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Abstract: Photocatalytic technology could effectively degrade pollutants and release hydrogen.
Herein, novel composite materials of Zn0.4Cd0.6S (ZCS) and cobalt antimony oxide (CSO) with
different proportions were successfully synthesized through a hydrothermal reaction process. It
was proved via various characterization analyses that abundant nano ZCS particles (about 100 nm)
were closely coated on the surface of larger CSO particles in the composite photocatalysts, and the
heterojunction structure was formed. The synthesized materials could be used as highly efficient
photocatalysts to boost the photocatalytic hydrogen evolution and degradation of methylene blue
(MB) in visible light. The composite photocatalysts displayed favorable stability, and the optimal pro-
portion was ZCS/1CSO. In addition, the composite materials exhibited a wider absorption range for
visible light, and the apparent hydrogen production rate was about 3.087 mmol·g−1·h−1. Meanwhile,
compared with single materials, the composite photocatalyst obtained higher photocurrent response
and lower electrochemical impedance through conducting photo-electrochemical experiments and
analysis. Moreover, all of the photo-generated electrons, superoxide radicals, photo-generated holes,
and hydroxyl radicals were proved to contribute the MB photodegradation and hydrogen evolution,
and the former two active species played more vital roles. Furthermore, the effective separation
of photo-generated electrons and holes through the n-type of ZCS and p-type of CSO heterojunc-
tion structure accelerated the improvement of photocatalytic abilities for composite materials. The
photo-generated electrons concentrated in the conduction band of ZCS might be helpful for the im-
provement of hydrogen evolution abilities of composite photocatalysts. This work not only provides
a novel strategy towards high-efficiency composite photocatalysts through constructing heterojunc-
tion assisted with hydrothermal reaction, but also demonstrates the possibility of utilizing binary
composites for enhanced hydrogen evolution reaction and pollutant degradation.

Keywords: cobalt antimony oxide; ZnCdS; photocatalytic; hydrogen evolution; pollutant degradation

1. Introduction

As we know, critical organic wastewater pollution has resulted from the rapid increase
in chemical production and development [1–4]. Wastewater discharged without treatment
will have a significant impact on ecological environment and human health [5–8], inducing
cancer [9,10], mutagenicity [11,12], teratogenicity [13,14], water eutrophication [15,16], etc.
The pollution will reduce the quality of environmental water, thus making it unable to
be directly applied in drinking and other industrial fields [17–19]. Therefore, the efficient
treatment technology of organic wastewater has always been the focus of wastewater
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treatment research. At the same time, in order to fundamentally reduce the amount of
pollution, people are also looking for ways to obtain new, clean energy. The hydrogen-based
energy is one of the research focuses [20].

Photocatalysis, as a promising strategy for its photodegradation of organic wastewater
and hydrogen evolution capacity [21], has been widely investigated because of its ambient
operating temperature and pressure, high efficiencies, environment-friendly, and low
operating costs. It was reported that photocatalysts play a crucial part in the photo-
gradation of pollutants. Photocatalysts could produce the photo-generated electrons and
photo-generated holes that participate in the process of oxidation and reduction reaction,
and then accelerate the degradation of various pollutants, including organic substances.
Hence, as one of the vital factors in photocatalysis technology, developing highly efficient
photocatalysts have been attracted more attention from researchers in related fields.

The photocatalytic technology applies light to excite photocatalysts, so as to pro-
duce free radicals and efficiently degrade pollutants [22,23] and hydrogen evolution [24].
Generally, the photocatalytic reaction takes advantage of semiconductor materials as the
photocatalyst. According to the classical solid energy band theory, when the excitation
light energy was higher than the energy bandwidth of the photocatalyst, electrons would
be excited from the valence to the conduction band to form free electrons, and free holes
would be left in the valence band. The free electrons and holes could directly react with
pollutants by themselves, or form superoxide radicals and hydroxyl radicals to degrade
pollutants [25,26]. In addition, different from other wastewater treatment technologies,
due to its strong reactivity, the photocatalytic technology generated free radicals can not
only degrade pollutants but also reduce H2O molecules to obtain hydrogen [27,28]. Hence,
the development of photocatalytic technology could not only effectively deal with organic
water pollution, but also provide a new direction for new clean energy. From this point of
view, photocatalysis is a promising solution for the current environmental problems and
energy crisis, which can capture the large scale of solar energy and deliver an alternative
energy carrier to chemical energy.

Similar to other catalytic technologies, the highly efficient photocatalyst plays a key
role in the process of photocatalyst reaction. Since the initial TiO2 [29,30], a large number
of materials have been proven photocatalytic abilities, including C3N4 [31,32], ZnO [33,34],
MoS2 [35,36], ZrMo2O8 [37,38], Ag3PO4 [39,40], AgSbO3 [41], ZnxCd1−xS [42,43], etc., and
some new photocatalytic materials are developed every year. However, challenges are
still to be overcome to achieve viable photocatalysts for practical application. Researchers
attempted to improve the abilities to absorb a wide range of the solar spectrum, suppress
the recombination of photo-generated electrons and photo-generated holes, or reduce the
bad gap of photocatalysts. Among various photocatalysts, each photocatalytic material dis-
plays its own properties. Take ZnxCd1−xS, for example; it has been proven to be an efficient
material for the photocatalytic degradation of pollutants and hydrogen evolution. However,
for a single photocatalytic material, the recombination of photo-generated electrons and
holes was one of the key factors limiting the improvement of photocatalytic efficiency, and
ZnxCd1−xS is not an exception. In order to solve the recombination problem, constructing a
binary or a ternary composite heterojunction is considered an effective way. The transfer of
photogenerated electrons and holes between the conduction and valence band of binary and
ternary heterojunction can greatly reduce the recombination probability of electrons and
holes, thus improving pollutant degradation and photocatalytic hydrogen evolution perfor-
mance [24]. Madhusudan constructed a highly efficient ZnxCd1−xS/Au@g-C3N4 ternary
heterojunction composite and obtained higher visible light catalytic efficiencies [43]. Shen
et al. synthesized low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction
nanohybrids and gained efficient photocatalytic H2 evolution ability [44]. Ge et al. de-
veloped Cu3P and decorated Zn0.5Cd0.5S materials for enhanced photocatalytic hydrogen
evolution under visible light [45]. The CeVO4/Zn0.5Cd0.5S heterojunction was prepared
by Liu et al. for efficient photocatalytic hydrogen evolution [46]. Qi et al. constructed
a WS2/Zn0.5Cd0.5S nano heterostructured material that exhibited efficient visible light
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catalytic performance [47]. So far, new composite photocatalysts with extraordinary pho-
tocatalytic properties are still required to develop, and the deeply photodegradation
mechanisms in the process of photocatalytic reaction remained to be revealed.

In this work, novel composite materials of Zn0.4Cd0.6S (ZCS) and cobalt antimony
oxide (CSO) with different ratios were successfully synthesized through a hydrothermal
synthesis reaction. The synthetic products were comprehensively characterized and mea-
sured by various advanced techniques, including X-ray diffraction (XRD), scanning electron
microscopy-energy dispersive spectroscopy (SEM-EDX), UV–vis diffuse reflectance spectra
(UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). On this basis, the photocat-
alytic degradation of methylene blue (MB) and hydrogen evolution experiments were
conducted, and the photocatalytic stability was also analyzed and evaluated. Furthermore,
the photo-electrochemical analysis, containing electrochemical impedance spectroscopy
(EIS), electrochemical photocurrent, Mott–Schottky curves, and free radical detection were
utilized to reveal the photocatalytic mechanism of composite photocatalysts. The findings
proved that the binary composite photocatalysts displayed a wider absorption range for vis-
ible light, excellent photocatalytic activities for boosting photocatalytic hydrogen evolution,
and efficient photodegradation of MB in visible light. Moreover, the photocatalysts exhib-
ited extraordinary stability in the photocatalytic reaction process. Furthermore, the effective
separation of photo-generated electrons and holes through the n-type of ZCS and the p-type
of CSO heterojunction structures accelerated the improvement of photocatalytic abilities
for composite materials. This work not only provides a novel strategy towards highly effi-
cient composite photocatalysts through constructing the heterojunction by hydrothermal
synthesis method, but also proves the possibility of using binary composite photocatalysts
to enhance the hydrogen evolution abilities and pollutant degradation efficiencies.

2. Materials and Methods
2.1. Catalyst Materials Synthesis Process

All the chemical reagents (analytically pure) were purchased from the Sigma reagent
company (Shanghai, China). The synthesis method of each related material can be seen
below. The preparation of the cobalt antimony oxide (CSO) sample was as follows: First,
0.005 mol of NaSbO3·3H2O was dispersed in 80 mL of deionized water, and continued
to be stirred for 1 h until a white opaque liquid was formed. Secondly, 0.010 mol of
Co(NO3)2·6H2O was added to the above white liquid, and the liquid gradually turned
reddish brown with flocs. After that, the mixture continued to be stirred for 2 h at a
temperature of 50 ◦C. Third, the mixture obtained in the second step was transferred to
a 100 mL Teflon-lined stainless-steel autoclave for hydrothermal reaction. The reaction
temperature was 120 ◦C and the time was 12 h. Finally, the reaction product obtained was
cooled, filtered, and rinsed with deionized water, and then transferred to the blast drying
oven (LICHEN Technology, Shanghai, China) (at 75 ◦C) to be dried to a constant weight.

The preparation of the Zn0.4Cd0.6S sample was as follows: First, 0.84 g of Cadmium
acetate and 0.45 g of Zinc acetate were added into 70 mL of deionized water, and then
stirred for 45 min with the ultrasonic. After that, 12 g of Thiourea was added into the
above solution, and then stirred for another 60 min, also with the ultrasound. Secondly,
the mixture was transferred to 100 mL of Teflon-lined stainless-steel autoclaves for the
hydrothermal reaction. The reaction temperature was fixed at 150 ◦C and the time was
5 h. Finally, the reaction product was cooled, filtered, and rinsed with deionized water,
and then transferred to the blast drying oven (at a temperature of 75 ◦C) to be dried to a
constant weight.

The preparation of composite photocatalytic materials was as follows: First, the CSO
material was synthesized according to the above procedures. Then, the synthesized CSO
sample was added to 70 mL of deionized water and mixed with 0.84 g of Cadmium acetate
and 0.45 g of Zinc acetate at the same time. To obtain different proportions of composites,
the dosages of CSO ranged from 0.25 g to 1 g. The subsequent reaction processes were
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the same as that of Zn0.4Cd0.6S. In addition, the composite photocatalytic materials were
recorded as ZCS@xCSO, and the x (unit in g) was the dosage of the added CSO sample.

2.2. Materials Characterization and Mechanism Analysis

To illustrate the various properties of synthesized photocatalytic materials, photocata-
lysts were characterized by many modern instruments, mainly containing X-ray diffraction
(XRD), UV–vis diffuse reflectance spectra (DRS), scanning electron microscopy-energy
dispersive spectroscopy (SEM-EDX), and X-ray photoelectron spectroscopy (XPS). The
detailed information of instruments was as follows: a HITACHI (Regulus 8100) scanning
electron microscope with Super-X EDS detector (HITACHI, Tokyo, Japan) was used to ob-
serve the morphologies of catalytic products; a PerkinElmer Ultraviolet spectrophotometer
(Shanghai, China) measured the UV–vis DRS spectra; a Shimadzu XD-3A diffractometer
(Puxi, Beijing, China) was used to measure the XRD patterns of powder samples, and
utilizing the radiation of Cu-Kα (λ = 1.54056 Å); and a PHI 5000 VersaProbe XPS (Thermo
Kalpha, USA) was utilized to examine the X-ray photoelectron spectroscopy spectra.

The photocatalysis mechanism was analyzed by photo-electrochemical analysis and
the detection of free radicals. The photo-electrochemical properties of materials were
analyzed by a CHI 660E electrochemical workstation (Shanghai Chenhua, Shanghai, China).
The three electrodes system was used in the electrochemical measurement. The sample
electrode was the working electrode, the platinum sheet electrode was the counter electrode,
and the saturated calomel electrode was the reference electrode. Additionally, 0.2 mol/L of
the Na2SO4 solution was the electrochemical test electrolyte. Moreover, the analysis items
included electrochemical impedance spectroscopy (EIS), electrochemical photocurrent
(the interval was 20 s), and Mott–Schottky curves. The free radicals in the photocatalytic
reaction process were analyzed via an electron paramagnetic resonance spectrometer (ESR:
EMXmicro-6/1/P/L, Karlsruhe, Germany). Furthermore, the capturing agent for active
species (O2

− and OH) was 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and the capturing
agent for photo-generated e− and h+ was 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO).

2.3. Photocatalytic Experiments

The photocatalytic experiments were conducted under visible light irradiation (300 W
Xe-lamp, Zhengxin instrument, Yancheng, China). MB was used as the target pollutant
to evaluate the photocatalytic degradation activities, and the concentration of MB was
10 mg/L. In each experiment, the photocatalytic material was added to 30 mL of MB
solution and the dosage was 0.02 g. Additionally, the reaction mixture liquids were put
into a transparent photoreaction vessel and all the photocatalytic degradation tests were
conducted at room temperature (25 ◦C). Prior to the photocatalytic reaction, the mixture was
stirred for several minutes in the dark to achieve a sorption-desorption equilibrium, thus
the photocatalytic reaction time was set ranged from−10 to 40 min in our experiments, and
the light was turned on at 0 min. After the photocatalytic experiments were completed, the
residual concentration of MB was determined via an ultraviolet visible spectrophotometer.
To evaluate the photocatalytic stability, consecutive experiments were conducted through
the reuse of photocatalysts. The photocatalyst solid was recovered by centrifugation with
a low-speed centrifuge (LICHEN Technology, Shanghai, China) and washed five times
with deionized water. Afterward, the recycled solid was dried in a blast drying oven at
a temperature of 75 ◦C until its weight was constant for the next usage. In our research,
the photocatalyst was reused four times. In addition, to investigate the photocatalytic
degradation mechanisms, the generation of reactive species was examined through the
addition of scavenging chemicals during the photocatalytic reaction process. The trapping
chemicals for holes, hydroxyl radical, superoxide free radical, and electron trappers were
0.037 g EDTA-2Na, 0.0094 g TBA (tert-butyl alcohol), 0.0108 g BQ (1,4-benzoquinone), and
0.0142 g CCl4, respectively.

The photocatalytic hydrogen production experiments utilized the Porfila photocat-
alytic system and a CEL_HXF300/CEL-HXUV300 (Bofeilai, Beijing, China) light source.



Water 2022, 14, 3827 5 of 23

The specific reaction steps were as follows: There was 50 mg of photocatalyst material
added to a 100 mL aqueous solution of lactic acid (10 wt%), and a chloroplatinic acid
solution with a 1% mass ratio was added and mixed, sonicated for 30 min, and then the
mixture was transferred to the reaction flask. After that, the reaction flask was placed in the
atmosphere controller, using argon to remove the air in the bottle, and was then vacuumed
for 1 h. Then, putting the flask in a multi-channel photocatalytic reaction device, and then
irradiated for 4 h with a 300 W Xenon lamp. The gas produced was monitored online by a
gas chromatograph and the detector was a TCD (Sanfeng, Guangzhou, Guangdong, China)
thermal conductivity detector, and the carrier gas was high-purity argon.

3. Results and Discussions
3.1. XRD

The XRD technology can help us better understand the mineral phase composition of
materials. Figure 1 depicted the XRD patterns of the Zn0.4Cd0.6S/1 g of cobalt antimony
oxide (ZCS/1CSO) composite photocatalyst, and the XRD patterns of ZCS and CSO were
also detected as a comparison. It could be seen that the main XRD peaks of CSO were
located at 2θ (crystal facet): 14.8◦ (111), 28.5◦ (311), 30.1◦ (222), 34.5◦ (400), 37.9◦ (331), 45.7◦

(511), 50.0◦ (440), 52.4◦ (531), 59.2◦ (622), 62.1◦ (444), and 64.3◦ (711). Meanwhile, the main
XRD peaks of ZCS were located at 2θ: 25.5 (100), 27.1 (002), 28.7◦ (101), 44.4◦ (110), 47.2◦

(103), and 52.8◦ (112). In addition, both the XRD peaks of CSO and ZCS could be observed
in the pattern of ZCS/1CSO. Additionally, as the proportion of CSO mass increased, the
relative intensities of its XRD peaks gradually increased (Figure S1). This finding indicated
that ZCS/CSO might be a complex of ZCS and CSO. This is the premise for composite
materials to become a binary heterostructure.

Water 2022, 14, x FOR PEER REVIEW 5 of 23 
 

 

were conducted through the reuse of photocatalysts. The photocatalyst solid was recov-

ered by centrifugation with a low-speed centrifuge (LICHEN Technology, Shanghai, 

China) and washed five times with deionized water. Afterward, the recycled solid was 

dried in a blast drying oven at a temperature of 75 °C until its weight was constant for the 

next usage. In our research, the photocatalyst was reused four times. In addition, to in-

vestigate the photocatalytic degradation mechanisms, the generation of reactive species 

was examined through the addition of scavenging chemicals during the photocatalytic 

reaction process. The trapping chemicals for holes, hydroxyl radical, superoxide free 

radical, and electron trappers were 0.037 g EDTA-2Na, 0.0094 g TBA (tert-butyl alcohol), 

0.0108 g BQ (1,4-benzoquinone), and 0.0142 g CCl4, respectively.  

The photocatalytic hydrogen production experiments utilized the Porfila photo-

catalytic system and a CEL_HXF300/CEL-HXUV300 (Bofeilai, Beijing, China) light 

source. The specific reaction steps were as follows: There was 50 mg of photocatalyst 

material added to a 100 mL aqueous solution of lactic acid (10 wt%), and a chloroplatinic 

acid solution with a 1% mass ratio was added and mixed, sonicated for 30 min, and then 

the mixture was transferred to the reaction flask. After that, the reaction flask was placed 

in the atmosphere controller, using argon to remove the air in the bottle, and was then 

vacuumed for 1 h. Then, putting the flask in a multi-channel photocatalytic reaction de-

vice, and then irradiated for 4 h with a 300 W Xenon lamp. The gas produced was mon-

itored online by a gas chromatograph and the detector was a TCD (Sanfeng, Guangzhou, 

Guangdong, China) thermal conductivity detector, and the carrier gas was high-purity 

argon.  

3. Results and Discussions 

3.1. XRD 

The XRD technology can help us better understand the mineral phase composition 

of materials. Figure 1 depicted the XRD patterns of the Zn0.4Cd0.6S/1 g of cobalt antimony 

oxide (ZCS/1CSO) composite photocatalyst, and the XRD patterns of ZCS and CSO were 

also detected as a comparison. It could be seen that the main XRD peaks of CSO were 

located at 2θ (crystal facet): 14.8° (111), 28.5° (311), 30.1° (222), 34.5° (400), 37.9° (331), 

45.7° (511), 50.0° (440), 52.4° (531), 59.2° (622), 62.1° (444), and 64.3° (711). Meanwhile, the 

main XRD peaks of ZCS were located at 2θ: 25.5 (100), 27.1 (002), 28.7° (101), 44.4° (110), 

47.2° (103), and 52.8° (112). In addition, both the XRD peaks of CSO and ZCS could be 

observed in the pattern of ZCS/1CSO. Additionally, as the proportion of CSO mass in-

creased, the relative intensities of its XRD peaks gradually increased (Figure S1). This 

finding indicated that ZCS/CSO might be a complex of ZCS and CSO. This is the premise 

for composite materials to become a binary heterostructure. 

 

Figure 1. XRD patterns of ZCS, CSO, and ZCS/1CSO compound. Figure 1. XRD patterns of ZCS, CSO, and ZCS/1CSO compound.

3.2. UV–Vis DRS

The UV–vis DRS technology could well show the absorption efficiency of solid semi-
conductor materials to different frequencies of light, and calculate the band gap. Figure 2
showed the UV–vis diffuse reflectance spectra for ZCS, CSO, and ZCS/1CSO compounds.
It could be observed in Figure 2 that ZCS material displayed superior absorption for visible
light less than 500 nm wavelength, which was consistent with the results of the relevant
literature. At the same time, the light absorption range of the CSO catalytic material was
slightly wider than that of the ZCS material, and it could absorb a wavelength of light
less than 700 nm. After the materials underwent a composite reaction, the visible light ab-
sorption range of the ZCS/1CSO catalytic material had greatly expanded. The ZCS/1CSO
composite photocatalyst displayed excellent visible light absorption for the wavelength
below 850 nm. Similar findings could also be found in the results of compounds with
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different mass ratios (Figure S2). As depicted in Figure S2a, when the adding the mass of
CSO, the synthetic process increased from 0.25 g to 1 g, and the light absorption capacities
(lower than 850 nm) of composites were gradually improved. Then, after the added mass
of CSO, it continued increasing to 1.5 g, and the light absorption capacities decreased
gradually. This result suggested that there existed a relatively appropriate ratio between
CSO and ZCS for the performance of light absorption. Hence, from the perspective of
light absorption, 1 g dosage of CSO in a synthetic process might be the best value of the
ratio between CSO and ZCS. Moreover, the Tauc equation was usually used to estimate
the band gap value based on UV–vis DRS data [48,49], the intercept between the straight
line part in the hv and (αhν)2 relation curve of Figure 2b and the x-axis should be the band
gap value of the sample. In Figure 2b, it could be seen that the band gap of the ZCS sample
should be 2.45 eV, which was similar to references [50,51]. Meanwhile, the band gap of CSO
was about 2.0 eV, and such a value was consistent with its absorption ability for visible
light below a wavelength of 700 nm. For compound photocatalytic materials, it should be
difficult to calculate a single band gap value. In the fitting result of ZCS/1CSO, it could be
obviously found that there were two direct parts with an intercept of 1.41 eV and 2.39 eV,
respectively. These similar results could be observed in the fitting curves of samples with
different mass ratios (Figure S2b). This result implied that, through the composite reaction
process, the band gap of composite materials was reduced, which greatly enhanced the
light absorption range and intensity. This made the composite material could use light
energy more efficiently, and then generate more photogenerated electrons and holes.
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Figure 2. UV–vis diffuse reflectance spectra for ZCS, CSO, and ZCS/1CSO compounds (a), and the
plotting results of band gaps energy for ZCS, CSO, and ZCS/1CSO compounds (b), the blue line
presents the straight line part (in the hv and (αhν)2 relation curve.

3.3. SEM-EDX

The SEM-EDX technology can help us better understand the micromorphology and
composition of materials. Figure 3 showed the SEM analysis results of CSO. In Figure 3a,b,
it could be seen that the original CSO clearly presented the hexahedron morphology and
the side length was about 5 µm. From the element mapping results (Figure 3b–d), the
elements of Co, Sb, and O were uniformly distributed around all the particle area in
Figure 4a. Therefore, the main constituent elements of CSO were Co, Sb, and O, and
the atom ratio was 1:2:10, which meant that the CSO particle was cobalt antimony oxide.
Meanwhile, as depicted in Figure S3, plenty of nano rough sphere particles could be clearly
observed, and the particle size was about 100 nm. According to the element mapping
results (Figure S3c–e), the main constituent elements of ZCS were Zn, Cd, and S, and the
atom ratio was 0.4:0.6:1. Such morphology of nano rough spheres had also been found by
other researchers [43]. This nanostructure allowed ZCS to absorb light more efficiently.
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Figure 4 described the SEM analysis results of the ZCS/1CSO photocatalyst. It could
be seen in Figure 4a,b that after the compound reaction, the hexahedron particle became
irregular and the particle size was also about 5 µm. Moreover, in Figure 4b–d, it could be
observed that the surface of the irregular particle was covered by a large amount of nano
spheroid-like particles. These nanoparticles have a similar morphology to Figure S3. As
we know, Figure S3 presented the morphology of the original ZCS, thus the same nano
spheroid-like particles found in Figure 4 should also be the ZCS particles. Obviously, this
close contact was conducive to the transfer of photogenerated electrons and holes between
ZCS and CSO. Figure 5 presented the EDS mapping results of the ZCS@1CSO composite
photocatalyst. It could be known that the elements of Zn, Cd, and S are distributed around
all the areas of spherical-like particles in Figure 4a. The atom ratio of Zn, Cd, and S
was about 0.38:0.62:0.95, which was very close to that of the original ZCS. At the same
time, the elements of Co, Sb, and O were much more evenly distributed throughout the
regions of Figure 5a. The atom ratio of Co and Sb was about 1:2, which was similar to
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that of the original CSO. Furthermore, the more clear analysis results could be obtained
from the EDS point and line in Figure 6. The EDS line in Figure 6a was extended across
the area of nano spherical-like particles and irregular bigger particles. Additionally, in
Figure 6h,i, it was found that the main element composition of nano spherical-like particles
(point 1) was Co, Sb, and O, while that of irregular bigger particles (point 2) was Zn, Cd,
and S. Meanwhile, in the results of Figure 6b–g, it could be observed that the element
composition was changed significantly at 19 µm of the EDS line (the interface between two
particles). Near there, it could be found that the content of elements Zn, Cd, and S began to
decrease while the content of elements Co, Sb, and O gradually increased. Based on the
analysis of the above results, it could be summarized that, after the composite reaction of
materials, massive nano ZCS particles were tightly loaded on the surface of CSO particles.
After the light excitation, such microstructures of composite photocatalysts would provide
excellent contact conditions for the photo-generated electron and hole transfer between the
two particles.
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Sb (f), O (g), the total element EDX analysis of analysis area (h).

3.4. XPS

XPS technology could help us to understand the surface elemental composition and
the form of materials. Figure 7 showed the XPS analysis results of the CSO material. In
Figure 7a, it could be seen that the main XPS peaks of CSO were located at 975.3 eV (Sb3s),
814.5 eV (Sb2p1/2), 795.6 eV (Co2p1/2), 783.4 eV (Co2p3/2), 768.1 eV (Sb2p3/2), 537.0 eV
(Sb3d), 530.1 eV (O1s), 154.2 eV (Sb4s), 103.9 eV (Co3s/Sb4p), 59.3 eV (Co3p), and 36.8 eV
(Sb4d). All these elements were the constituent elements of CSO, and that was consistent
with SEM-EDS results. Figure 7b,c depicted the high-resolution XPS spectra of Co2p and
O1s/Sb3d. Figure 7b suggested that the Co2p peaks could be divided into two main peaks
at 782.4 eV (Co2p3/2) and 798.4 eV (Co2p1/2). In addition to the above two peaks, two
satellite peaks, located at 787.6 eV and 803.8 eV, could also be found. The appearance
of these four peaks was related to the +2 valence Co element in the CSO material [52].
Meanwhile, in Figure 7c, it also could be seen that the peaks of Sb3d and O1s were partly
overlapped. After peak splitting, the Sb3d5/2 and Sb3d3/2 peaks were at 533.8 eV and
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540.8 eV, and the main O1s peak was at 532.3 eV. The appearance of the Sb3d5/2 and
Sb3d3/2 peaks suggested the existence of a +5 valence Sb element in the CSO catalytic
material [52,53].
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Moreover, Figure 8 showed the XPS results of the ZCS/1CSO composite photocatalyst.
As depicted in Figure 8a, the main XPS peaks of ZCS/1CSO included 1047.9 eV and
1044.4 eV (Zn2p), 974.9 eV (Sb3s), 815.2 eV (Sb2p1/2), 797.0 eV (Co2p1/2), 784.1 eV (Co2p3/2),
769.1 eV (Sb2p3/2), 621.1 eV (Cd3p), 537.2 eV (Sb3d), 530.2 eV (O1s), 501.8 eV (Zn LMM),
405.4 eV (Cd3d), 230.1 eV (S2s), 164.1 eV (S2p), 142.7 eV (Zn3s), 89.4 eV (Zn3p), 37.3 eV
(Sb4d), and 7.1 eV (Cd4d). The elements appearing in the above XPS peaks covered all the
elements contained in the ZCS/1CSO photocatalytic material.
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Figure 7. The wide scan XPS of CSO (a); the high-resolution XPS spectra of Co2p (b) (the green and
purple area represented the satellite peaks of Co2p1/2 and Co2p3/2, the blue and red area represented
the main peak of Co2p1/2 and Co2p3/2; the high-resolution XPS spectra of O1s/Sb3d (c) (the light
green, light red and light blue area represented the main peak of Sb 3d3/2, Sb 3d5/2 and O1s).

Furthermore, comparing Figures S4a and 7a with Figure 8a, it was found that all the
above peaks (at similar positions) appeared in the XPS results of the original ZCS and CSO
material. As depicted from the high-resolution XPS spectra of Cd3d (Figure 8b) and Zn2p
(Figure 8c), it could be observed that the XPS peak of Cd3d was split to Cd3d5/2 (407.4 eV)
and Cd3d3/2 (414.2 eV) peaks. Similarly, the XPS peaks of Zn2p were split into Zn2p3/2
(1023.9 eV) and Zn2p1/2 (1046.8 eV) peaks. The peaks with similar shapes and positions
could also be found in the results of the original ZCS material (Figure S4b,c), and the
occurrence of Cd3d and Zn2p peak splitting suggested the existence of a +2 valence Cd and
the Zn element in ZCS and ZCS/1CSO photocatalysts. Additionally, Figures 8d and S4d
indicated the high-resolution XPS spectra of S2p in the ZCS/1CSO and ZCS material. The
appearance of S2p was directly related to the −2 valence S element in the two catalytic
materials. In Figure 8d, it could be observed that the S2p peaks were composed of two
peaks at 164.2 eV and 166.2 eV. A similar appearance also could be observed in Figure S4d,
and this peak splitting (close peak position) should be caused by the different energies of
the Cd-S bond and Zn-S bond in the ZCS and ZCS/1CSO materials. Additionally, the high-
resolution XPS spectra of O1s/Sb3d and Co2p were shown in Figure 8e,f. Compared with
Figure 7b,c, the similar peaks splitting and position in Figure 8c,f indicated the elements
of Co and Sb keep a +2 and +5 valence in the ZCS/1CSO composite photocatalyst after
the compound reactions, respectively. In summary, based on the XPS results, it could
be believed that the ZCS/1CSO photocatalyst was a complex of ZCS and CSO materials,
which was consistent with other characterization results.
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Figure 8. The wide scan XPS of ZCS/1CSO (a), the high-resolution XPS spectra of Cd3d (b) (the grey
and deep purple area represented the main peaks of Cd3d3/2 and Cd3d5/2), the high-resolution XPS
spectra of Zn2p (c) (the pink and light purple area represented the main peaks of Zn 2p1/2 and Zn
2p 3/2); the high-resolution XPS spectra of Zn2p (d) (the light grey and purple area represented two
split peaks of S2p at 166.2 eV and 164.2 eV); the high-resolution XPS spectra of O1s/Sb3d (e) (the
purple, light red and light orange area represented the main peak of Sb3d3/2, Sb3d5/2 and O1s); the
high-resolution XPS spectra of Co2p (f) (the deep green and red area represented the satellite peaks
of Co2p1/2 and Co2p3/2, the light green and light pink area represented the main peak of Co2p1/2

and Co2p3/2.

3.5. The Photocatalysis Performance

The photocatalytic performance of the materials in this study was tested by both
methylene blue degradation and hydrogen evolution. Figure 9a depicted the photocatalytic
degradation process of MB under different systems. It was seen that under the conditions
of single pure visible light (no catalyst) and single catalyst (no visible light), the degra-
dation efficiencies of MB were very low. While with the combined action of catalyst and
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visible light, it was observed that the degradation efficiencies of MB were greatly improved.
Additionally, among the three typical degradation systems, the ZCS@1CSO combined
system gained the highest degradation efficiencies for the target pollutant. After the photo-
catalytic reaction was conducted for 40 min, the target pollutant was almost completely
degraded. In addition, compared with the photocatalytic degradation efficiencies with
different ratios of composite photocatalysts (Figure S5a), the degradation efficiencies of MB
with the ZCS@1CSO composite were also the highest among all the other photocatalytic
systems. Figures 9b and S5b, and Table 1 display the pseudo-first-order kinetics analysis
results of different degradation systems [54,55]. It could be seen that, except for the single
pure visible light and single catalyst systems, the fitting values of R2 in all photocatalytic
systems were higher than 0.99. Such findings suggested that the pseudo-first-order kinetic
equation could better describe the photocatalytic degradation process of MB in different
reaction systems.
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Figure 9. The MB photocatalytic degradation process (a), pseudo first order kinetic analysis (b) and
H2 production (c) under different photocatalytic systems.

In addition to degrading pollutants, suitable photocatalytic materials could also gener-
ate hydrogen by splitting water. Figures 9c and S5c, and Table 1 showed the H2 production
results in different photocatalytic systems. The findings indicated all the photocatalytic
systems could produce hydrogen and the ZCS@1CSO system acquired the maximum
values of hydrogen. Additionally, the highest hydrogen production amount at 4 h was
about 12.35 mmol·g−1, and the rate constant of apparent H2 production was around
3.087 mmol·g−1·h−1. In a word, the related photocatalysis results indicated that the com-
bined usage of ZCS and CSO materials could not only promote the photocatalytic degrada-
tion efficiencies of MB, but also greatly improved the hydrogen evolution efficiencies.
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Table 1. The photocatalytic kinetic analysis results.

Different Reaction
System

MB
Degradation

Rate Constant

Standard
Deviation R2

Apparent H2 Production
Rate Constant

(mmol·g−1·h−1)

light 0.00116 0.0000707 0.9780 -
ZCS-no light 0.00161 0.0001387 0.9476 -
CSO-no light 0.00115 0.0001060 0.9509 -

ZCS@1CSO-no light 0.00147 0.0001535 0.9486 -
ZCS 0.0421 0.0006465 0.9931 1.332
CSO 0.0282 0.000143 0.9969 0.787

ZCS@0.25CSO 0.0483 0.000186 0.9912 2.023
ZCS@0.5CSO 0.0544 0.000182 0.9933 2.395
ZCS@0.75CSO 0.0619 0.000223 0.9922 2.861

ZCS@1CSO 0.0832 0.000282 0.9932 3.087
ZCS@1.25CSO 0.0519 0.00015 0.9934 2.608
ZCS@1.5CSO 0.0442 0.000147 0.9950 2.197

Tables 2 and 3 displayed the photocatalytic degradation performance and hydrogen
evolution performance of MB for recent catalysts, respectively. Through comparing the re-
sults of photocatalytic degradation capabilities and the hydrogen evolution production rate
constants, it was found that the photocatalytic degradation performance of the ZCS@1CSO
composite material in this work was better among these photocatalysts. Additionally, the
hydrogen evolution capability was above the middle level.

Table 2. The photocatalytic degradation performance of MB for recent catalysts.

Catalysts Light Source Concentration
(mg/L)

Dosage
(mg/mL)

Ct/C0 at 40
min Reference

copper oxide nanoparticle sunlight 5 2 0.917 [56]
Poly(1-Napthylamine) nanoparticles 11 W UV irradiation 5 0.25 0.83 [57]

C3N5 nanosheet with Ag2CO3 300 W Xe light 60 1 0.28 [58]
ZnO-nanoparticles sunlight 10 0.5 0.87 [59]
(Mn/TiO2-WACF) 300 W Xe light 33 0.1 0.63 [60]

SrTiO3 nanocube-doped polyaniline
nanocomposites 300 W Xe light 10 0.3 0.29 [61]

Zn(II) coordination polymers 350 W Xe light 12.8 0.4 0.38 [62]
chitosan-modified nickel magnetite sunlight 50 16.7 0.58 [63]

silver and graphene nanocomposites 500 W Xe light 3 0.4 0.7 [64]
ZCS@1CSO 300 W Xe light 10 0.667 0.031 this work

Table 3. The hydrogen evolution performance of recent catalysts.

Catalysts Light Source
Apparent H2 Production

Rate Constant
(mmol·g−1·h−1)

Reference

LaMnO3-Pt 300 W Xe light 1.350 [65]
thiophene-amide embedded g-C3N4 300 W Xe light 0.2454 [66]

g-C3N4/MoO2 composites 300 W Xe light 0.3208 [67]
cds-ZTO 250 W metal-halide Philips lamp 0.548 [68]

RhCrOx/Pr-LaFeO3 300 W Xe light 0.127 [69]
Ni/NiO/g-C3N4 300 W Xe light 2.310 [70]
ZnCdS/Co@CoO 300 W Xe light 5.445 [71]

UiO-66(Ce)/ZnCdS 300 W Xe light 3.958 [72]
Rod-shell CdS/Cu2S 300 W Xe light 0.640 [21]

ZCS@1CSO 300 W Xe light 3.087 this work
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The stability of photocatalytic materials was also very important for their further
practical application. Figures 10c and S6 showed the experimental results of the ZCS@1CSO
photocatalyst after four times of recycling. It could be seen that during the four times of
usage, the efficiency of photocatalytic degradation of MB and hydrogen evolution with
ZCS@1CSO was slightly decreased. However, the hydrogen production amount of 4 h was
still maintained at 11.04 mmol·g−1, and the residual rate of MB after 40 min reaction still
reached 22%. Hence, the composite photocatalyst of ZCS@1CSO still kept about 80% of
photocatalytic capacity after the fourth recycle. Moreover, Figure 10a,b depicted the SEM
and XRD analysis results of the ZCS@1CSO photocatalyst after its fourth run. It could be
seen from the XRD results that the positions and relative intensities of the characteristic
peaks remained basically stable, which indicated that the composite material still contained
abundant ZCS and CSO particles. Meanwhile, in Figure 10a, the larger CSO particles and
nano ZCS particles supported on their surface could still be observed. However, compared
with the original composite of ZCS@1CSO (Figure 4), the coverage of nano ZCS particles
decreased. The results indicated that nano ZCS particles would fall off from the CSO
surface during the photocatalysis experiment, which might be one of the reasons for the
decline of photocatalytic ability after multiple usages.
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3.6. The Photocatalysis Mechanism

The electrochemical experiments, including transient photocurrent responses, electro-
chemical impedance spectra, and Mott–Schottky curves, were very helpful to study the
photocatalysis mechanism. Figure 11 showed the results of the transient photocurrent re-
sponses, electro-chemical impedance spectra, and Mott–Schottky curves of ZCS, CSO, and
ZCS/1CSO catalytic materials. The results of Figure 11a suggested that all three materials
displayed superior photocurrent responses, and the photocurrent response intensity of
the ZCS/1CSO photocatalyst was the highest. It could also be seen in Figure S7a that the
photocurrent response intensity of the ZCS/1CSO photocatalyst was higher than those
of other heterojunction composite photocatalysts with different mass proportions. Such
findings indicated that, through the recombination of ZCS and CSO materials, there would
be more charge carriers in the composite samples under the optical excitation, which was
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very helpful for the photocatalytic process. In addition, it could be seen in Figure 11b that,
all three curves conformed to the classical semicircle shape, and their data could be fitted
by inserting a circuit picture. As the order of the curve radius was ZCS/1CSO > ZCS >
CSO, the ZCS/1CSO photocatalyst obtained the smallest charge transfer resistance, which
was also conducive to the photocatalysis reaction. Meanwhile, Figure S7b suggested that
among the composite photocatalysts with different composition ratios, the electrochemical
impedance of ZCS/1CSO was the smallest. Additionally, according to the Mott–Schottky
curve, it could be roughly known the type of semiconductor and the energy band range
of the materials [73]. Because the slope of the fitting line was positive and the intercept
to the x-axis was about −0.37 V, the ZCS was an n-type semiconductor and the flat band
potential (EFB) was −0.37 V. As we know, the EFB of n-type semiconductor was about
0.2 V more positive than the conduction band potential (ECB), so the ECB of ZCS should be
−0.57 V and the energy band range was from about −0.57 V to 1.88 V. Through the similar
analysis methods, it was found that the CSO material was a p-type semiconductor and the
energy band range was from about −0.6 V to 1.4 V. Moreover, in Figure 11e, an inverted
“V” shape M–S curve could be observed, and both the parts similar to the curves of pure
ZCS and CSO materials could be found. On the other hand, the slope of the fitting line
was negatively correlated with the charge carrier density. The slope of the two fitting lines
in Figure 11e was much lower than that of Figure 11c,d, and the charge carrier density of
the ZCS@1CSO photocatalyst was much higher than that of the ZCS and CSO materials.
In conclusion, these electrochemical experiments results indicated that the ZCS/1CSO
composite should be a p-n type of heterojunction structure photocatalyst composed of
ZCS and CSO materials, and the ZCS/1CSO composite photocatalyst exhibited excellent
photocurrent response, lower impedance, and higher carrier density.

Meanwhile, according to the semiconductors physics knowledge [38], when the n-
type semiconductors and p-type semiconductors were in contact, electrons and holes will
undergo an interesting transfer between them due to their different types and positions
of Fermi levels. As the results of the Mott–Schottky curves show, the band gap of the
n-type ZCS ranged from about −0.57 V to 1.88 V, and the Fermi level was close to the
conduction band, as shown in Figure 12a. Additionally, the band gap of the p-type CSO
ranged from about −0.6 V to 1.4 V, and the Fermi level was close to the valence band
and is also shown in Figure 12a. Additionally, near the contact surface of materials, the
electrons would transfer from ZCS to CSO (while the moving of holes was in the opposite
direction), thus causing the Fermi level of ZCS decrease and the one CSO increase. Finally,
as shown in Figure 12b, the Fermi levels of two materials would reach the same position at
the same time. Moreover, due to the interface movement of electrons and holes between
the material of ZCS and CSO, an internal electric field (pointing from the ZCS to CSO
material) would be formed. In this situation, when the composite material was excited by
the visible light, electrons would be excited from the valence to the conduction bands and
stay holes in the valence band in both ZCS and CSO materials. At this time, the established
internal electric field would promote the transferring of photo-generated electrons from
CSO to ZCS (holes transferring through the reverse direction). Such different transferring
directions would greatly reduce the recombination probability of photo-generated holes
and electrons, thus improving the photochemical activity of the compound photocatalytic
material. Furthermore, this was consistent with the results of higher photocurrent, charge
carrier density, and lower electrochemical impedance. In addition, after repeated uses, a
small part of nano ZCS particles would fall off from the surface of the CSO material. Then,
the transfer effect of photo-generated electrons and holes between ZCS and CSO materials
was bound to be weakened, which led to the decline of its photocatalytic ability.
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The various free radicals, including photo-generated electrons (e−), holes (h+), su-
peroxide radicals (O2

−), and hydroxyl radicals (OH) in a photocatalysis system usually
played important roles in the process of photocatalytic reaction. The ESR technology could
detect many free radicals in the photocatalytic reaction, and the results of ESR spectra of
ZCS@1CSO under dark and visible light were depicted in Figure 13. It could be seen in
Figure 13a,b that after 5 min of irradiation with visible light, the signal of TEMPO was
decreased significantly compared with 0 min (dark), since the decreasingsignal was caused
by the combination of TEMPO and charge carriers (e− and h+) into other substances [74,75].
The results in Figure 13a,b suggested that some charge carriers (e− and h+) were generated
by the radiation of visible light. Meanwhile, Figure 13c,d showed the detection results



Water 2022, 14, 3827 17 of 23

of superoxide radicals and hydroxyl radicals. Compared with 0 min (dark), the signals
of superoxide and hydroxyl radicals obviously appeared in Figure 13c,d after 5 min of
irradiation with visible light. Because the detected signals belonged to complexes of DMOP
and O2

−/h+ [76,77], these findings in Figure 13c,d indicated that some superoxide and
hydroxyl radicals must be formed during the radiation of visible light.

H2O/OH− + h+ → OH (1)

OH/h+ + MB→ Degradation products (2)

O2 + e− → O2
− (3)

O2
−/e− + MB→ Degradation products (4)
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Figure 12. The band gap structure of original ZCS and CSO (a), and a composite of ZCS and CSO (b).
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Figure 13. The ESR spectra of ZCS/1CSO under dark (0 min) and visible light (5 min), (a): TEMPO-e−,
(b): TEMPO-h+, (c): DMOP-O2

− and (d): DMOP-OH.
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In addition to ESR technology, adding trapping agents was also one of the effective
approaches to detect free radicals in the process of photocatalytic reaction. Figure 14 illus-
trated the influence of various trapping agents on the degradation process of MB. As we
know, chemicals of EDTA-2Na, TBA, CCl4, and BQ were trapping agents for the photo-
generated hole, hydroxyl radical, electron, and superoxide radical, respectively [78,79]. It
could be seen in Figure 14 that the photodegradation efficiencies of MB were decreased
after the addition of four free radical trapping agents. This result implied that all four main
free radicals, including e−, h+, OH, and O2

−, must appear in the reaction process of photo-
catalysis, which was consistent with the results in Figure 13. For the degradation of MB,
all the degradation reactions in Equations (1) to (4) would probably happen. Meanwhile,
among the four trapping agents, the effects of CCl4 and BQ in the degradation process
were significantly higher than the others of EDTA-2Na and TBA. Hence, Equations (3)
and (4) might be the main photodegradation path for MB in the photocatalytic reaction
with composite photocatalysts. Meanwhile, the abundant photo-generated electrons could
significantly reduce hydrogen ions in solution to hydrogen.
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Based on the results of photo-electrochemical properties and free radical detection,
the photocatalytic mechanism of the composite materials could be simply summarized in
Figure 15. It was revealed that the combination of two different semiconductor photocat-
alytic materials (the n-type of ZCS and the p-type of CSO) was beneficial to the separation
of photo-generated charges and holes. When the ZCS and CSO materials were excited by
the visible light, the photo-generated electrons in the conduction band of the CSO catalyst
were transferred to ZCS, and the photo-generated holes in the valence band of ZCS were
transferred to CSO. Then, the electrons concentrated in the conduction band of ZCS would
directly reduce, or generate superoxide radicals to degrade the pollutant. At the same time,
when the conditions were suitable, the hydrogen ions in the reaction system could also be
reduced to hydrogen. Similarly, the holes concentrated in the valence band of CSO also
could directly oxidize, or generate hydroxyl radicals to degrade the pollutant of MB. In this
case, the efficient transferring of photo-generated electrons and holes was essential for the
improvement of overall photocatalytic efficiency.
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4. Conclusions

In summary, novel composite photocatalysts of cobalt antimony oxide (CSO) and
Zn0.4Cd0.6S (ZCS) with different ratios were prepared and successfully synthesized by the
hydrothermal reactions for the first time. The characterization results demonstrated that the
heterojunction structure of synthesized composite materials was formed through the close
adhesion of nano ZCS particles (about 100 nm) to the surface of larger CSO particles. The
photocatalytic experiments verified that the composite photocatalysts could effectively en-
hance the photocatalytic degradation efficiencies of MB compared with those of single CSO,
single ZCS, and other systems with the radiation of visible light. Meanwhile, the capability
of hydrogen evolution reaction is also highly improved via the addition of composite photo-
catalysts. Among samples of photocatalysts with different proportions of CSO and ZCS, the
photocatalyst of ZCS/1CSO exhibited optimal performance. The pseudo-first-order kinetic
equation better described the degradation process of MB in different photocatalytic reaction
systems. After being recycled four times, the photocatalyst could still maintain favorable
stability in the photocatalytic reaction. The findings of electrochemical experiments proved
that the transferring of photo-generated electrons and photo-generated holes between the
n-type of ZCS and the p-type of CSO gave composite photocatalysts wider absorption for
visible light, a stronger photo-current response, and a lower electrochemical impedance,
which attributed to excellent photodegradation efficiencies of MB and hydrogen evolution
abilities in the photocatalytic reaction. The MB could be completely photodegraded in
40 min, and the apparent hydrogen production rate was about 3.087 mmol·g−1·h−1. More-
over, the photocatalytic mechanism revealed that four types of highly active substances,
including photo-generated electrons, photo-generated holes, superoxide radicals, and hy-
droxyl radicals, contributed to the photocatalytic degradation of MB. Additionally, the
photo-generated electrons and superoxide radicals played crucial roles in the photodegra-
dation of the target pollutant. Furthermore, the photo-generated electrons concentrated
in the conduction band of ZCS should be conducive to the improvement of hydrogen
evolution ability for composite photocatalysts. The results in this paper could be applied in
the photocatalytic treatment of dye wastewater and hydrogen evolution-based new energy.
In future research, we will further study the catalytic mechanism to find a more efficient
photocatalysis process.
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