A Comparison of Model Calculations of Ice Thickness with the Observations on Small Water Bodies in Katowice Upland (Southern Poland)
Abstract
:1. Introduction
2. Materials and Methods
- h—final ice thickness [cm];
- h0—initial ice thickness [cm];
- ∑(−Tp)—the sum of negative air temperatures counted during the ice accumulation period [°C].
- η—maximum ice thickness during the season [cm];
- αh—empirical coefficient ranging from 0.014–0.017 m/°C−1/2·day1/2;
- S—accumulated freezing degree-days (AFDD).
3. Results
3.1. Meteorological Features
3.2. Snow Conditions
3.3. Ice Cover Thickness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashton, G.D. River and lake ice thickening, thinning, and snow ice formation. Cold Reg. Sci. Technol. 2011, 68, 3–19. [Google Scholar] [CrossRef]
- Bengtsson, L. Ice covered lakes. In Encyclopedia of Lakes and Reservoirs; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: New York, NY, USA, 2012; pp. 357–360. [Google Scholar]
- Choiński, A. Physical Limnology of Poland; Adam Mickiewicz University Press Publ.: Poznań, Poland, 2007. [Google Scholar]
- Kirillin, G.; Leppäranta, M.; Terzhevik, A.; Granin, N.; Bernhardt, J.; Engelhardt, C.H.; Efremova, T.; Golosov, S.; Palshin, N.; Sherstyankin, P.; et al. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [Google Scholar] [CrossRef]
- Skowron, R. The Differentiation and the Changeability of Chosen of Elements the Thermal Regime of Water in Lakes on Polish Lowland; Wydawnictwo Uniwersytetu M. Kopernika: Toruń, Poland, 2011; p. 345. [Google Scholar]
- Solarski, M.; Szumny, M. Conditions of spatiotemporal variability of the thickness of the ice cover on lakes in the Tatra Mountains. J. Mt. Sci. 2020, 17, 2369–2386. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Adrian, R.; Blencknert, T.; George, G.; Weyhenmeyer, G.A. Lake ice phenology. In The Impact of Climate Change on European Lakes 4; George, G., Ed.; Aquatic Ecology Series; Springer: Dordrecht, The Netherlands, 2010; pp. 51–62. [Google Scholar]
- Skowron, R. Differences in thermal and ice regimes formation in lakes Gopło and Bachotek. Limnol. Rev. 2006, 6, 255–262. [Google Scholar]
- Skowron, R. Changeability of the ice cover on the lakes of northern Poland in the light of climatic changes. Bull. Geogr.—Phys. Geogr. 2009, 1, 103–124. [Google Scholar] [CrossRef] [Green Version]
- Aihara, M.; Chikita, K.A.; Momoki, Y.; Mabuchi, S. A physical study on the thermal ice ridge in a closed deep lake: Lake Kuttara, Hokkaido, Japan. Limnology 2010, 11, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L. Ice formation on lakes and ice growth. In Encyclopedia of Lakes and Reservoirs; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: New York, NY, USA, 2012; pp. 360–361. [Google Scholar]
- Brown, L.C.; Duguay, C.R. The fate of lake ice in the North American Arctic. Cryosphere Discuss 2011, 5, 1775–1834. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.B.; Stefan, H.G. Multiple linear regression for lake ice and lake temperature characteristics. J. Cold Reg. Eng. 1999, 13, 59–77. [Google Scholar] [CrossRef]
- Launiainen, J.; Cheng, B. Modelling of ice thermodynamics in natural water bodies. Cold Reg. Sci. Technol. 1998, 27, 153–178. [Google Scholar] [CrossRef]
- Leppäranta, M. A growth model for black ice, snow ice and snow thickness in subarctic basins. Nord. Hydrol. 1983, 14, 59–70. [Google Scholar] [CrossRef]
- Richards, T.O. The meteorological aspects of ice cover on the Great Lakes. Mon. Weather Rev. 1964, 92, 297–302. [Google Scholar] [CrossRef]
- Solarski, M.; Pradela, A.; Rzetala, M. Natural and anthropogenic influences on ice formation on various water bodies of the Silesian Upland (southern Poland). Limnol. Rev. 2011, 11, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Solarski, M. The ice phenomena dynamics of small anthropogenic water bodies in the Silesian Upland, Poland. Environ. Socio-Econ. Stud. 2017, 5, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Marszelewski, W.; Skowron, R. Spatial diversity of the ice cover on the lakes of the European Lowland in the winter season 2003/2004. Limnol. Rev. 2005, 5, 155–165. [Google Scholar]
- Choiński, A.; Ptak, M.; Skowron, R.; Strzelczak, A. Changes in ice phenology on Polish lakes from 1961 to 2010 related to location and morphometry. Limnologica 2015, 53, 42–49. [Google Scholar] [CrossRef]
- Chen, C.V.; Weintraub, L.H.Z.; Herr, J.; Goldstein, R.A. Impacts of a thermal power plant on the phosphorus TMDL of a reservoir. Environ. Sci. Policy 2000, 3, 217–223. [Google Scholar] [CrossRef]
- Eloranta, P.V. Physical and chemical properties of pond waters receiving warm water effluent from a thermal power plant. Water Res. 1983, 17, 133–140. [Google Scholar] [CrossRef]
- Machowski, R. Course of ice phenomena in small water reservoir in Katowice (Poland) in the winter season 2011/2012. Environ. Socio-Econ. Stud. 2013, 1, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Rzetala, M. Ice cover development in a small water body in an undrained depression. In Proceedings of the International Multidisciplinary Scientific Geoconference, 14th GeoConference on Water Resources. Forest, Marine and Ocean Ecosystems SGEM, Albena, Bulgary, 17–26 June 2014; pp. 397–404. [Google Scholar] [CrossRef]
- Rzętała, M. Functioning of Water Reservoirs and the Course of Limnic Processes under Conditions of Varied Anthropopression a Case Study of Upper Silesian Region; University of Silesia: Katowice, Poland, 2008; pp. 1–172. [Google Scholar]
- Solarski, M.; Rzetala, M. Changes in the Thickness of Ice Cover on Water Bodies Subject to Human Pressure (Silesian Upland, Southern Poland). Front. Earth Sci. 2021, 9, 675216. [Google Scholar] [CrossRef]
- Solarski, M.; Rzetala, M. Ice Regime of the Kozłowa Góra Reservoir (Southern Poland) as an Indicator of Changes of the Thermal Conditions of Ambient Air. Water 2020, 12, 2435. [Google Scholar] [CrossRef]
- Noori, R.; Bateni, S.M.; Saari, M.; Almazroui, M.; Haghighi, A.T. Strong Warming Rates in the Surface and Bottom Layers of a Boreal Lake: Results From Approximately Six Decades of Measurements (1964–2020). Earth Space Sci. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Noori, R.; Woolway, R.I.; Saari, M.; Pulkkanen, M.; Klove, B. Six Decades of Thermal Change in a Pristine Lake Situated North of the Arctic Circle. Water Resour. Res. 2022, 58, 2021WR031543. [Google Scholar] [CrossRef]
- Jones, P.D.; Osborn, T.J.; Briffa, K.R. The evolution of climate over the last millennium. Science 2001, 292, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Degirmendzic, J.; Rozuchowski, K.; Zmudzka, E. Changes of air temperature and precipitation in Poland in the period 1951–2000 and their relationship to atmospheric circulation. Int. J. Climatol. 2004, 24, 291–310. [Google Scholar] [CrossRef]
- Michel, B. Winter Regime of River and Lakes. In Cold Regions Science and Engineering Monograph III-B1a; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1971; pp. 1–131. [Google Scholar]
- DEBruijn, E.I.F.; Bosveld, F.C.; Van Der Plas, E.V. An intercomparison study of ice thickness models in the Netherlands. Tellus A Dyn. Meteorol. Oceanogr. 2014, 66, 21244. [Google Scholar] [CrossRef] [Green Version]
- Lotsari, E.; Lind, L.; Kämäri, M. Impacts of Hydro-Climatically Varying Years on Ice Growth and Decay in a Subarctic River. Water 2019, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Barańczuk, J.; Barańczuk, K. Models for calculating ice cover thickness on selected endorheic lakes of the upper Radunia (Kashubian Lakeland, northern Poland). Limnol. Rev. 2018, 18, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Ménard, P.; Duguay, C.R.; Flato, G.M.; Rouse, W.R. Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada. Hydrol. Process. 2002, 16, 3691–3706. [Google Scholar] [CrossRef]
- Duguay, C.R.; Flato, G.M.; Jeffries, M.O.; Ménard, P.; Morris, K.; Rouse, W.R. Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations. Hydrol. Process. 2003, 17, 3465–3483. [Google Scholar] [CrossRef]
- Jeffries, M.O.; Morris, K.; Duguay, C.R. Lake ice growth and decay in central Alaska, USA: Observations and computer simulations compared. Ann. Glaciol. 2005, 40, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Morris, K.; Jeffries, M.; Duguay, C. Model simulation of the effects of climate variability and change on lake ice in central Alaska, USA. Ann. Glaciol. 2005, 40, 113–118. [Google Scholar] [CrossRef]
- Kheyrollah-Pour, H.; Duguay, C.R.; Martynov, A.; Brown, L.C. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: A comparison with MODIS satellite data and in situ measurements. Tellus A 2012, 64, 17614. [Google Scholar] [CrossRef]
- Fang, X.; Stefan, H.G. Simulations of climate effects on water temperature, dissolved oxygen, ice and snow covers in lakes of the Contiguous United States under past and future climate scenarios. Limnol. Oceanogr. 2009, 54, 2359–2370. [Google Scholar] [CrossRef]
- Dibike, Y.; Prowse, T.; Saloranta, T.; Ahmed, R. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrol. Process. 2011, 25, 2942–2953. [Google Scholar] [CrossRef]
- Dibike, Y.; Prowse, T.; Bonsal, B.; DERham, L.; Saloranta, T. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. Int. J. Climatol. 2012, 32, 695–709. [Google Scholar] [CrossRef]
- Bernhardt, J.; Engelhardt, C.H.; Kirillin, G.; Matschullat, J. Lake ice phenology in Berlin-Brandenburg from 1947–2007: Observations and model hindcasts. Clim. Chang. 2011, 112, 791–817. [Google Scholar] [CrossRef]
- Vavrus, S.J.; Wynne, R.H.; Foley, J.A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr. 1996, 41, 822–831. [Google Scholar] [CrossRef]
- Walsh, S.E.; Vavrus, S.J.; Foley, J.A.; Fisher, V.A.; Wynne, R.H.; Lenters, J.D. Global patterns of lake ice phenology and climate: Model simulations and observations. J. Geophys. Res. Atmos. 1998, 103, 28825–28837. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Duguay, C.R.; Clausi, D.A.; Pinard, V.; Howell, S.E.L. Semi-Automated Classification of Lake Ice Cover Using Dual Polarization RADARSAT-2 Imagery. Remote Sens. 2018, 10, 1727. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Duguay, C.R.; Ke, C.-Q. A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere. Earth Syst. Sci. Data 2022, 14, 3329–3347. [Google Scholar] [CrossRef]
- Knoll, L.B.; Sharma, S.; Denfeld, B.A.; Flaim, G.; Hori, Y.; Magnuson, J.J.; Straile, D.; Weyhenmeyer, G.A. Consequences of lake and river ice loss on cultural ecosystem services. Limnol. Oceanogr. Lett. 2019, 4, 119–131. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Watson, S.R.; O’Reilly, C.M.; Batt, R.; Magnuson, J.J.; Clemens, T.; Denfeld, B.A.; Flaim, G.; Grinberga, L.; et al. Increased winter drownings in ice-covered regions with warmer winters. PLoS ONE 2020, 15, e0241222. [Google Scholar] [CrossRef]
- Stefan, J. Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Der Phys. 1891, 278, 269–286. [Google Scholar] [CrossRef] [Green Version]
- Zubov, N.N. L’dy Arktiki (Arctic Ice); Izdatel’stvo Glavsevmorputi: Moscow, Russia, 1945. [Google Scholar]
- Stigebrandt, A. Dynamics of an Ice Covered Lake with Through-Flow. Hydrol. Res. 1978, 9, 219–244. [Google Scholar] [CrossRef]
- Doesken, N.J.; Judson, A. The Snow Booklet: A Guide to the Science, Climatology and Measurements of Snow in the United States, 2nd ed.; Colorado State University: Fort Collins, CO, USA, 1996; p. 85. [Google Scholar]
- Pirazzini, R.; Leppänen, L.; Picard, G.; Lopez-Moreno, J.I.; Marty, C.; Macelloni, G.; Kontu, A.; Von Lerber, A.; Tanis, C.M.; Schneebeli, M.; et al. European In-Situ Snow Measurements: Practices and Purposes. Sensors 2018, 18, 2016. [Google Scholar] [CrossRef]
- Leppäranta, M. Freezing of Lakes and the Evolution of Their Ice Cover; Springer: Berlin, Germany, 2015. [Google Scholar]
No. | Water Body | Altitude [m a.s.l.] | A [ha] | Davg [m] | V [103 m3] | O | H | M |
---|---|---|---|---|---|---|---|---|
1 | Akwen | 241.0 | 2.4 | 2.6 | 62.3 | Pe | B | P |
2 | Amendy | 287.7 | 1.3 | 1.6 | 21.4 | Pe | B | P |
3 | Grunfeld | 290.0 | 3.9 | 4.6 | 179.0 | Pe | B | P |
4 | Maroko | 264.9 | 8.1 | 1.4 | 109.5 | Pg | B | P |
5 | Rozlewisko Bytomki | 243.0 | 1.2 | 1.2 | 14.3 | N | B | P |
6 | Skałka | 276.1 | 5.9 | 1.9 | 110.3 | S | B | P |
7 | Smrodlok | 284.5 | 2.9 | 1.6 | 46.4 | N | B | P |
8 | Szkopka | 245.2 | 1.4 | 1.6 | 21.8 | Pg | B | P |
9 | Trupek | 288.0 | 0.7 | 1.2 | 8.1 | Pe | B | P |
10 | Zbiornik przy Leśnej | 259.4 | 0.3 | 0.7 | 2.0 | N | B | P |
11 | Żabie Doły S | 278.0 | 2.6 | 1.7 | 43.3 | N | B | P |
No. | Water Body | Season I (2009/2010) | Season II (2010/2011) | Season III (2011/2012) | |||
---|---|---|---|---|---|---|---|
AT | MT | AT | MT | AT | MT | ||
[cm] | |||||||
1 | Akwen | 7.8 | 15.0 | 3.8 | 8.0 | 4.7 | 21.5 |
2 | Amendy | 6.3 | 10.0 | 3.8 | 7.0 | 2.7 | 15.0 |
3 | Grunfeld | 4.7 | 15.5 | 3.1 | 9.5 | 1.8 | 8.0 |
4 | Maroko | 5.8 | 12.0 | 3.6 | 10.0 | 1.4 | 6.0 |
5 | Rozlewisko Bytomki | 5.3 | 12.0 | 3.5 | 6.0 | 2.2 | 6.0 |
6 | Skałka | 5.8 | 13.0 | 4.6 | 9.0 | 5.0 | 21.5 |
7 | Smrodlok | 6.8 | 17.0 | 4.1 | 11.0 | 2.5 | 8.0 |
8 | Szkopka | 4.1 | 7.0 | 3.5 | 8.0 | 2.5 | 7.5 |
9 | Trupek | 6.7 | 16.5 | 4.7 | 11.0 | 2.9 | 8.0 |
10 | Zbiornik przy Leśnej | 6.5 | 16.5 | 2.5 | 9.0 | 2.1 | 4.0 |
11 | Żabie Doły S | 5.1 | 9.0 | 3.8 | 10.0 | 2.5 | 15.5 |
No. | Water Body | Max IT | Max Z | Max S | |||
---|---|---|---|---|---|---|---|
0.014 | 0.015 | 0.016 | 0.017 | ||||
Season 2009/2010 | |||||||
1 | Akwen | 27.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
2 | Amendy | 23.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
3 | Grunfeld | 25.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
4 | Maroko | 28.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
5 | Rozlewisko Bytomki | 19.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
6 | Skałka | 24.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
7 | Smrodlok | 26.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
8 | Szkopka | 26.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
9 | Trupek | 27.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
10 | Zbiornik przy Leśnej | 26.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
11 | Żabie Doły S | 23.0 | 35.0 | 28.0 | 30.0 | 32.0 | 34.0 |
Season 2010/2011 | |||||||
1 | Akwen | 22.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
2 | Amendy | 21.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
3 | Grunfeld | 19.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
4 | Maroko | 19.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
5 | Rozlewisko Bytomki | 21.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
6 | Skałka | 21.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
7 | Smrodlok | 22.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
8 | Szkopka | 24.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
9 | Trupek | 26.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
10 | Zbiornik przy Leśnej | 22.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
11 | Żabie Doły S | 24.0 | 33.0 | 26.0 | 28.0 | 29.0 | 31.0 |
Season 2011/2012 | |||||||
1 | Akwen | 30.5 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
2 | Amendy | 36 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
3 | Grunfeld | 36 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
4 | Maroko | 36 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
5 | Rozlewisko Bytomki | 25 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
6 | Skałka | 36 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
7 | Smrodlok | 32 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
8 | Szkopka | 31 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
9 | Trupek | 30 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
10 | Zbiornik przy Leśnej | 32 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
11 | Żabie Doły S | 36 | 30.0 | 24.0 | 26.0 | 28.0 | 29.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solarski, M.; Rzetala, M. A Comparison of Model Calculations of Ice Thickness with the Observations on Small Water Bodies in Katowice Upland (Southern Poland). Water 2022, 14, 3886. https://doi.org/10.3390/w14233886
Solarski M, Rzetala M. A Comparison of Model Calculations of Ice Thickness with the Observations on Small Water Bodies in Katowice Upland (Southern Poland). Water. 2022; 14(23):3886. https://doi.org/10.3390/w14233886
Chicago/Turabian StyleSolarski, Maksymilian, and Mariusz Rzetala. 2022. "A Comparison of Model Calculations of Ice Thickness with the Observations on Small Water Bodies in Katowice Upland (Southern Poland)" Water 14, no. 23: 3886. https://doi.org/10.3390/w14233886
APA StyleSolarski, M., & Rzetala, M. (2022). A Comparison of Model Calculations of Ice Thickness with the Observations on Small Water Bodies in Katowice Upland (Southern Poland). Water, 14(23), 3886. https://doi.org/10.3390/w14233886