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Abstract: Recently, there have been many abnormal natural phenomena caused by climate change.
Anthropogenic factors associated with insufficient water resource management can be another cause.
Among natural causes, rainfall intensity and volume often induce flooding. Therefore, accurate
rainfall estimation and prediction can prevent and mitigate damage caused by these hazards. Sadly,
uncertainties often hinder accurate rainfall forecasting. This study investigates the uncertainty of the
Korean rainfall ensemble prediction data and runoff analysis model in order to enhance reliability and
improve prediction. The objectives of this study include: (i) evaluating the spatial characteristics and
applicability of limited area ensemble prediction system (LENS) data; (ii) understanding uncertainty
using parameter correction and generalized likelihood uncertainty estimation (GLUE) and grid-based
rainfall-runoff model (GRM); (iii) evaluating models before and after LENS-GRM correction. In
this study, data from the Wicheon Basin was used. The informal likelihood (R2, NSE, PBIAS) and
formal likelihood (log-normal) were used to evaluate model applicability. The results confirmed
that uncertainty of the behavioral model exists using the likelihood threshold when applying the
runoff model to rainfall forecasting data. Accordingly, this method is expected to enable more reliable
flood prediction by reducing the uncertainties of the rainfall ensemble data and the runoff model
when selecting the behavioral model for the user’s uncertainty analysis. It also provides a basis
for flood prediction studies that apply rainfall and geographical characteristics for rainfall-runoff
uncertainty analysis.

Keywords: uncertainty analysis; rainfall-runoff modeling; rainfall estimation; LENS; GLUE; GRM

1. Introduction

Flood severity is determined by several factors, including a lack of water resource
infrastructure and insufficient management. However, the presence and amount of rainfall
are the most fundamental factors. Accurate rainfall estimation and rainfall occurrence
time prediction can prevent damage caused by flood disasters and enable a quick response.
Nevertheless, rainfall prediction has historically been highly uncertain. Recently, techno-
logical advances have improved the accuracy of rainfall forecasting, with many research
institutes and field forecasting institutions using various Numerical Weather Prediction
(NWP) models to simulate global weather phenomena. These models currently operate in
ten countries, including the Met Office in the UK, Japan Meteorological Agency (JMA) in
Japan and Meteo France in France, which operate regional models corresponding to the
areas of each country [1].

In Korea, the Korea Meteorological Administration (KMA) operates over 20 types of
numerical forecast models. This includes the Global Data Assimilation and Prediction Sys-
tem (GDAPS), which predicts the entire planet without specific boundaries. Furthermore,
the Local Data Assimilation and Prediction System (LDAPS) applies to particular regions
under regional boundary conditions, application and statistical models.
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In the 2000s, several models with different initial conditions, physical processes and
boundary conditions were developed. The Ensemble Prediction System for the Globe
(EPSG) was developed, providing information on both existing numerical models and
prediction uncertainty. Various ensemble systems are used to predict weather, including the
Limited area ENsemble System (LENS), the Meso-Scale Model (MSM) and the European
Centre for Medium-range Weather Forecasts (ECMWF). In Korea, the KMA has been
operating LENS since October 2015 to provide guidelines for early precipitation warnings
by probabilistic weather predictions [2].

Currently, as the performance of computers develops, the performance of rainfall
prediction systems is also developing in proportion. Rainfall and runoff prediction models
are based on numerous hydrological, topographical and physical theories, input data
characteristics and natural conditions. Many of these parameters lead to huge uncertainties
due to their incomplete understanding of nature, user convenience and limitations [3].
Despite the limitations of these uncertainties, it is necessary to increase the reliability of
rainfall prediction and runoff analysis using existing data to accurately predict and prepare
for natural disasters. Since the runoff analysis model targeting low-reliability input data
involves much uncertainty, the evaluation of the rainfall prediction model should be given
priority. Therefore, we will be able to predict the upgraded future runoff by reflecting the
results of the rain forecasting system developed with the passage of the time on the rainfall-
runoff model. This study aims to analyze future flood prediction uncertainty through
rainfall prediction data by applying LENS rainfall ensemble prediction data to the GRM
rainfall-runoff model to increase the reliability of user model selection.

2. Materials and Methods
2.1. Study Area

In the theoretical background of rainfall prediction and runoff analysis, numerous
parameters for understanding nature are ruled by uncertainty. The deformation of artificial
natural conditions is one of the numerous factors that increase uncertainty, including
between the simulated and observed results. The target watershed of this study was
selected as the Wicheon Basin in Korea [4], which is located upstream of the hydrological
cycle among the tributaries of the Nakdong River water system and can be considered
because of its relatively low artificial hydrological control (Figure 1).
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2.2. Rainfall Events

In this study, rainfall events were studied from June to October 2016 and May to
September 2017 during the rainy season. In the Wicheon Basin, six LENS forecast data
periods were selected, from 15/09/2016 00UTC to 17/09/2016 12UTC, using subsequent
rainfall based on the rainfall events (Event W, E.W.) of up to 11 mm/h. Using the above
six LENS predictions, the point and area values were calculated and schematized in the
forecasting time–value graph. The applicability of LENS ensemble members according to
the prediction time was evaluated using the three fit calculation methods. Branch rainfall
was calculated by collecting hourly rainfall data from the Automated Surface Observation
System (ASOS) provided by the Korea Meteorological Administration (KMA). Although
there is an arithmetic mean method, Thiessen weighting method and isohyetal method for
calculating area rainfall, the Thiessen weighting method was used in this study [5]. The
Thiessen weighting method calculates the average rainfall of the area by manufacturing the
Thiessen network using the location of the observatory centered on the study target area
and calculating the corresponding area ratio as a weight [6]. The Thiessen network was
created using the Create Thiessen tool of the ArcGIS program. The results of the Thiessen
network in the Wicheon Basin are shown in Figure 2. Thiessen weight was evaluated by
calculating the ratio of the area of Thiessen corresponding to the rainfall observation station
to the total area and the weight for each observation station, as shown in Table 1.
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Table 1. Theissen weight for each rainfall station in Wicheon watershed.

Wicheon

Rainfall Station Name Station Weight (%)

Uiseong 67.55%

Daegu 9.31%

Gumi 8.70%

Yeongcheon 7.51%

Sangju 6.93%

2.3. Limited Area ENsemble Prediction System (LENS)

The Korea Meteorological Administration (KMA) has operated LENS since October
2015 to provide guidance for early warning by making probabilistic predictions of extreme
weather. LENS has a horizontal resolution of 2.2 km and a prediction period of 72 h on
70 vertical floors and aims to predict the probability of dangerous weather on the Korean
Peninsula. LENS was designed to predict the upcoming 72 h every 12 h based on the KMA
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global ensemble prediction system (EPSG). It consists of 13 members, one control member
and 12 perturbation members, centered on the Korean Peninsula (Figure 3).
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LENS provides probability values for precipitation, snowfall, wind gust and predic-
tions, such as temperature, total cloud volume, precipitation and wind speed [2]. In this
study, the total precipitation among the climate elements of LENS data was extracted. The
precipitation observation value at the point of weather observation and the average precip-
itation value of the administrative district area were calculated based on the administrative
district boundary. Then, the applicability of LENS was evaluated.

LENS data consist of one ASCII file per hour for a period of +04 h to +72 h for each of
the 13 members of m00–m12 from the predicted start time. Spatial preprocessing is required
for analysis according to the target basin and a long time is needed to process a large number
of files and repetitive tasks manually. To this end, this study constructed LENS data for
each target basin by utilizing the Arcpy module in the Python2 development environment
provided by ArcGIS. Coding algorithms for each point and area are shown in Figure 4.
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2.4. Grid Based on Rainfall-Runoff Model (GRM)

The GRM simulates rainfall-runoff using a physical-based distributed model [7]. In
the GRM, runoff is largely divided into surface and direct runoff. Surface runoff uses
overland flow and channel flow, whereas direct runoff uses surface runoff and subsurface
flow. Surface runoff is caused by penetration overflow [8] and saturation overflow [9], and
the penetration process and subsurface runoff are interpreted for the soil water zone [10].
The overall hydrological component simulation process is illustrated in Figure 5.
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In this study, the flow rate data for verification of the GRM model were used in
units of 10 min. The Yonggok water level station was selected, the discharge point was
designated as the water level observation station point and the flow data were constructed.
The discharge verification period was selected as the day on which the observed flow rate
exceeded 800 m3/s in September 2016.

DEM was used to build the data necessary for the GRM model. Input data were con-
structed using a drainage tool for hydrological topographic factor analysis. A hydrological
DEM was generated using a fill sink and the grid base flow direction was calculated using
the flow direction. After calculating the cumulative number of flows through the flow
direction grid previously generated by flow accumulation, river analysis was performed
and the slope was calculated using the altitude for each grid of the DEM. The stream
calculates the river grid based on the threshold value calculated by the flow accumulation
and, in this study, the threshold value was set to 30 based on the DEM with a resolution of
90 m. Based on the schematic diagram of the drainage tool, topographic construction data
for the target watersheds in the Wicheon Basin are shown in Figure 5.

The applied parameters were IniSaturation, MinSlopeOF, ChRoughness, CalCoefLC-
Roughness, CalCoefSoilDepth, CalCoefPorosity, CalCoefWFSuctionHead and CalCoefHy-
draulicK and the range for each parameter was determined by setting the minimum and
maximum ratios for each GRM parameter [7]. The range and definition of each parameter
are presented in Table 2.

2.5. Likelihood for GLUE

Three verification methods were used to evaluate the accuracy of the rainfall prediction
of LENS data and the applicability of the LENS-GRM model. To analyze the uncertainty
of the GRM’s parameters, uncertainty analysis was performed using three likelihoods,
informal likelihood NSE, PBIAS and formal likelihood log-normal. This is based on
the GRM model parameter correction results using the General likelihood uncertainty
estimation (GLUE), which interprets uncertainty based on the Bayesian theory of inducing
the posterior distribution of parameters using likelihood functions and pre-distribution of
parameters [11]. In this study, R2 = L1, NSE = L2, PBIAS = L3 and log-normal = L4 were
used for readability.
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Table 2. Parameters of the GRM model.

Num Parameters Description
Range

Lower Upper

1 IniSaturation (ISSR) Initial soil saturation ratio 0 1

2 MinSlopeOF (MSLS) Minimum slope of land surface 0.0001 0.01

3 ChRoughness (CRC) Channel roughness coefficient 0.008 0.2

4 CalCoefLCRoughness (CLCRC) Channel roughness coefficient 0.6 1.3

5 CalCoefSoilDepth (CSD) Correction factor for soil depth 0.8 1.2

6 CalCoefPorosity (CSP) Correction factor for soil porosity 0.9 1.1

7 CalCoefWFSuctionHead (CSWS) Correction factor for soil wetting front suction head 0.25 4

8 CalCoefHydraulicK (CSHC) Correction factor for soil hydraulic conductivity 0.05 20

The coefficient of determination R2 was calculated as the square of the Pearson cor-
relation coefficient r, representing the ratio of the total variance of the observed values to
the simulated values. R2 has a value from 0.0 to 1.0 and the closer R2 = 1, the better the
relationship [12]. R2 is calculated as shown in Equation (1), where N represents the number
of data points, Ot and Pt represent the actual rainfall and LENS rainfall at time t and the
average value of the actual rainfall and LENS rainfall.

L1 = R2 =

 ∑N
i=1
(
Ot − O

)(
Pt − P

)[
∑N

i=1
(
Ot − O

)2
]0.5[

∑N
i=1
(

Pt − P
)2
]0.5


2

(1)

Nash-Sutcliffe Efficiency (NSE) is a normalized statistic that determines the relative
magnitude of the residual variance by comparing the variance of the data [13]. It indicates
how well the simulated and observed values fit the 1:1 line. NSE has a range of −∞ to
1.0 and the closer it is to 1, the closer the relationship. The NSE equation is shown in
Equation (2), where N represents the number of data, Ot and Pt represent the actual rainfall
and LENS rainfall at time t, respectively, and is the average value of the actual rainfall.

L2 = NSE = 1 − ∑N
i=1(Ot − Pt)

2

∑N
i=1
(
Ot − O

)2 (2)

Percent bias (PBIAS) is an evaluation index that represents the average trend of simu-
lation data in percentage terms [14]. PBIAS is a suitable index for distinguishing between
underestimation and overestimation of the observed data. PBIAS = 0 represents an ideal
optimal value, PBIAS < 0 represents an overestimation and PBIAS > 0 represents an underes-
timation. The equation of PBIAS is shown in Equation (3), where N represents the number of
data and Yt

obs and Yt
sim represent the actual rainfall and LENS rainfall at time t.

L3 = PBIAS =

∑N
i=1

(
Yobs

t − Ysim
t

)
× 100

∑N
i=1
(
Yobs

t
)

 (3)

Log-normal (log-likelihood function) is a log of likelihood functions using natural
logarithms for the computational convenience of maximum likelihood estimation and
measuring the fit between model parameters and observational data [15]. When there is no
criterion for a threshold, i.e., log-normal, the behavior model can be determined by selecting
a portion of the upper value. In this study, the value of the upper 30% was considered as
the behavior model [16]. The log-normal distribution is shown in Equation (4).
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L4 = Log normal = −N
2

ln(2π)− N
2

ln σ2 − 1
2

σ−2 ×
N

∑
i=1

εi(θt)
2 (4)

Here, N is the number of observed values, σ2 is the variance of the simulated value,
which is equal to Equation (5), εj(θ) is the vector value of the residual, the difference between
the simulated value and the observed value over time t, and is equal to Equation (6).

σ2 =
∑N

i=1(Pi − Oi)
2

N
(5)

εi(θt) = Pi − Oi i = 1, 2, 3 · · · N (6)

2.6. Behavioral Model Selection and Uncertainty Assessment

In this study, 2000 GRM parameters correction were performed first and second,
respectively. During the initial correction, the number of behavioral models decreased
owing to the wide range of parameters and the range of uncertainty increased. Therefore,
after calculating the uncertainty range with the primary correction, the new parameter
range was performed as a secondary correction to obtain the parameters optimized for
the basin. The resulting value of the GRM model, according to parameter correction, was
divided into a behavioral model and an non-behavioral model using the likelihood function
of L2, L3 and L4. Behavioral models were selected in the range L2 > 0.65 [17] L3 < |25| [18]
and the top 30% L4 [19] by likelihood. To calculate the optimal parameter value, a sensitivity
analysis was conducted using the random parameter value and the likelihood function and
the parameter sensitivity analysis was conducted using the cumulative histogram with the
parameter value selected as the behavior model. In addition, the reliability and confidence
interval of the behavior model were calculated using a 95% prediction uncertainty (95PPU)
analysis and the best simulation results for each likelihood are shown. The process used
for uncertainty evaluation is illustrated in Figure 6.
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3. Results
3.1. LENS Point and Area Applicability Analysis

Figure 7 illustrates the point value and area average values for the LENS prediction
value for the Wicheon basin. A red line denotes the LENS average value and a total of
13 LENS ensemble members were shaped as box plots. The observed value is shown by
the blue line in Figure 7. The average values of observation and LENS for each event were
determined and are shown in Table 3 as R2(L1), NSE(L2) and PBIAS(L3). Tables 4 and 5
present numerical information on LENS point value prediction results and observation
values for each event. The numerical results of LENS area value prediction results and
observation values for each event are included in Tables 6 and 7.

2016/09/15/00UTC E.W. showed a tendency to predict delays more than peak time
in both branch and area prediction data and to predict excessively from 55 h. The maxi-
mum tendency of the ensemble members showed that the area value was similar to the
observation value and the point value was more than twice the prediction at 50 h. In the
goodness-of-fit evaluation, L1, L2 and L3 showed higher point values.

2016/09/15/12UTC E.W. showed a tendency very similar to the actual observation
value for both point and area ensemble prediction average values. The box plot confirmed
that the deviation of each ensemble member was large; however, it can be assumed that the
actual observation value is included in the quartile range. In terms of fit, the area value
was the highest for L1, L2 and L3. The total rainfall difference, peak rainfall difference and
peak time difference showed slight differences and a high degree of accuracy.

2016/09/16/00UTC E.W. showed a similar trend to the 2016/09/15 12 UTC E.W.
prediction data, showing a higher accuracy through suitability evaluation. L1, L2 and
L3 showed higher area values and the difference in rainfall prediction was insignificant,
indicating a high accuracy.

2016/09/16/12UTC E.W. showed the highest accuracy among the Event W predictions.
It may be confirmed that the area value is higher at L1, L2 and L3 and the difference in
rainfall prediction is highly accurate at both points and areas. In the box plot, the quartile
range tended to slightly overestimate the observed values.

2016/09/17/00UTC E.W. is a prediction of 8 mm/h 4 h after Event W occurrence,
the maximum range of the point value tends to be about 2.5 times over-predicted and
the maximum range of the area value tends to be 1.5 times over-predicted. However,
the tendency of the quartile range and average value showed a good tendency for the
observed value. L1, L2 and L3 showed a higher area value and, in the difference in rainfall
prediction, the area value was highly accurate with respect to the difference between time
and peak value.

12/09/17/12UTC E.W. predicts data for rainfall of less than 1 mm/h after Event W,
tending to overestimate the prediction of 11 h at points and areas. and shows low values in
the L1, L2 and L3 suitability calculation results.
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Table 3. Point and area estimates for LENS data.

Date
Point Area

L1 L2 L3 L1 L2 L3

2016/09/15 00UTC 0.020 −0.125 18.17 0.006 −0.171 24.34

2016/09/15 12UTC 0.721 0.648 −42.95 0.816 0.796 −26.68

2016/09/16 00UTC 0.736 0.716 −28.03 0.807 0.789 −25.06

2016/09/16 12UTC 0.806 0.654 −17.95 0.847 0.709 −13.97

2016/09/17 00UTC 0.640 0.117 −111.25 0.743 0.548 −60.77

2016/09/17 12UTC 0.092 −0.175 −5.13 0.324 0.302 −12.10

Table 4. LENS point data from 2016/09/15 00UTC to 2016/09/16 00UTC.

Wicheon (Point)
2016/09/15 00UTC 2016/09/15 12UTC 2016/09/16 00UTC

Obs LENS Obs LENS Obs LENS

Total rainfall 93 76.11 93.5 133.66 93.6 119.84

Total rainfall error −16.89 40.16 26.24

Peak rainfall 11 5.41 11 11.65 11 9.71

Peak rainfall error −5.59 0.65 −1.29

Peak time 50 72 38 40 26 24

Peak time error 22 2 −2

Table 5. LENS point data from 2016/09/16 12UTC to 2016/09/17 12UTC.

Wicheon (Point)
2016/09/16 12UTC 2016/09/17 00UTC 2016/09/17 12UTC

Obs LENS Obs LENS Obs LENS

Total rainfall 91 107.33 20.5 43.31 2.5 2.63

Total rainfall error 16.33 22.81 0.13

Peak rainfall 11 13.24 8 9.29 0.5 0.77

Peak rainfall error 2.24 1.29 0.27

Peak time 14 13 5 5 4 11

Peak time error −1 0 7

Table 6. LENS area data from 2016/09/15 00UTC to 2016/09/16 00UTC.

Wicheon (Area)
2016/09/15 00UTC 2016/09/15 12UTC 2016/09/16 00UTC

Obs LENS Obs LENS Obs LENS

Total rainfall 101.3 76.64 102.4 129.72 102.4 128.06

Total rainfall error −24.66 27.32 25.66

Peak rainfall 11 4.82 11 9.92 11 9.7

Peak rainfall error −6.18 −1.08 −1.3

Peak time 50 72 38 40 26 24

Peak time error 22 2 −2
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Table 7. LENS area data from 2016/09/16 12UTC to 2016/09/17 12UTC.

Wicheon (Area)
2016/09/16 12UTC 2016/09/17 00UTC 2016/09/17 12UTC

Obs LENS Obs LENS Obs LENS

Total rainfall 99.7 113.63 25.3 40.67 3.5 3.92

Total rainfall error 13.93 15.37 0.42

Peak rainfall 11 14.06 7.6 7.39 0.8 0.53

Peak rainfall error 3.06 −0.21 −0.27

Peak time 14 13 5 5 5 11

Peak time error −1 0 6

3.2. Event.W Parameter Post-Distribution by Likelihood

For the selection of an L2-based behavioral model, L2 > 0.65 was used as a threshold
through calculation of parameters for each GRM likelihood. The number of L2-based
behavioral models was 1121 (56.05%). Among the L2-based behavioral models, the sub-
light coefficient and initial saturation parameters were the most sensitive. The ranges of
the L2-based behavioral models for each parameter are presented in Table 8. In addition, to
confirm the distribution of the L2-based behavioral models by parameter, it is expressed as
shown in Figure 8, using the cumulative distribution function (CDF) and histogram.

Table 8. L2−based parameter range of behavioral models.

Number Parameters
Initial Range Behavioral Range

Lower Median Upper Lower Median Upper

1 ISSR 0.5 0.75 1 0.3015 0.5692 0.7677

2 MSLS 0.0001 0.00355 0.007 0.0001 0.0036 0.0070

3 CRC 0.008 0.074 0.14 0.0210 0.0301 0.0410

4 CLCRC 0.6 0.95 1.3 0.6004 0.9624 1.3000

5 CSP 0.9 1 1.1 0.9002 0.9972 1.0998

6 CSWS 0.25 2.125 4 0.2521 2.0665 3.9989

7 CSHC 1 1.25 1.5 1.0008 1.2356 1.4997

8 CSD 1 2 3 1.0004 1.8466 2.9972

For L3-based behavioral model selection, |L3| < 25 was used as a threshold by
calculating the parameters for each GRM likelihood. The number of L3-based behavioral
models was 1151 (57.55%). Among the L3-based behavioral models, the most sensitive
parameter was the initial saturation. The ranges of the L3-based behavioral models for each
parameter are presented in Table 9. In addition, to confirm the distribution of the L3-based
behavioral models by parameter, it is expressed as shown in Figure 8, using the cumulative
distribution function (CDF) and histogram.

The L4-based behavioral model was selected as the threshold for the top 30% by
calculating the parameters for each GRM likelihood. The number of L4-based behavioral
models was 600 (30%) [7]. The L4-based behavioral model was sensitive to the initial
saturation, river roughness coefficient and soil depth. Table 10 shows the range of the
behavioral model based on each parameter. In addition, to confirm the distribution of
L4-based behavioral models by parameter, it is expressed as shown in Figure 8, using the
cumulative distribution function (CDF) and a histogram.
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The number of behavioral models for each likelihood of Event. W was L2 = 1121,
L3 = 1151 and L4 = 600. Accordingly, the cumulative distribution function (CDF) over time
was calculated for the simulation discharge simulation value (Simulation Discharge) of
the behavior model and 95% reliability analysis was conducted through the cumulative
probability distribution.
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Table 9. L3− based parameter range of behavioral models.

Number Parameters
Initial Range Behavioral Range

Lower Median Upper Lower Median Upper

1 ISSR 0.5 0.75 1 0.3436 0.6024 0.7692

2 MSLS 0.0001 0.00355 0.007 0.0001 0.0036 0.0070

3 CRC 0.008 0.074 0.14 0.0210 0.0304 0.0410

4 CLCRC 0.6 0.95 1.3 0.6004 0.9658 1.3000

5 CSP 0.9 1 1.1 0.9007 0.9958 1.0998

6 CSWS 0.25 2.125 4 0.2518 2.0273 3.9989

7 CSHC 1 1.25 1.5 1.0008 1.2469 1.4997

8 CSD 1 2 3 1.0013 1.8519 2.9953

Table 10. L4− based parameter range of behavioral models.

Number Parameters
Initial Range Behavioral Range

Lower Median Upper Lower Median Upper

1 ISSR 0.5 0.75 1 0.3488 0.5804 0.7648

2 MSLS 0.0001 0.00355 0.007 0.0001 0.0035 0.0070

3 CRC 0.008 0.074 0.14 0.0210 0.0304 0.0407

4 CLCRC 0.6 0.95 1.3 0.6004 0.9578 1.3000

5 CSP 0.9 1 1.1 0.9007 0.9953 1.0998

6 CSWS 0.25 2.125 4 0.2539 2.0278 3.9925

7 CSHC 1 1.25 1.5 1.0008 1.2419 1.4994

8 CSD 1 2 3 1.0013 1.8140 2.9891

In Figures 9–11, the 95 PPU for the uncertainty of the L2-based behavior model was
shown as a green range, the L2 95 PPU optimum value “best simulation” was shown as a
red dotted line and the observed flow rate was shown as a solid blue line. The L2-based
behavioral model outflow simulation value was very similar to the observed flow rate. The
L2 value of Best Simulation was 0.9421, the highest value-based L3 was |0.8081| and L4
was −1924.25.
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3.3. Application and Evaluation of the GRM Model

The prediction of LENS data in the Wicheon Basin was found to be highly accurate.
Therefore, the outflow prediction simulation showed a tendency towards high suitability
overall. The results of the LENS-GRM model simulation are expressed in a box plot over
time in Figure 12, and the likelihood is calculated for the observation value and the average
value of the LENS ensemble members in Table 11.

2016/09/15 00UTC GRM.W showed a high accuracy of leakage occurrence time. The
point value tended to follow the tendency of the peak flow rate in the maximum value
range and the area value tended to overestimate the maximum value range after the peak
time. L1, L2 and L3 were higher at the point value, whereas L1 showed a higher fit of 0.8 L2
of 0.6.

In 2016/09/15 12UTC GRM.W, the average value of the outflow prediction mock was
higher than the observed flow rate. In addition, the majority were distributed in a range
higher than the median and have an overall tendency to overestimate. The area value had a
smaller tendency to be overestimated than the point value. L1, L2 and L3 showed a higher
fit with the area values.
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In 2016/09/16 00UTC GRM.W, the deviation between the average value and the observed
value of the outflow prediction mock, which showed an over-predictive tendency, was reduced.
Unlike the previous data, which showed the trend of observation outflow in the minimum
value range, it showed the trend of observation outflow in the first quartile range. L1, L2 and
L3 showed a very high suitability for both the points and areas in Tables 12 and 13.

In the 2016/09/16 12UTC GRM.W, the outflow was predicted in an irregular pattern
compared to the previous data that predicted the outflow with a gentle curve. The total
outflow and peak outflow also tended to be overestimated compared to the previous data.
The peak time also showed a tendency to be predicted early in the range of −6 to −8 at
−3 h. By calculating suitability, L2 was also found to show a lower suitability compared to
all data.

2016/09/17 00UTC GRM.W followed the trend of observation outflow in the minimum
value range and showed a tendency to overestimate overall. The area value tended to be
close to the first quartile range and showed a high value in suitability calculation results.

The 2016/09/17 12UTC GRM.W dataset showed a tendency to completely match the
average value of the outflow prediction model and the observed outflow value. Accordingly,
the result of calculating suitability was also found to be the highest optimum value and
only some ensemble members showed excessive prediction in Tables 14 and 15.
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Table 11. Likelihood of behavioral models.

Point Area

L1 L2 L3 L1 L2 L3

2016/09/15 00UTC 0.876 0.644 35.12 0.780 0.496 42.13

2016/09/15 12UTC 0.888 0.410 −43.05 0.921 0.806 −23.73

2016/09/16 00UTC 0.980 0.701 −33.27 0.971 0.774 −30.31

2016/09/16 12UTC 0.413 −0.438 −28.35 0.538 −0.043 −23.34

2016/09/17 00UTC 0.592 0.059 −41.53 0.864 0.704 −22.62

2016/09/17 12UTC 1.000 1.000 0.01 1.000 1.000 0.06

Table 12. LENS point discharge data results from 2016/09/15 00UTC to 2016/09/16 00UTC.

Wicheon (Point)
2016/09/15 00UTC 2016/09/15 12UTC 2016/09/16 00UTC

Obs LENS Obs LENS Obs LENS

Total discharge 16,672.18 10,817.27 19,806.4 28,332.51 21,763.86 29,004.48

Total discharge error −5854.91 8526.11 7240.62

Peak discharge 757.81 553.8 807.12 1255.26 868.66 1110.27

Peak discharge error −204.01 448.14 241.61

Peak discharge time 65 72 53 48 41 38

Peak time error 7 −5 −3
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Table 13. LENS area discharge data results from 2016/09/15 00UTC to 2016/09/16 00UTC.

Wicheon (Area)
2016/09/15 00UTC 2016/09/15 12UTC 2016/09/16 00UTC

Obs LENS Obs LENS Obs LENS

Total discharge 18,015.87 10,425.93 21,538.51 26,649.46 23,425.63 30,526.89

Total discharge error −7589.94 5110.95 7101.26

Peak discharge 858.89 589.8 921.41 1121.91 969.12 1175.69

Peak discharge error −269.09 200.5 206.57

Peak discharge time 65 72 53 49 40 37

Peak time error 7 −4 −3

Table 14. LENS point discharge data results from 2016/09/16 00UTC to 2016/09/17 00UTC.

Wicheon (Point)
2016/09/16 00UTC 2016/08/17 12UTC 2016/09/17 00UTC

Obs LENS Obs LENS Obs LENS

Total discharge 22,773.09 29,230.11 9641.61 13,645.62 7323.98 7323.61

Total discharge error 6457.02 4004.01 −0.37

Peak discharge 850.58 1280.84 216.88 290.8 191.87 191.36

Peak discharge error 430.26 73.92 −0.51

Peak discharge time 30 22 45 33 59 60

Peak time error −8 −12 1

Table 15. LENS area discharge data results from 2016/09/16 00UTC to 2016/09/17 00UTC.

Wicheon (Area)
2016/09/16 00UTC 2016/08/17 12UTC 2016/09/17 00UTC

Obs LENS Obs LENS Obs LENS

Total discharge 24,813.82 30,605 10,196.42 12,502.88 7434.39 7429.74

Total discharge error 5791.18 2306.46 −4.65

Peak discharge 989.25 1405.62 226.42 265.11 193.06 193.11

Peak discharge error 416.37 38.69 0.05

Peak discharge time 29 23 44 37 58 60

Peak time error −6 −7 2

4. Discussion

The rainfall prediction accuracy of the LENS rainfall ensemble prediction data shows
a higher accuracy as the prediction start time of the LENS data and the rainfall event
occurrence time approach each other. In addition, the prediction uncertainty increased as
the prediction start time and rainfall event occurrence time increased. In the ensemble, this
is called spread or uncertainty, which is the standard deviation of each member for the
average of the ensemble members. The longer the prediction time, the wider the range of
predictions. This is one of the representative uncertainties in rainfall ensemble predictions.
Regardless of how small the error in the initial rainfall ensemble prediction, the magnitude
of the error may increase exponentially as the nonlinear model integrates with the initial
perturbation member [20]. Thus, prediction accuracy can be enhanced by filtering uncertain
prediction information with ensemble averages for multiple initial perturbation members
for the initial conditions [21].

The spatial characteristics of the LENS rainfall ensemble prediction data were calcu-
lated and compared with the rainfall observation station point and basin area values for
the study target basin. The results of the applicability analysis through the fitness index
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confirmed that the value could not be said to be better and the difference was also insignifi-
cant. This may have an effect on the uncertainty that occurs when the spatial distribution of
the study target is small compared to the 3 km resolution among the characteristics of the
LENS data. In addition, the criteria for calculating the suitability of the rainfall ensemble
members were analyzed by comparing them with the ground rainfall observation values.
At this time, the accuracy of rainfall prediction caused by the uncertainty in ground rainfall
observations cannot be excluded [22]. Accordingly, the applicability analysis of LENS
data may be improved by subsequent studies, i.e., (1) uncertainty analysis of perturbation
members using ensemble averages; (2) expansion of target areas; (3) uncertainty analysis
between ground rainfall observation and ensemble prediction; (4) accuracy according to
topographic location.

The final goal of this study was to evaluate the applicability of outflow prediction in
the case of outflow simulation using the GRM model as input data for LENS prediction data.
Accordingly, to calculate the simulated flow rate that is most similar to the observed flow
rate for each target basin, optimization of the parameters for each basin was performed.
With respect to the sensitivity of the GRM model parameters, the initial saturation and
sub-luminance coefficients were the most sensitive. Hydrologically, the lower the initial
saturation, the greater the infiltration of rainfall owing to the decrease in the soil moisture
content and the decrease in the overall outflow. As the channel roughness coefficient
increased with the degree of resistance (friction) of the channel to the flow, the time of
the peak flow rate was delayed. It is believed that the topographic factor of the model
verification area by basin plays the largest role. In this study, most of the target watersheds
were in mountainous terrains and the verification area was located upstream. Compared
to that in other regions, it is expected that the inflow rate of rainfall into the river is faster
in the event of rainfall and that an immediate outflow will occur. It is also expected that
immediate rainfall penetration will occur in impermeable areas (compared to that in many
urbanized basins).

With respect to parameter correction, the uncertainty range of the fitness index for
all target watersheds was found to be significantly improved. In addition, the sensitivity
of the parameter changes to an even shape through the point distribution and histogram.
Equal parameter sensitivity is not a good result as it cannot further narrow the scope of a
specific behavioral model within that range. Analysis of uncertainty by likelihood through
95PPU revealed that the uncertainty range during the second correction narrowed and
improved compared to the first correction. However, this is also associated with many
uncertainties. There is still no definitive inference regarding the scope in setting the scope
of the behavior model, which relies on empirical research standards. Therefore, the outflow
value of the GRM best simulation by basin also showed a high degree of consistency
with the observed flow rate and the flow rate occurrence time. In contrast, this should be
verified by investigating more uncertainty research cases to obtain the optimal outflow
characteristics for each time.

LENS rainfall ensemble prediction data were analyzed for each target basin as the
rainfall input data for the GRM. The results indicate that the simulated outflow value of
the GRM accurately reflects the rainfall characteristics, which is the input data. The longer
the prediction time, the lower the prediction accuracy; the shorter the prediction time, the
higher the accuracy. For example, the characteristics of the rain prediction applicability
analysis of the LENS ensemble prediction data are reflected in the outflow simulation.
In the suitability evaluation of the outflow simulation using suitability likelihood, more
evaluations are close to the optimum value for each likelihood than the rainfall prediction
suitability evaluation. The accuracy of the ensemble members differed based on the period
of comparison between points and areas and the difference was insignificant. This is
believed to work with other factors and will need to be investigated in future studies.
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5. Conclusions

The calculation of future rainfall prediction and outflow prediction is based on numer-
ous hydrological, topographic and physical theories, as well as on the characteristics of
input data and natural conditions. Each parameter is associated with many uncertainties,
including an incomplete understanding of natural phenomena and the simplification of
assumptions for user convenience, thereby giving rise to a high degree of uncertainty.

In this study, after analyzing the applicability of LENS, we analyzed the uncertainty
of the outflow of rainfall ensemble prediction data using a grid-based rainfall-runoff model
(GRM) model. The target basin of the Wicheon Stream was selected and hydrological and
topographic data were constructed based on this basin. In addition, an accuracy analysis
of the point and area rainfall prediction for each member of the target watershed LENS
rainfall ensemble prediction data was conducted. Based on the constructed input data, the
parameters were analyzed based on the likelihood, using the GRM model for each target
basin. Finally, after calculating the optimal parameters for each target basin, the outflow
simulation was analyzed using LENS rainfall ensemble prediction data as input data for
the GRM model.

In the LENS data rainfall prediction applicability analysis, the closer the prediction
start time and rainfall event occurrence time of LENS data, the higher the accuracy. As for
the difference between the point value and the area value, the accuracy of the ensemble
members differed according to the period.

In the GRM parameter correction study, the target watersheds exhibited the most sensi-
tive appearance with respect to the initial saturation and underwater roughness coefficients.
The tendency of the observed outflow value and simulated outflow value was optimized
by calculating the optimal parameters for each target basin using parameter correction.

In the LENS-GRM outflow simulation, the simulated outflow value of the GRM appro-
priately reflected the characteristics of the rainfall input data. Similar to the characteristics
of the LENS rainfall prediction analysis, the accuracy of the outflow simulation increased
according to the accuracy of the input data.

Therefore, in this study, it was possible to confirm the temporal uncertainty of rainfall
prediction using LENS data, the changes that bring about rainfall prediction and outflow
prediction and the uncertainty of behavior model selection using the threshold of likelihood
when applying the outflow model of rainfall prediction data. This is expected to reduce the
uncertainty of the rainfall ensemble data and the uncertainty of applying the outflow model
in selecting the behavior model of the user’s uncertainty interpretation. In addition, the
application of research methods, i.e., characteristics of rainfall ideology and geographical
characteristics, as well as the expansion of analysis targets, can be used as the basis for
future rainfall and flood prediction research.
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