The Influence of River Morphology on the Remote Sensing Based Discharge Estimation: Implications for Satellite Virtual Gauge Establishment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data
2.2. Methodology
2.2.1. Extraction of River Morphology
2.2.2. C/M Modelling and Validation
2.2.3. Qualitative and Quantitative Analysis
2.2.4. Demonstration of Satellite Virtual Gauge Selection
3. Results
3.1. Descriptions of River Morphology
3.2. Discharge Estimation Using C/M Method
3.3. Influence of River Morphology on Discharge Estimation
3.3.1. Qualitative Analysis
3.3.2. Quantitative Analysis
3.3.3. Practice on Another Independent Gauge
4. Discussion
5. Conclusions
- (1)
- The observed discharge and the C/M series in all the selected river sections showed medium-to-high positive correlation. For each gauge, the estimated results of its four study sites exhibit a moderate but different accuracy. This suggests that the C/M method is overall reliable for all the selected study sites.
- (2)
- Estimation results are generally better in study sites with higher water occurrence and larger maximum water extent. This implies river sections with high-quality Landsat observations and extensive surface water dynamics are important prerequisites for reliable discharge estimation. Therefore, some surface water products (e.g., GSWD) could be useful resources for assisting SVG location.
- (3)
- It is found that river width has the most significant influence on the discharge estimation accuracy and model stability (sig < 0.05). Even though river gradient and sinuosity did not pass the significance test of multivariate analysis of variance, it seems that the two indicators also affect the estimation accuracy for some of the selected river sections. This suggests that river morphology is truly an important factor that influencing the C/M river discharge estimation method.
- (4)
- Through testing at another independent river reach, our findings about how river morphology affects discharge estimation and how can they be applied for establishing SVGs are verified, which further confirmed the significance of this study. It provides useful practice guidance for establishing SVGs for river discharge monitoring, especially for large scale monitoring where many SVGs are needed.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Kang, S.; Chen, X.; Wu, H.; Wang, X.; Su, Z. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018, 639, 1220–1232. [Google Scholar] [CrossRef] [PubMed]
- Kebede, M.G.; Wang, L.; Yang, K.; Chen, D.; Li, X.; Zeng, T.; Hu, Z. Discharge estimates for ungauged rivers flowing over complex high-mountainous regions based solely on remote sensing-derived datasets. Remote Sens. 2020, 12, 1064. [Google Scholar] [CrossRef] [Green Version]
- Biancamaria, S.; Hossain, F.; Lettenmaier, D.P. Forecasting transboundary river water elevations from space. Geophys. Res. Lett. 2011, 38, L11401. [Google Scholar] [CrossRef] [Green Version]
- Davids, J.C.; Rutten, M.M.; Pandey, A.; Devkota, N.; van Oyen, W.D.; Prajapati, R.; van de Giesen, N. Citizen science flow—An assessment of simple streamflow measurement methods. Hydrol. Earth Syst. Sci. 2019, 23, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Douville, H.; Güntner, A.; Müller Schmied, H.; Wada, Y. Modelling freshwater resources at the global scale: Challenges and prospects. Surv. Geophys. 2016, 37, 195–221. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Long, D.; Du, M.; Zeng, C.; Qiao, G.; Li, X.; Hou, A.; Hong, Y. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River. Remote Sens. Environ. 2018, 219, 115–134. [Google Scholar] [CrossRef]
- Lettenmaier, D.P.; Famiglietti, J.S. Hydrology: Water from on high. Nature 2006, 444, 562–563. [Google Scholar] [CrossRef]
- Gleason, C.J.; Durand, M.T. Remote sensing of river discharge: A review and a framing for the discipline. Remote Sens. 2020, 12, 1107. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Sichangi, A.W.; Zeng, T.; Li, X.; Hu, Z.; Genanu, M. New methods designed to estimate the daily discharges of rivers in the Tibetan Plateau. Sci. Bull. 2019, 64, 418–421. [Google Scholar] [CrossRef]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.; Mendiondo, E.M.; O’Connell, P.E.; et al. Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; van Dijk, A.I.J.M.; Beck, H.E. Global satellite-based river gauging and the influence of river morphology on its application. Remote Sens. Environ. 2020, 239, 111629. [Google Scholar] [CrossRef]
- Coe, M.T.; Birkett, C.M. Calculation of river discharge and prediction of lake height from satellite radar altimetry: Ex-ample for the Lake Chad basin. Water Resour. Res. 2004, 40, W10205. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Rossow, W.B. Monitoring flood and discharge variations in the large Siberian Rivers from a multi-satellite technique. Surv. Geophys. 2008, 29, 297–317. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Birkett, C.M.; Jones, J.W.; Carabajal, C.; Rover, J.A.; Fulton, J.W.; Garambois, P.-A. Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska. J. Hydrol. 2018, 561, 1000–1018. [Google Scholar] [CrossRef] [Green Version]
- Sichangi, A.W.; Wang, L.; Yang, K.; Chen, D.; Wang, Z.; Li, X.; Zhou, J.; Liu, W.; Kuria, D. Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sens. Environ. 2016, 179, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Gleason, C.J.; Smith, L.C. Toward global mapping of river discharge using satellite images and at-many-stations hy-draulic geometry. Proc. Natl. Acad. Sci. USA 2014, 111, 4788–4791. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, P.; Lou, H.; Wang, J.; Zhao, C.; Gong, T. Estimating river discharges in ungauged catchments using the slope–area method and unmanned aerial vehicle. Water 2019, 11, 2361. [Google Scholar] [CrossRef] [Green Version]
- Brombacher, J.; Reiche, J.; Dijksma, R.; Teuling, A.J. Near-daily discharge estimation in high latitudes from Sentinel-1 and 2: A case study for the Icelandic Þjórsá river. Remote Sens. Environ. 2020, 241, 111684. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Hopson, T.M.; De Groeve, T.; Brakenridge, G.R.; Gebremichael, M.; Restrepo, P.J. Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in South Asia. Remote Sens. Environ. 2013, 131, 140–151. [Google Scholar] [CrossRef]
- Sichangi, A.W.; Wang, L.; Hu, Z. Estimation of River Discharge Solely from Remote-Sensing Derived Data: An Initial Study Over the Yangtze River. Remote Sens. 2018, 10, 1385. [Google Scholar] [CrossRef] [Green Version]
- Ovakoglou, G.; Alexandridis, T.K.; Crisman, T.L.; Skoulikaris, C.; Vergos, G.S. Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 37–46. [Google Scholar] [CrossRef]
- Reil, A.; Skoulikaris, C.; Alexandridis, T.K.; Roub, R. Evaluation of riverbed representation methods for one-dimensional flood hydraulics model. J. Flood Risk Manag. 2018, 11, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Brakenridge, G.R.; Nghiem, S.V.; Anderson, E.; Mic, R. Orbital microwave measurement of river discharge and ice status. Water Resour. Res. 2007, 43, W04405. [Google Scholar] [CrossRef]
- Robert Brakenridge, G.; Cohen, S.; Kettner, A.J.; De Groeve, T.; Nghiem, S.V.; Syvitski, J.P.M.; Fekete, B.M. Calibration of satellite measurements of river discharge using a global hydrology model. J. Hydrol. 2012, 475, 123–136. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Brocca, L.; Lacava, T.; Melone, F.; Moramarco, T.; Faruolo, M.; Pergola, N.; Tramutoli, V. Toward the estimation of river discharge variations using MODIS data in ungauged basins. Remote Sens. Environ. 2013, 136, 47–55. [Google Scholar] [CrossRef]
- Revilla-Romero, B.; Beck, H.E.; Burek, P.; Salamon, P.; de Roo, A.; Thielen, J. Filling the gaps: Calibrating a rainfall-runoff model using satellite-derived surface water extent. Remote Sens. Environ. 2015, 171, 118–131. [Google Scholar] [CrossRef]
- Hou, J.; van Dijk, A.I.J.M.; Renzullo, L.J.; Vertessy, R.A. Using modelled discharge to develop satellite-based river gauging: A case study for the Amazon Basin. Hydrol. Earth Syst. Sci. 2018, 22, 6435–6448. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, H.; Wang, J.; Hao, X. Extending the ability of near-infrared images to monitor small river discharge on the Northeastern Tibetan Plateau. Water Resour. Res. 2019, 55, 8404–8421. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, Y.; Liu, Q.; Huang, C. Discharge estimation using harmonized Landsat and Sentinel-2 product: Case studies in the Murray Darling Basin. Remote Sens. 2020, 12, 2810. [Google Scholar] [CrossRef]
- Durand, M.; Gleason, C.J.; Garambois, P.A.; Bjerklie, D.; Smith, L.C.; Roux, H.; Rodriguez, E.; Bates, P.D.; Pavelsky, T.M.; Monnier, J.; et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 2016, 52, 4527–4549. [Google Scholar] [CrossRef] [Green Version]
- Brinkerhoff, C.B.; Gleason, C.J.; Feng, D.; Lin, P. Constraining remote river discharge estimation using reach-scale geomophology. Water Resour. Res. 2020, 56, e2020WR027949. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 350–362. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; O’Loughlin, F.; Trigg, M.A.; Miller, Z.F.; Pavelsky, T.M.; Bates, P.D. Development of the global width database for large rivers. Water Resour. Res. 2014, 50, 3467–3480. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Amarnath, G.; Brocca, L.; Massari, C.; Moramarco, T. Discharge estimation and forecasting by MODIS and altimetry data in Niger-Benue River. Remote Sens. Environ. 2017, 195, 96–106. [Google Scholar] [CrossRef]
- Brown, C.E. Coefficient of variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Brown, C.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. [Google Scholar]
- Warne, T.R. A Primer on multivariate analysis of variance (MANOVA) for behavioral scientists. Pract. Assess. Res. Eval. 2014, 19, 17. [Google Scholar] [CrossRef]
- Haase, R.F.; Ellis, M.V. Multivariate analysis of variance. J. Couns. Psychol. 1987, 34, 404. [Google Scholar] [CrossRef]
- Guo, K.; Zou, T.; Jiang, D.; Tang, C.; Zhang, H. Variability of Yellow River turbid plume detected with satellite remote sensing during water-sediment regulation. Cont. Shelf Res. 2017, 135, 74–85. [Google Scholar] [CrossRef]
Gauge | Modeling Period | Amount | Validation Period | Amount |
---|---|---|---|---|
Qilian | 7 January 2000–22 February 2011 | 126 | 26 March 2011–2 December 2015 | 31 |
Zhamashike | 7 January 2000–26 March 2011 | 127 | 11 April 2011–2 December 2015 | 32 |
Sunan | 25 January 2010–12 January 2017 | 40 | 13 February 2017–30 December 2017 | 11 |
409035 | 14 January 2000–20 July 2007 & 18 February 2010–26 April 2011 | 97 | 21 August 2007–16 December 2009 & 1 September 2011–4 November 2011 | 24 |
410130 | 14 January 2000–20 July 2007 & 18 February 2010–26 April 2011 | 97 | 21 August 2007–16 December 2009 & 1 September 2011–4 November 2011 | 24 |
414200 | 14 January 2000–20 July 2007 & 18 February 2010–26 April 2011 | 97 | 21 August 2007–16 December 2009 & 1 September 2011–4 November 2011 | 24 |
425008 | 5 January 2000–26 September 2006 & 24 January 2010–26 December 2010 | 80 | 28 August 2007–20 October 2009 & 27 January 2011–11 November 2011 | 19 |
Gauge | Study Site | Gradient (m·km−1) | Sinuosity | River Width (m) |
---|---|---|---|---|
Qilian | 1-1 | 15.89 | 1.08 | 64.09 |
1-2 | 16.71 | 1.26 | 76.6 | |
1-3 | 14.31 | 1.10 | 54.99 | |
1-4 | 8.17 | 1.07 | 54.98 | |
Zhamashike | 2-1 | 16.2 | 1.06 | 68.52 |
2-2 | 39.07 | 1.10 | 71.26 | |
2-3 | 7.60 | 1.01 | 55.82 | |
2-4 | 20.46 | 1.08 | 68.52 | |
Sunan | 3-1 | 16.87 | 1.00 | 23.4 |
3-2 | 30.09 | 1.11 | 28.66 | |
3-3 | 22.18 | 1.00 | 63.67 | |
3-4 | 18.87 | 1.03 | 32.30 | |
409035 | 4-1 | 0.15 | 1.41 | 62.27 |
4-2 | 0.48 | 1.36 | 71.79 | |
4-3 | 3.57 | 1.11 | 60.92 | |
4-4 | 1.40 | 1.08 | 55.34 | |
410130 | 5-1 | 2.12 | 1.28 | 41.15 |
5-2 | 0.32 | 1.66 | 55.74 | |
5-3 | 9.94 | 1.47 | 53.02 | |
5-4 | 3.87 | 1.26 | 54.66 | |
414200 | 6-1 | 0.06 | 1.22 | 78.65 |
6-2 | 0.07 | 1.60 | 101.20 | |
6-3 | 4.48 | 1.11 | 51.78 | |
6-4 | 1.15 | 1.11 | 93.53 |
Gauge | Study Site | RRMSE | NSE |
---|---|---|---|
Qilian | 1-1 | 0.44 | 0.60 |
1-2 | 0.54 | 0.39 | |
1-3 | 0.63 | 0.18 | |
1-4 | 0.56 | 0.35 | |
Zhamashike | 2-1 | 0.56 | 0.50 |
2-2 | 0.56 | 0.51 | |
2-3 | 0.55 | 0.52 | |
2-4 | 0.55 | 0.53 | |
Sunan | 3-1 | 2.68 | −10.79 |
3-2 | 1.78 | −4.21 | |
3-3 | 1.82 | −4.43 | |
3-4 | 0.76 | 0.06 | |
409035 | 4-1 | 0.88 | −0.14 |
4-2 | 0.60 | 0.47 | |
4-3 | 0.61 | 0.46 | |
4-4 | 0.96 | −0.34 | |
410130 | 5-1 | 1.69 | −0.21 |
5-2 | 1.59 | −0.07 | |
5-3 | 2.24 | −1.10 | |
5-4 | 2.00 | −0.68 | |
414200 | 6-1 | 0.65 | 0.40 |
6-2 | 0.53 | 0.61 | |
6-3 | 1.00 | −0.43 | |
6-4 | 1.02 | −0.48 |
RRMSE | NSE | |||||
---|---|---|---|---|---|---|
F | Sig | r | F | Sig | r | |
gradient | 0.06 | 0.81 | 0.04 | 2.34 | 0.14 | −0.28 |
sinuosity | 0.89 | 0.36 | 0.12 | 0.58 | 0.45 | 0.26 |
width | 13.27 | 0.00 | −0.56 | 6.32 | 0.02 | 0.54 |
ROI No. | Gradient (m·km−1) | Sinuosity | River Width (m) |
---|---|---|---|
1 | 0.38 | 1.11 | 74.69 |
2 | 1.12 | 1.08 | 75.37 |
3 | 1.16 | 1.06 | 66.38 |
4 | 0.90 | 1.03 | 71.03 |
5 | 0.41 | 2.74 | 89.28 |
6 | 0.66 | 1.09 | 61.68 |
7 | 0.99 | 1.08 | 84.96 |
8 | 0.58 | 1.16 | 83.13 |
9 | 0.59 | 1.27 | 81.62 |
10 | 0.60 | 1.11 | 81.54 |
11 | 0.70 | 1.47 | 68.05 |
12 | 0.66 | 1.14 | 72.95 |
13 | 0.29 | 1.19 | 78.99 |
14 | 0.47 | 1.82 | 87.11 |
15 | 0.36 | 2.47 | 65.44 |
16 | 0.98 | 1.09 | 59.84 |
17 | 0.47 | 1.07 | 57.70 |
18 | 0.38 | 1.03 | 54.11 |
19 | 0.82 | 1.13 | 51.65 |
ROI No. | RRMSE | NSE |
---|---|---|
1 | 1.19 | 0.48 |
2 | 0.84 | 0.74 |
3 | 1.02 | 0.62 |
4 | 0.91 | 0.70 |
5 | 0.68 | 0.83 |
6 | 1.24 | 0.44 |
7 | 1.44 | 0.25 |
8 | 1.75 | −0.12 |
9 | 1.88 | −0.28 |
10 | 1.13 | 0.54 |
11 | 1.46 | 0.22 |
12 | 1.30 | 0.38 |
13 | 1.09 | 0.56 |
14 | 1.08 | 0.57 |
15 | 1.13 | 0.53 |
16 | 1.06 | 0.59 |
17 | 1.78 | −0.16 |
18 | 1.04 | 0.60 |
19 | 0.74 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Chen, Q.; Huang, C. The Influence of River Morphology on the Remote Sensing Based Discharge Estimation: Implications for Satellite Virtual Gauge Establishment. Water 2022, 14, 3854. https://doi.org/10.3390/w14233854
Shi Z, Chen Q, Huang C. The Influence of River Morphology on the Remote Sensing Based Discharge Estimation: Implications for Satellite Virtual Gauge Establishment. Water. 2022; 14(23):3854. https://doi.org/10.3390/w14233854
Chicago/Turabian StyleShi, Zhuolin, Qianqian Chen, and Chang Huang. 2022. "The Influence of River Morphology on the Remote Sensing Based Discharge Estimation: Implications for Satellite Virtual Gauge Establishment" Water 14, no. 23: 3854. https://doi.org/10.3390/w14233854
APA StyleShi, Z., Chen, Q., & Huang, C. (2022). The Influence of River Morphology on the Remote Sensing Based Discharge Estimation: Implications for Satellite Virtual Gauge Establishment. Water, 14(23), 3854. https://doi.org/10.3390/w14233854