2.1. Measurement Methods

Traditional methods for SWP measurement include field measurement and laboratory-
based methods. Although these methods have undergone tremendous development—from
Buckingham [41], who carried out the first measurement of SWP some 100 years ago, up
to the present day—all of them have shortcomings, such as limited measurement range
(Figure 3), low accuracy, and complicated installation (Table 1). The basic instrument for
field measurement, the tensimeter, was first described by Gardner et al. [11]; it is portable,
inexpensive, and easy to install, but has a limited range and is insensitive to infiltration
of dissolved salts in soil solutions [32]. Psychrometers overcome the upper limit of the
tensiometer of about −0.1 MPa and prompt measurements based on the equilibrium of
the vapor phase. It can be used in situ or in a sample chamber but is extremely sensitive
to temperature [42]. Heat dissipation sensors (HDS) measure the water potential through
the heat pulse dissipation in porous membranes and have a wide range of measurement
(<−1 MPa). The sensors are not affected by salinity, but they have a limited upper range
of SWP—close to saturation [21]. Comparatively new devices, such as dielectric water
potential sensors, which were created based on time-domain reflectometry [43], can now
provide a wider range of measurement (<−100 MPa), while the water potential is inferred
from calibration curves and is restricted due to the hysteresis effect problem [44]. The
expansion of measurement range can also be obtained with laboratory methods, such as the
filter paper technique, but this is time-consuming (just like resistance sensors) and limited
by temperature (just like the dew point potentiometer) [45,46]. In short, the measurement
range of every available method is limited, and there is no method that can cover the whole
dynamic range of water potential from wet to dry [47].
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Table 1. Comparison of SWP measurement methods.

Measurement Device Operational
Range/MPa

In Situ
Calibration

Measurement
Principle Main Features References

Field methods

Tensiometer −0.1~0 Not required Equilibrium of
the liquid phase

Low range and
long response

time
[49]

Psychrometer −1.5~−0.08 Depends on the
accuracy

Equilibrium of
the vapor phase

Extremely
sensitive to
temperature

[50]

Piezometer Depends on the
accuracy

Equilibrium of
the liquid phase

Used in
saturated
material

[51,52]

Dielectric
sensors −100~0 Depends on the

accuracy

Dielectric
capacity of the

porous cup

Short response
time; but
subject to
hysteresis

[43,44]

Heat
dissipation

sensors
−1.5~−0.005

Require
separate

calibration

Heat pulse
dissipationin
porousmem-

brane

Not sensitive to
the salt content
of the solution

[47]

Frequency
Domain and

Time Domain
Matric Potential

Sensors

−1~−0.002 Depends on the
accuracy

Equilibrium of
the liquid phase

Subject to
hysteresis and
very wet range

[53]



Water 2022, 14, 3721 6 of 17

Table 1. Cont.

Measurement Device Operational
Range/MPa

In Situ
Calibration

Measurement
Principle Main Features References

Laboratory
methods

Filter paper
method Entire range Required Equilibrium of

the liquid phase

Long
equilibration

time
[45,46]

Pressure plate
apparatus −1.5~0 Depends on the

accuracy
Equilibrium of

the liquid phase
Only used in

the laboratory [46,54]

Electrical
resistance

sensors
−1~−0.01 Depends on the

accuracy

Electric
resistancein
equivalent-

porousmedium

Interface easily
with data
loggers;

butsubject to
hysteresis

[55]

Dew point
potentiometer −1~−0.005 Not required Equilibrium of

the vapor phase

Needs
temperature

control
[53]

In recent years, water potential sensors have been developed, showing some potential
for convenience, miniaturization, and intelligence. For example, in order to extend the
measurement range, the wide-range psychrometer and the high-capacity tensiometer were
developed [56]. The dihedral tensiometer overcomes the major limits of common ten-
siometers [57]. Microbial sensors can be used to visualize millimeter-scale water potential
gradients in the soil around plant root tips by producing green fluorescent protein (GFP) as a
function of total water potential in nonsterile soil [58]. Non-contact measurement methods,
such as a new tool based on a power-law relationship between sound velocity and water po-
tential, have also received attention [59]. The development of new sensors, such as pFMeter,
Polymer Tensiometer (POT), MPS-6 and TensioMark (TM), provides more options for SWP
measurement with improved operability and more convenient features, as Jackisch et al. [9]
reviewed (Figure 3b). However, the lack of commonly agreed-upon calibration procedures
makes the capability and reliability of specific sensing methods controversial.

2.2.2. Simulation Methods

Modeling methods related to SWP dynamics can partially compensate for the defects
in traditional measurement methods. Many models involve the relationship between SWP
and environmental factors [60]. As mentioned above, the relationship between SWP and
SWC is the most useful way to infer SWP and remains an indispensable input for models,
to simulate the soil water balance [5]. Saxton et al. [33] studied the statistical correlation
between soil texture and SWP, based on water retention characteristics, and established
a model that could reflect the impact of different textures on SWP dynamics. Leong and
Rahardjo [61] proposed a nonlinear model for the change of SWP over time in sandy loam
and clay loam soil, but it cannot cover other soil textures. The preliminary research on
the relationship between temperature and SWP is attributed to Philip and De Vries [62];
they proposed the expression of the temperature effect of SWP under given water content
based on the effect of temperature on the surface tension of water; this was called surface
tension and viscous-flow (STVF) by Nimmo and Miller [63]. However, the STVF model
does not consider the change in soil-sealed gas volume caused by temperature change.
Nimmo and Miller [63] produced a functional model and well described the temperature
effects of SWP. Under the dynamic change of salinity, osmotic potential dynamics are
often used as a variable in crop-growth and salt-stress models. Richards [64] established a
regression equation between the electrical conductivity (EC) of salt solutions and osmotic
potential, but it is difficult to measure the relationship between osmotic potential and
EC with instruments. A log-linear relationship between SWP and microbial activity was
described by Orchard and Cook [65] in order to provide a more representative average
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function; the model provided by Moyano et al. [66] can be used to approximate the effect
of water potential on soil organic matter decomposition, but it is empirical in nature and
difficult to use when studying the effects of different settings and conditions.

Although both measurement and simulation methods have been developed, to our
knowledge, the methods of directly measuring SWP at millimeter scales or even at the
micro-scale have not yet become popularly accepted [67]. Especially for the investigation
of the interaction between plant root physiological activities and SWP dynamics, the root
release of organic matter (such as organic acids) and root hair growth and elongation are
all affected by SWP fluctuations, and these changes need to be analyzed at the millimeter
scales [68]. However, it is still difficult to study the change of potential energy at the
organ or even the cellular level. Furthermore, developing landscape-scale continuous SWP
measurements remains a challenge. Since SWP uniquely reflects changes in soil water
energy, especially in arid and semi-arid regions, it is very sensitive to SWC fluctuations
and plays an indicative role in community dynamics under climate change. Therefore,
landscape-scale studies on SWP will contribute to the research of surface water energy
change and land-air simulation under climate change.

3. Plant Biological Responses to Varied SWP

The dynamic change of SWP directly affects the physiological and ecological activities
of plants. Moderate SWP fluctuations can promote the germination and growth of plant
seeds, and the ripening of fruits, while a drastic change in SWP may lead to the collapse or
death of plants. This subsection analyzes the effects of SWP dynamic changes on individual
plant physiology, morphology, phytochemistry, and pathology (Figure 4).
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3.1. Physiology

Physiological activities such as seed germination, root activity, transpiration, and
photosynthesis are affected by the dynamic changes of SWP. Knowledge of SWP is critical
to quantifying soil water availability and plant water requirements [21]. As the initial
physiological stage of plant growth and development, seed germination is related to matric
potential and osmotic potential. Germination depends on the amount of water the seeds
can absorb, which is a function of SWP and hydraulic soil properties [69]. Doneen and
MacGillivray [70] stated that the rate of germination and the final germination percentage
both decrease with decreasing SWP. The combination of low water potentials and high
temperatures even reduces the germination rate to an extreme level [71]. For the plants
themselves, this phenomenon is a protective mechanism to avoid exposing the seedling to
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untenable environments [72]. Therefore, seeds will germinate only when certain favorable
conditions are met (Table 2). For example, Thespesia populnea and Celosia cristata require
adequate wetting conditions to achieve the maximum germination rate [69]. Interestingly,
the result of some species’ need for high temperatures with low water potential in European
countries where soil moisture is lowest when temperatures are highest, was unexpected [73].
Accordingly, plant germination parameters can be modeled as functions of SWP and
temperature, to predict germination dates and classifications of diverse plants [74]. In
ecological restoration areas, this relationship can be used to determine the key time for
plant germination and growth, so as to improve the efficiency of ecological restoration.

Because roots are the main organ for water absorption and have hydrophilic charac-
teristics, plant root development is also highly related to the water potential gradient in
the soil [75]. When SWP decreases (soil drying), cell activity in roots decreases, leading
to a corresponding decrease in root water conductivity [76]. In addition, very low SWP
can cause root shrinkage, loss of root water uptake, and even plant death. Roots are the
main organs for plants to perceive soil water dynamics. The root cap contains cells that
sense gradients in water potential, e.g., the roots of a pea can respond to a gradient less
than 0.5 MPa by growing toward the higher SWP [77]. Some studies have found that lateral
roots have different geotropism set point angles and are less responsive to gravity than
taproots, increasing the response to the water potential gradient [75]. Nevertheless, the
water potential threshold varies among plant species, and the physiological mechanisms
by which plants sense and respond to changes in SWP are unclear. This problem can be
solved to some extent by exploring the response of plant lateral roots rather than taproots
at small scales.

The difference in water potential between soil near roots and in the atmosphere is the
driving force of transpiration [78]. Stomata in the leaf, which are primarily involved in
transpiration, are controlled by the hydraulic gradient of the water potential. A moderate
decrease in SWP can increase stomatal length, width, density, and opening, while a very
low SWP can lead to stomatal closure and leaf water potential decline [79]. The stomatal
limitation also leads to a decrease in photosynthetic rate. Low water potential decreases
stomatal conductance, increases stomatal resistance, and decreases the photosynthetic
rate and transpiration rate of wheat [80]. The latest research suggests that the closure of
stomata also prevents the formation of large gradients in SWP around the roots [81], which
provides new insights into hydraulic processes at the root-soil interface [82]. However, this
conclusion needs to be tested in different plant species, soil types and variable atmospheric
conditions to further understand the coordination between stomata and soil desiccation.

Table 2. Basal water potential of germination of some plants.

Species Base Water Potential/MPa Reference

Cercidium praecox −0.41 [83]
Neobuxbaumia tetetzo −0.66~−0.2 [83]

Yucca periculosa −0.41~−0.2 [83]
Ambrosia artemisiifolia −0.8 [84]

Sinapis alba −1 [85]
Vigna radiata −0.5 [86]
Allium cepa −1.1 [87]

3.2. Morphology

Plants enhance their adaptability to decreased SWP not only through internal physio-
logical regulation but also by changing the morphological and functional characteristics of
roots, stems, and leaves, so as to guarantee their life activities and reproduction. Leaves
are the primary organs for photosynthesis and transpiration. Leaf area is an important
indicator for judging whether plants are water-deficient, and the main reasons for leaf area
change, in response to low SWP, are decreases in the photosynthetic rate and leaf turgor
pressure [88]. A significant decrease in SWP, in addition to causing leaf area reduction,
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leaf curl, and the production of highly pubescent leaves, can also lead to an increase in
leaf tissue density and thickness, and the formation of a thick keratin membrane, or leaf
edge elongation, in plants such as Encelia farinose, sugarcane, wheat, and conifers [40,79].
Apart from the leaves, plant roots undergo morphological changes to adapt to low water
potential environments. The root structure is changed, resulting in phenomena such as root
hair elongation, fine root thinning, decreases in root branch angle and lateral root branch
density, and a change in the root/shoot ratio. Under low SWP, maize root elongation
and rooting depth increase, while Cunninghamia lanceolate increases root complexity and
reduces its root branching angle, thus obtaining more water from arid soil [79]. It can also
result in the elongation and further differentiation of the fine roots of cotton, significantly
increasing the root length density, decreasing the average rhizoid, shortening the life span
of some fine roots, and promoting the elongation of fine root hairs [89]. Low SWP can
also influence other aspects of morphological change, e.g., lower plant height, smaller
stem girth, less shoot and root biomass, lower fresh and dry weights, and higher crown
roughness [79]. For instance, the tiller number, plant height, and internode length of rice
are obviously changed and associated with cell enlargement and leaf senescence under
low water potential environments [90]. The shedding and death of branches of birch and
poplar can occur, enabling them to adjust root-shoot ratios [91,92]. The transparency and
roughness of some trees’ crowns (e.g., Norway spruce) will increase [92]. Furthermore,
under low SWP, highly competitive trees reduce their already small canopy size to the
minimum necessary for efficient survival, when competition and environmental stress
occur at the same time.

3.3. Phytochemistry and Phytopathology

Low SWP triggers chemical signals (e.g., abscisic acid, inositol-1,4,5-triphosphate,
etc.) and increases the concentration of secondary metabolites, to prevent plant tissue
damage [25,79]. Dynamic changes in secondary metabolites induced by these chemical
signals vary from plant to plant. For example, the content of total flavonoids in Glechoma
longituba under low SWP conditions increases, whereas the concentration of phenolic
compounds in grape plants decreases considerably [93]. Moderate drought stress increases
the content of carotenoids and phenolic compounds in Carthamus tinctorius, while under
severe drought stress this content decreases significantly [94]. The dynamic change in
SWP can also lead to the rapid multiplication of pathogenic bacteria and the occurrence
of plant diseases; for example, active flora was composed almost entirely of Aspergillus
and Penicillium when the suction was between 145 bar and 400 bar, whereas Actinomycetes
were active only at suction values of less than 55 bar [95]. In addition, the temporal
dynamics of SWP could lead to considerable variability in the incidence of common scab
disease [96]. Conversely, changes in SWP also promote the growth and reproduction
of beneficial fungi. For instance, plant rhizosphere growth-promoting bacteria (PGPR)
improve plant tolerance to abiotic stress through various mechanisms, making a positive
contribution to the morphological, physiological, and phytochemical traits of Fenugreek
plants [97]. At present, it is not clear what the specific mechanism is, of the response of
pathogenic or beneficial bacteria to SWP, especially how to induce a dynamic change of
SWP in the direction of promoting the propagation of beneficial bacteria or inhibiting
pathogenic bacteria.

4. The Responses of Ecohydrological Processes to Varied SWP

The dynamics of SWP act at the plant level but also contribute to changes in community
structure and function and ecosystem cycling. In this section, we discuss the influence of
SWP on eco-hydrological processes, including its role in water processes, carbon processes,
and nutrient processes.
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4.1. Water Processes

Water potential differences at different positions in the soil-plant-atmosphere contin-
uum (SPAC) determine a series of water potential gradients and drive water movement.
Water flows from the soil to the roots, through the xylem, mesophyll, and parietal cells, evap-
orates through the substomatal cavity and diffuses the stoma, and enters the atmosphere
through the leaves and canopy (Figure 5). The water process with the participation of the
SWP gradient at the field scales primarily includes hydraulic lifting and deep drainage.
Hydraulic lifting refers to the passive movement of water from the root to the layers with
lower SWP [98] which expressively influences field water balances [99]. Since most plants
have limited water storage capacity, hydraulic lifting provides a mechanism for the tem-
porary storage of water in the topsoil. The evidence for the process of hydraulic lifting
originally came from experiments with SWP, which have shown that water taken up by the
deeper roots from the moist soil is transferred to the dry upper soil at night [98]. Therefore,
the temporal and spatial instability of the water potential gradient should be considered
when estimating the water balance of the system. If a striking hydraulic lift occurs nightly,
the timing and position of SWP measurements become an element in systematic water
measurement. The reverse phenomenon to hydraulic lifting—when the surface SWP is
higher than the bottom soil, water moves from the shallow lateral roots to the deeper
taproots—has also been observed. Especially during the change of seasons, the topsoil is
moistened again, and water is carried from the top layers to the deeper ones through the
roots [100]. Moreover, beyond that the SWP gradient can also directly lead to hydraulic
migration between different soil layers, excluding the roles of plant roots.
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4.2. Carbon Processes

SWP dynamics are a vital element that indirectly controls field carbon cycling by
regulating plant photosynthesis, soil microbial activity, and soil respiration. Low SWP and
high temperature are extreme stresses governing carbon allocation in plants. Especially
under drought stress, the organic matter produced by photosynthesis is reduced, resulting
in decreased carbon accumulation in plant leaves and changes in carbon allocation. With
low SWP, photosynthate distribution to the root system in spring wheat is increased,
leading to an increase in the root/shoot ratio [103]. Soil microbial activity also is sensitive
to SWP dynamics and is the key component of carbon balance. When SWP is low, the
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metabolic activity of most microorganisms decreases, resulting in reduced respiration
and nutrient mineralization [104]. Microbial respiration stops below −15 MPa water
potential. Subsequent rewetting events mobilize the physically protected carbon in the
aggregate, enhancing metabolism and enzymes, and thus increasing respiration [105,106];
this is known as the “birch effect” [107]. For instance, with the increase in intermittent
precipitation in arid and semi-arid regions, the respiration pulse and the release of its related
elements will intensify and become more variable, thus affecting the carbon cycle [108].
In addition, an increase in soil respiration is also affected by an increase in SWP, and
during the early wet period following rewetting, soil respiration increases the most [65].
However, due to inadequate measurement methods, SWP is not considered in most studies
for evaluating soil moisture effects on soil carbon dioxide emissions [28]. Therefore, future
research should focus on improving the accuracy and convenience of SWP measurement,
and organically combine SWP with soil carbon cycle research.

4.3. Nutrient Processes

Soil is a major reservoir of nutrients, and relatively high SWP positively affects circula-
tion and accumulation of nutrients (e.g., nitrogen and phosphorus). Biological nitrogen
fixation is one of the crucial sources of soil nitrogen and is sensitive to SWP dynamics [109].
Low SWP directly influences nitrogenase activity, leading to a decrease in nitrogen accu-
mulation in legume crops [29]. However, nitrogen-fixing bacteria strains in arid areas are
specially adapted to dry climates and can fix nitrogen under the condition of very low SWP.
The SWP fluctuations control the nitrogen uptake and release by plants and microorganisms
in diverse ways; the increased precipitation pulse events may lead to nitrogen cycles and
losses in arid and semi-arid regions [105]. When SWP values are low, microbes involved
in the nitrogen cycle remain active for a shorter time (compared to plants) after water
pulses [110]. After rewetting, a rapid change in SWP could lead to the lysis of microbial
cells or the release of intracellular solutes, increasing the net release rate of plant inorganic
nitrogen but not improving the absorption rate of plant inorganic nitrogen, resulting in
a short pulse of soil inorganic nitrogen and nitrogen loss. This nitrogen loss is likely to
worsen with climate change [105]. The phosphorus cycle is also dynamically influenced by
SWP, and with the increase in SWP, the activity of a microorganism related to phosphorus
decomposition and migration increases [111]. Bacterial communities dominate most nutri-
ent cycles such as soil carbohydrate metabolism and phosphorus dissolution, while fungi
promote soil phosphorus dissolution and plant-root interaction. Sinegani and Mahohi [112]
proffered the improvement of soil productivity by organic waste and concluded that mi-
crobial phosphorus and phosphatase activities increased significantly with the increase
in SWP. Wells et al. [113] also demonstrated that changes in SWP affect mycelia’s ability
to obtain phosphorus from the soil and the degree of phosphorus migration through the
mycelia network. In terms of phosphate mineralization, Grierson et al. [114] found that
specific phosphate mineralization was most sensitive when SWP was high. The sensitivity
decreases logarithmically with a decrease in water potential. When water potential is less
than −0.008 MPa, phosphate mineralization is insensitive to SWP. Therefore, an improved
understanding of the relationship between SWP, microorganisms and nutrient pairs is
helpful to promote plant uptake and utilization of nutrient elements and plant growth.

5. Challenges and Insights for Future Research

SWP research has taken a giant leap forward in the last decades (Figure 6). However,
there are still challenges to overcome in SWP evaluation methods, and in understanding its
roles in soil-plant-water relationships [115]. To adequately perceive the ecological effects of
SWP dynamics, improved measurement instruments are needed. Although the established
techniques, including solid-, liquid-, and vapor-based methods as discussed above, can be
used to monitor a diversified range of SWP (Table 1), they are restricted in in-situ or plot-
scale evaluations in the spatial dimension. Indeed, data of larger scales (i.e., within-field to
landscape scales) may provide insights that can be interesting for the interpretation of the
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spatial patterns of water status and the behavioral heterogeneity of vegetation. However,
few methods could be applied on these scales so far. In the future, the coupling of in-situ
technology and non-invasive methods (e.g., acoustic techniques and spectroscopy tech-
niques [59] take advantage of ‘signals of sound and light’, theoretically allowing for more
extensive and frequent observations, but with an affordable price), is expected to be utilized
for the solving of this issue. Besides developing instruments for large-scale measurement
of SWP, broader observation systems or networks are more likely a solution for getting
information on SWP at large scales. However, such datasets are rarely available—even at
most field stations across LTER (Long-term Ecological Research Network), CERN (Chinese
Ecosystem Research Network), and other research networks [116,117]. Therefore, we sug-
gest including SWP observation in the regular monitoring schedules at those field sites in
the future. Observation networks of water potential or energy state in the SPAC across
different landscapes and ecological settings are also highly expected to fulfill the demands
of model validation, data assimilation, and drought monitoring at larger scales [118,119].
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SWP dynamics plays a crucial role in the soil-plant-water relationship, which has
been confirmed to control plant development and phenology, such as germination or
flowering time [69], and root elongation or leaf area change [88,89], especially in water-
limited environments. However, the physiological mechanisms by which plants sense and
respond to changes in SWP remain unclear, e.g., the response mechanism of plant roots to
changes in hydraulic characteristics at the root-soil interface is undefined, which limits our
understanding of plant water use strategies in water-stressed environments. In addition, it
is also not clear what is the specific mechanism of soil microbe response to SWP, especially
how to induce the dynamic change of SWP toward the direction of promoting beneficial
bacteria reproduction or inhibiting pathogenic bacteria. Due to inadequate measurement
and research methods, SWP dynamics are not considered in most studies for evaluating
the ecohydrological effects, such as the carbon and nitrogen cycles, particularly in the
absorption of nutrients (e.g., nitrogen and phosphorus) by plants and the impact of climate
change on soil carbon storage. Therefore, future SWP research should focus more on
the ecohydrological effects of dynamic changes in SWP under climate change and take
advantage of the water potential dynamics in the application, such as the proper SWP
dynamics for promoting the propagation of beneficial bacteria, the utilization of nutrient
elements in plants, and the physiological activities of plants. In addition, the perception of
SWP dynamics by plants and microorganisms should be further investigated in conjunction
with the lateral root cells, plant hormone signals, etc., based on disciplines of plant cytology,
microbiology, and biochemistry.

6. Conclusions

This paper revisited the research on SWP from the influencing factors, evaluation
methods, and the impact of SWP on plant biology and eco-hydrological processes. This
literature review indicates that SWP plays an important role in controlling plant biological
functioning, and eco-hydrological interactions, especially in water-limited environments.
Our knowledge of plant-level effects was improved by incorporating SWP dynamics into
plant physiological ecological experiments and model research, but challenges remain in the
signal recognition of root responses to SWP, the role of plant morphological indicators under
drought stress, and the application of SWP in preventing plant diseases. In order to obtain
SWP data more efficiently, we argue that it is necessary to combine various established
technologies (e.g., solid-, liquid-, and vapor-based technology) and novel technologies
(e.g., sonic technology and spectroscopic technology) for the large-scale measurement of
SWP and integrate the observation of SWP and even energy states in the SPAC across
different landscapes and ecological settings, into soil hydrology and ecosystem observation
networks. For a better understanding of soil and plant interactions, we also propose to
study the dynamic changes in SWP in the context of climate change and combine the
disciplines of plant cytology, microbiology, and biochemistry to explore new hotspots
in the application research of SWP. These challenges and insights gained through our
review efforts are expected to provide inspiration for future research regarding drought
management and climate adaptation.
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