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Abstract: This paper proposes a systematic approach for the seismic design of 2D concrete dams.
As opposed to the traditional design method which does not optimize the dam cross-section, the
proposed design engine offers the optimal one based on the predefined constraints. A large database
of about 24,000 simulations is generated based on transient simulation of the dam-foundation-water
system. The database includes over 150 various dam shapes, water levels, and material properties,
as well as 160 different ground motion records. Automated machine learning (AutoML) is used
to generate a surrogate model of dam response as a function of thirty variables. The accuracy of
single- and multi-output surrogate models are compared, and the efficiency of the design engine for
various settings is discussed. Next, a simple yet robust inverse analysis method is coupled with a
multi-output surrogate model to design a hypothetical dam in the United States. Having the seismic
hazard scenario, geological survey data, and also the concrete mix, the dam shape is estimated and
compared to direct finite element simulation. The results show promising accuracy from the AutoML
regression. Furthermore, the design shape from the inverse analysis is in good agreement with the
design objectives and also the finite element simulations.

Keywords: design variable; finite element; feasibility design; surrogate; gravity dams; AutoML

1. Introduction

Seismic design and analysis of concrete dams have been always challenging tasks
because multiple factors are involved in performance evaluation [1]. They include, but are
not limited to, the semi-unbounded size of the reservoir and foundation rock domains, fluid-
structure interaction, wave absorption at the reservoir boundary, water compressibility,
foundation rock-structure interaction, spatial variations in ground motion at the dam-
foundation interface, and nonlinear damage mechanism of dam concrete. A detailed
review of the dynamic analysis of concrete dams can be found in [2]. However, the seismic
safety of existing dams is different from the seismic design of new ones. Whereas linear
elastic analyses are warranted for design, nonlinear ones must be performed when the
complete structural response is desired, the failure load is to be determined as accurately
as possible, or the “true” factor of safety must be found [3].

Structural design is founded on verification of the safety inequality: “Demand≤ Capacity”.
This inequality can be interpreted with different engineering response quantities which
results in various seismic design philosophies. In a broad classification, the seismic design
is force-based, displacement-based, or energy-based. If both sides of safety inequality
are written based on forces or moments, the design is force-based, and if displacement
or deformation (e.g., deflection, curvature, strain, and rotation) is used, the design is
displacement-based. Finally, if energy terms are compared, the design is energy-based [4].
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In force-based design, the lateral load-resisting system is designed for an equivalent
static force. However, in the displacement-based method, multiple (drift-based) per-
formance levels are checked to ensure the displacement does not exceed the threshold
values. In force-based design, the structural system is designed for a single seismic hazard
level, i.e., the design basis earthquake (DBE) in which the structure should satisfy the life
safety performance objective. However, the satisfaction of one performance level does not
guarantee the satisfaction of other (i.e., higher) performance levels too. In contrast, the
displacement-based design operates on multiple performance levels to satisfy all of them.
It is noteworthy that an earthquake originally imposes energy (and not force) on a structure.
Such energy (through the foundation) produces displacement relative to the ground. The
forces are indeed the byproduct of such a relative displacement and not the other way
around. Therefore, a displacement-based method is straightforward and more detailed.

Concrete gravity dams have traditionally been designed by an extended version
of force-based procedure [5,6]. As opposed to framed structures which include only
one equivalent lateral force, there are three static lateral forces in dams: (1) the forces
associated with the weight of the dam which is obtained as a product of a seismic coefficient
(α ∈ [0.05− 0.10]) and the weight of the portion of the dam being considered, (2) the forces
associated with reservoir hydrodynamic pressure which are obtained as a product of α and
a pressure coefficient, αp, and (3) the hydrostatic pressure [7]. There are several limitations
in this method: the dynamic characteristics of the coupled system, as well as the time
and frequency-domain characteristics of the ground motion records, are not considered.
The traditional design method has also very conservative criteria: the compressive stress
should be limited to 1/4 of the compressive strength, f ′c , and the tension is usually not
permitted, or the allowable tensile stress is very small. In addition, the static sliding and
overturning criteria have little meaning in the context of traditional seismic dam design as
the oscillatory responses are ignored.

The authors are unaware of any previous attempt at the displacement-based design
of concrete dams. The only accessible document is the research by Andonov et al. [8]
which proposed to use of a displacement-based method for linear and nonlinear seismic
assessment of the existing dams. Beyond the previous classification for seismic design
methods, other extensions have been proposed such as performance-based seismic de-
sign [9], reliability-based seismic design [10], risk-based seismic design [11], and more
recently, the resilience-based seismic design [12]. Despite the availability of such advanced
seismic design frameworks, there are rarely used in concrete dam design probably due
to the complexity of the numerical model. For example, Ferguson et al. [13] showed the
application of the risk-informed design framework for roller-compacted concrete dams
under extreme seismic events.

On the other hand, the shape optimization of the existing dam layout has been dis-
cussed widely for both gravity and arch dams. The pioneering work belongs to Ramakrish-
nan and Francavilla [14] that used the penalty function to optimize the shape of gravity
dams. Others adopted simple or advanced optimization algorithms for dam shape op-
timization [15–17]. Some others combined the optimization algorithms with machine
learning to accelerate the process [18,19]. A risk-based framework for shape optimization
of arch dams was introduced by Talatahari et al. [20] on which expected costs of failure are
incorporated in the analysis. More recently, a surrogate–assisted shape optimization frame-
work for dams was introduced by Fengjie and Lahmer [21] which incorporates various
uncertainty sources. This method has been extended by Abdollahi et al. [22] for multiple
seismic performance levels by eliminating the design dependency on a particular ground
motion record. Nearly all these techniques require advanced knowledge of optimization
techniques and/or machine learning modeling. Moreover, a large number of finite element
simulations is required to satisfy the objective functions. Therefore, they are not popular
among practitioners. Moreover, a series of particular cost functions are required during
the shape optimization such as volume of concrete, construction quality and complexity,
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location of dam and availability of materials, etc. which makes the generalization of results
nearly impossible.

With multiple limitations in the traditional seismic design method, and also the
complexity of the advanced shape optimization techniques, there is a need for a simple
yet accurate seismic design framework. This paper proposes a finite element-based design
engine to assist the practitioners in feasibility level (i.e., initial) layout development for
2D concrete gravity dams under seismic events. The engine includes a large inventory of
gravity dam shapes with different material properties for concrete and foundation rock.
Such a large inventory has been subjected to different water levels and many ground
motion records. The current database covers about 24,000 unique combinations of dam
shapes, material properties, water, and earthquake loading. Further, a low-code automated
machine learning (AutoML) tool is used to develop a high-fidelity surrogate model that
connects all the design variables to response quantities (e.g., displacements and stresses).
Such an AutoML surrogate model has never been trained for structural systems (more
specifically dams) with both the epistemic (i.e., modeling and material) and aleatory (i.e.,
loading) variability [23,24]. Therefore, the first contribution of this paper is to explore the
accuracy of such a surrogate model with different assumptions that an AutoML prepackage
is provided for analysts. Next, a surrogate model-based inverse analysis is introduced for
initial parameter estimation during dam design. Using the generated engine in this paper,
and also having some information about the seismic event, the engineer will be able to
estimate the dam shape for different levels of response quantity in a second. This engine
provides the best initial guess (shape and material of the dam) based on the constraints
that are introduced by the analyst.

The paper’s structure is as follows: Section 2 provides a quick review of the AutoML
and its differences with classical machine learning approaches. Furthermore, a high-level
review is provided about the application of machine learning in the seismic analysis of
dams. Section 3 provides the underpinning theories about the design variables used in
this paper to develop the surrogate models. The data structure is discussed in Section 4
including a brief explanation of the software used for finite element simulations, and also
some generic responses from the database. Section 5 dives into the AutoML application,
the anatomy, and performance of the developed surrogate models, while Section 6 explores
the design engine and inverse problems, as well as some practical examples. Finally, a
summary of the research this provided in Section 7.

2. Automated Machine Learning (AutoML)
2.1. ML-Based Response Evaluation of Dams

Most of the current applications of machine learning in dam engineering are focused
on structural health monitoring which mainly compiles the measured data during the
lifetime of the dam and predicts the response trend [25,26]. This is not the focus of our
paper. In this paper, (automated) machine learning is used to post-process the results of
finite element simulations. Studies in this field are limited and there is no comprehensive
research on comparing different techniques.

Chen et al. [27] evaluated the probability of sliding in a dam using an improved re-
sponse surface method. Karimi et al. [28] proposed a neural network procedure for system
identification of gravity dams coupled with a hybrid finite element-boundary element anal-
ysis to estimate the dynamic characteristics of an empty dam. Gaspar et al. [29] conducted
a global sensitivity analysis of the thermo-chemo-mechanical coupled model of RCC’s
physical properties. Gu et al. [30] proposed a chaos genetic optimization algorithm to invert
the initial zoning deformation modulus and determine the inversion objective function
using the measured displacement and finite element method. Su et al. [31] proposed the ap-
plication of least squares support vector machine and conditional back analysis for optimal
selection of dam parameters. Hariri-Ardebili and Pourkamali-Anaraki [32,33] showed the
application of several machine learning techniques in the multi-hazard analysis of gravity
dams. Both the simplified and nonlinear damage analyses were performed including the
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seismic, hydrologic, and aging hazard sources. Seismic reliability and sensitivity of concrete
dams were investigated with polynomial chaos expansion (PCE) [34] and adaptive Kriging
methods [35].

Segura et al. [36] developed a series of seismic fragility curves for concrete dams using
various machine learning methods. Macedo et al. [37] developed a series of new models
for estimating seismically-induced slope displacements based on various machine learning
techniques. Zhou et al. [38] coupled the support vector machine with a plastic failure
model for fragility analysis of concrete-faced rockfill dams. Cheng et al. [39] proposed two
back-analysis frameworks based on multivariate machine learning models to determine
the dynamic properties of the material in concrete dams. Salazar and Hariri-Ardebili [40]
combined the random forest method with stochastic finite element procedure to evaluate
the impact of concrete heterogeneity in dams. A PCE and Random Forest-based model
is also used for sensitivity analysis of heterogeneous arch dams [41]. Segura et al. [42]
developed a dual-layer meta-model for the safety assessment of rock wedges. Hariri-
Ardebili et al. [43] proposed a machine learning-aided probabilistic seismic demand model
for concrete dams using both real and artificial ground motions. Li et al. [44] developed
an efficient methodology for risk analysis of dams with a large number of seismic waves
which is based on screening for intensity measures and a surrogate model.

While many of the above-mentioned researches have adopted multiple machine
learning (or surrogate) methods to generalize the findings, those methods were selective
depending on the personal preference of the analyst (or the availability and/or capability
of the software), and thus, there is no generalized recommendation regarding the efficiency
of a particular method. Moreover, none of them have used an automated machine learning
framework for regression or classification purposes. In the following section, the concept
of AutoML is explained.

2.2. Underpinning Theory

Automated machine learning, also known as AutoML, is a growing field that aims
to allow users with varying backgrounds and expertise to design an end-to-end machine
learning system for the problem at hand [45,46]. The automation process facilitates several
crucial and time-consuming aspects, including feature processing or engineering, model
discovery, and hyperparameter tuning. Given a set of raw features or attributes, the
first step is to find a set of meaningful and usable features to be passed to a machine
learning method. Examples include converting categorical features to numerical values
and feature scaling methods, such as standardization [47], to ensure that all features are
in the same range and treated equally. Model discovery refers to finding the best learning
method among a set of candidate machine learning methods. For example, in the context
of regression which is the main focus of this paper, eligible machine learning methods
may include linear/polynomial regression, instance-based learning techniques such as
nearest neighbors, or even neural networks. On the other hand, hyperparameter tuning
involves selecting the best hyperparameters for the learning method which is deemed to be
the final choice. Hyperparameters can be viewed as external parameters that have to be
specified before training machine learning models, and are known to significantly impact
the outcome, such as the number of nearest neighbors when using instance-based models.
In machine learning, the combination of model discovery and hyperparameter tuning is
typically called model selection.

Therefore, AutoML holds great potential to make machine learning and data science
more accessible across scientific disciplines to extract patterns and make data-driven
decisions. For example, AutoML has been deployed in a wide array of applications, such
as image-based plant phenotyping [48], fault severity diagnosis in industrial processes [49],
reducing manufacturing costs [50], analyzing biological data [51], and predicting the
casualty rate and economic loss induced by earthquakes [52]. Despite the recent progress
in this area, we would like to highlight the proper way to evaluate the effectiveness of
AutoML techniques. After finalizing a learning method and its hyperparameters using
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AutoML, one should evaluate its performance on a test or hold-out data set to report its
generalization error. This additional step allows us to decouple the model selection process
and model assessment, reflecting the “true” performance of the selected model or surrogate
when facing new cases. The overall procedure is depicted in Figure 1 via a flowchart. The
training data set will be used along with an AutoML technique to select the final model
and its hyperparameters, while the test data will be used to report evaluation metrics on
unseen data to measure the generalization error.

Available Data

Training Data AutoML Selected Model

Test Data

Final Evaluation

Figure 1. Proper performance evaluation of AutoML techniques, by holding out part of the available
data as a test set.

Given the above introduction of AutoML, we explain the underlying concepts in more
detail. Let A = {A(1), . . . , A(N)} represent a set of N eligible machine learning algorithms.
Moreover, each A(n), n = 1, . . . , N, comes with a set of hyperparameter configurations,
represented by Λ(n). Furthermore, let us assume that the training data in Figure 1, called
Dtrain is split into K cross-validation folds {D(1)

train, . . . ,D(K)
train} and {D(1)

valid, . . . ,D(K)
valid}, such

that D(k)
train = Dtrain \ D(k)

valid for k = 1, . . . , K. Given a loss function L that measures the

prediction quality, we make the assumption that L(A(n)
λ ,D(k)

train,D(k)
valid) represents the loss

evaluated on the validation data D(k)
valid using the training data D(k)

train and the learning
method A(n) with its corresponding hyperparameter choices λ ∈ Λ(n). With this notation
in place, the main idea behind automated machine learning is to solve the following
minimization problem in an efficient and robust manner:

arg min
A(n)∈A,λ∈Λ(n)

1
K

K

∑
k=1
L(A(n)

λ ,D(k)
train,D(k)

valid) (1)

The solution to the above problem results in finding the best learning method and its
hyperparameters, which can be used as a surrogate model to capture the behavior of the
desired system as accurately as possible. As mentioned before and depicted in Figure 1, an
additional step is to evaluate the performance of the selected model on a hold-out test data
set to ensure that the model generalizes well beyond the existing data Dtrain.

Among available AutoML techniques/frameworks, we have decided to use auto-
sklearn [53,54] in this paper because of five main reasons. First, auto-sklearn is a Python-
based open-source toolkit, which resembles the widely-used scikit-learn machine learning
package, also known as sklearn [55]. This means that we can use similar methods such
as “fit” and “predict” to train and evaluate models, respectively. Second, during the
optimization process, auto-sklearn can automatically create an ensemble of top-performing
models, instead of reporting a single model with the highest accuracy. To be more formal,
the final solution of auto-sklearn can take the form of ∑n βn A(n)

λ , where the weights should
satisfy 0 ≤ βn ≤ 1 and ∑n βn = 1. As a result, the top-performing models will have βn > 0
to contribute to the final surrogate model. It has been shown that ensemble methods provide
an efficient way to improve predictive accuracy, e.g., [56], which makes auto-sklearn a very
attractive choice. Third, auto-sklearn allows us to solve multi-output problems in which
the goal is to predict multiple quantities of interest at the same time. This is an important
feature of auto-sklearn because, for the application of seismic design of dams, we have to
describe the system’s behavior using various quantities, and training distinct models for
each quantity becomes intractable. Currently, PyCaret, which is another popular AutoML



Water 2022, 14, 3898 6 of 24

framework [57], does not support multi-output regression models, which is a substantial
drawback for many applications, including the problem of interest in this paper.

The fourth reason is that auto-sklearn runs within a user-determined time budget, with
the default value of one hour. Therefore, the user has the option to spend more or less time
depending on the computational requirements and the availability of resources. Finally,
the fifth reason is that the search space of auto-sklearn is significantly large and considers
various regression models and classifiers from the scikit-learn library. For example, in the
most recent version of auto-sklearn 0.15.0 that we use in this paper, the following regression
models A are included in the search space:

• Linear models: minimizing a regularized empirical loss with stochastic gradient
descent (SGD), and Bayesian Automatic Relevance Determination (ARD) regression;

• Ensemble models: Adaboost, random forest (and decision trees), extra trees, gradi-
ent boosting;

• Probabilistic model: Gaussian process (GP) regression;
• K-nearest neighbor (KNN) and support vector regression (SVR);
• Neural networks: Multilayer perceptron (MLP).

Although we refer interested readers to the sklearn documentation page for more
detailed information and updates regarding these models and their implementations, we
can immediately see the diversity of the models that are included in solving the above
optimization problem. To demonstrate the ease-of-use of auto-sklearn for practitioners
without a deep knowledge of machine learning methods, we show relevant code snippets
for performing the three main steps involved in our proposed framework in Listing 1:
(1) dividing the available data into training and test sets, (2) model selection using Dtrain,
and (3) model assessment via Dtest. To save space, we listed R2 or the coefficient of
determination as the only score to measure the quality of predictions, but we will use a
broader list of evaluation metrics in our numerical results. As a final point, once auto-
sklearn finds the best model according to the search space and the given time budget, we
can store/load the surrogate model “automl” to make predictions in the future.

Listing 1. Sample of auto-sklearn code to perform the proposed framework.
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• Linear models: minimizing a regularized empirical loss with stochastic gradient descent (SGD),206

and Bayesian Automatic Relevance Determination (ARD) regression;207

• Ensemble models: Adaboost, random forest (and decision trees), extra trees, gradient boosting;208

• Probabilistic model: Gaussian process (GP) regression;209

• K-nearest neighbor (KNN) and support vector regression (SVR);210

• Neural networks: Multilayer perceptron (MLP).211

Although we refer interested readers to the sklearn documentation page for more detailed212

information and updates regarding these models and their implementations, we can immediately213

see the diversity of the models that are included in solving the above optimization problem. To214

demonstrate the ease-of-use of auto-sklearn for practitioners without a deep knowledge of machine215

learning methods, we show relevant code snippets for performing the three main steps involved in216

our proposed framework: (1) dividing the available data into training and test sets, (2) model selection217

using Dtrain, and (3) model assessment via Dtest. To save space, we listed R2 or the coefficient of218

determination as the only score to measure the quality of predictions, but we will use a broader list of219

evaluation metrics in our numerical results. As a final point, once auto-sklearn finds the best model220

according to the search space and the given time budget, we can store/load the surrogate model221

“automl” to make predictions in the future.222

223
from sklearn.model_selection import train_test_split224

from sklearn.metrics import r2_score225

from autosklearn.regression import AutoSklearnRegressor226

227

# step 1: train/test split, (X, y) is the entire data set228

X_train, X_test, y_train, y_test = train_test_split(229

X, y, test_size=0.2, random_state=0)230

231

# step 2: model selection, time budget: 1 hour or 3600 sec232

automl = AutoSklearnRegressor(233

time_left_for_this_task=3600)234

235

automl.fit(X_train, y_train)236

237

# step 3: model assessment (R2 or other metrics)238

r2_score(y_test, automl.predict(X_test))239240

3. Design Variables241

The feasibility level design of a gravity dam includes the selection of an appropriate cross-section242

including the material properties for the coupled system that satisfy the design objectives under the243

applied loads. Figure 2 illustrates a generic gravity dam including the dimensions, material properties,244

and loading.245

3.1. Dam Shape246

Probably the most important task during seismic design is to select an optimal initial cross-section.247

Multiple sources offer a cross-section for concrete gravity and arch dams. A large inventory of dams248

has been studied and a generic dam shape is developed using seven length-related variables as shown249

in Figure 3 (L1 to L7). All dimensions are a random dependent of the dam base. Also, the reservoir250

is modeled by assuming a random water level between 50-100% of dam height (corresponding to251

winter and summer conditions). All the generated dam layouts are consistent with current dam design252

practices or an existing dam.253

• L1 ∈ (50, 150) m.254

• L2 = L1 × α1; α1 ∈ (0.00, 0.05) −→ L2 ∈ (0, 7) m.255

• L3 = L4 × α3; α3 ∈ (1.00, 1.20) −→ L3 ∈ (7, 40) m.256

3. Design Variables

The feasibility level design of a gravity dam includes the selection of an appropriate
cross-section including the material properties for the coupled system that satisfy the design
objectives under the applied loads. Figure 2 illustrates a generic gravity dam including the
dimensions, material properties, and loading.
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Figure 2. Generic shape of a gravity dam including design variables, material parameters, water, and
seismic loads.

3.1. Dam Shape

Probably the most important task during seismic design is to select an optimal initial
cross-section. Multiple sources offer a cross-section for concrete gravity and arch dams.
A large inventory of dams has been studied and a generic dam shape is developed using
seven length-related variables as shown in Figure 3 (L1 to L7). All dimensions are a
random dependent of the dam base. Furthermore, the reservoir is modeled by assuming a
random water level between 50–100% of dam height (corresponding to winter and summer
conditions). All the generated dam layouts are consistent with current dam design practices
or an existing dam.

• L1 ∈ (50, 150) m.
• L2 = L1 × α1; α1 ∈ (0.00, 0.05) −→ L2 ∈ (0, 7) m.
• L3 = L4 × α3; α3 ∈ (1.00, 1.20) −→ L3 ∈ (7, 40) m.
• L4 = L1 × α2; α2 ∈ (0.12, 0.24) −→ L4 ∈ (6, 35) m.
• L5 = L6 × α5; α5 ∈ (0.30, 0.70) −→ L6 ∈ (20, 140) m.
• L6 = L1 × α4; α4 ∈ (1.10, 1.60) −→ L5 ∈ (55, 235) m.
• L7 = L5 × α6; α6 ∈ (0.75, 0.90) −→ L7 ∈ (40, 200) m.
• WL = L5 × α7; α7 ∈ (0.50, 1.00)

3.2. Material Properties

The design of a new dam requires the definition of material properties for finite
element simulations. The concrete properties mainly depend on the mix design, and also
the availability of the ingredients (e.g., sand, gravel, and cement) near the dam site. The
rock properties are typically obtained from geological surveys. However, for feasibility-
level design, the exact rock properties might not be available yet. Moreover, the reservoir
bottom reflection coefficient, αw, is needed which simulates the impact of bottom sediments
and alluvium. For new dams, αw > 0.9 is typically used. However, to account for long
terms effects, smaller values should be used. Seven properties are assumed to be unknown
during the design process. Each one covers a wide range of possible values.

Concrete modulus of elasticity Ec ∈ [15, 45] GPa, concrete Poisson’s ratio νc = 0.2
(fixed), concrete mass density ρc ∈ [2200, 2600] kg/m3, concrete hysteretic damping
ηc ∈ [0.02, 0.10], rock modulus of elasticity Er ∈ [15, 45] GPa, rock Poisson’s ratio νr = 0.33
(fixed), rock mass density ρr ∈ [2200, 2800] kg/m3, rock hysteretic damping ηr ∈ [0.02, 0.08],
and the reservoir bottom wave reflection coefficient αw ∈ [0.5, 0.9]. All material properties
are sampled based on a truncated normal distribution using the Latin Hypercube sam-
pling technique. No correlation is assumed among these variables. Figure 4 shows the
distribution of the material properties used for surrogate modeling. Concrete compressive
strength, f ′c , is not directly used in finite element analyses; however, the results of linear
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elastic simulations should be compared to tensile ( f ′t ≈ 0.1 f ′c) and compressive strength to
ensure the demand does not exceed the capacity.

Figure 3. Inventory of all gravity dam shapes generated based on a Matlab code including a random
water level in red; the box size is 170 × 240 m in all cases.

Figure 4. Distribution of material properties.

3.3. Loads

The inputs to the finite element model include both the ground motion records and the
water pressure (both hydrostatic and hydrodynamic components). As discussed earlier, the
water level is assumed to be 50–100% of the dam height. Subsequently, the corresponding
hydrostatic and hydrodynamic pressures are automatically computed and applied by
the software. For the seismic simulations, a large database of 160 ground motions is
selected worldwide to consider the aleatory uncertainty. While the current practice in
earthquake engineering is to select the ground motion records based on the seismic hazard
characteristics of the dam site, a random record selection process is used in this paper
to generate the surrogate model (later we will show the application of ground motion
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selection and scaling for a particular dam site). A random ground motion selection is
especially useful because none of the generic dams in this paper are associated with a
specific site/location. Moreover, variation of the geometry and material properties in the
generic models changes the vibration characteristics of the structures (e.g., fundamental
period). Thus, ground motion selection and scaling methods such as spectral matching are
not practical methods.

Since a ground motion record has a stochastic nature, one cannot directly use it for
classical machine learning regression (unless a time series regression is used which is a
complex task). Therefore, it is efficient to extract several meta-features. It is possible to
distinguish the ground motion records based on their unique characteristics. A wide range
of time-, frequency-, spectral- and intensity-dependent intensity measure (IM) parameters
are summarized in Table 1 [58,59]. For each single ground motion signal, fifteen IM
parameters are extracted. Figure 5 shows the correlation among fifteen IM parameters for
a pilot dam (i.e., a dam that all its shape and material parameters are close to the median
of the design space). The lower triangular cells show the one-by-one correlation between
160 ground motion records. The diagonal cells are the histogram of data points. The upper
triangular cells are the correlation in terms of Spearman’s linear correlation coefficient (R)
and p-values for testing the hypothesis of no correlation against the alternative hypothesis
of a nonzero correlation (P). As seen, the significant duration, tsig, has the lowest correlation
with other IMs, while the first-mode spectral values have the highest correlation with
other IMs.
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Figure 5. Matrix of fifteen seismic intensity measures for all the applied ground motion records. R:
Correlation, and P: p-value.
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Table 1. A list of ground motion IMs [58].

No. Description of IM Symbol Mathematical Model

1 Peak ground acceleration PGA max(|ü(t)|)
2 Peak ground velocity PGV max(|u̇(t)|)
3 Peak ground displacement PGD max(|u(t)|)
4 Acceleration spectrum intensity ASI

∫ 0.5
0.1 Sa(T, ξ)dT

5 Velocity spectrum intensity VSI
∫ 2.5

0.1 Sv(T, ξ)dT
6 First-mode spectral acceleration Sa(T1) Sa(T1, ξ)
7 First-mode spectral velocity Sv(T1) Sv(T1, ξ)
8 First-mode spectral displacement Sd(T1) Sd(T1, ξ)
9 First-mode spectral acceleration Sa(T2) Sa(T2, ξ)

10 Root-mean-square of acceleration aRMS ( 1
ttot

∫ ttot
0 (ü(t))2dt)1/2

11 Root-mean-square of velocity vRMS ( 1
ttot

∫ ttot
0 (u̇(t))2dt)1/2

12 Arias intensity IA
π
2g

∫ ttot
0 (ü(t))2dt

13 Specific energy density SED
∫ ttot

0 (u̇(t))2dt
14 Cumulative absolute velocity CAV

∫ ttot
0 |ü(t)|dt

15 Significant duration tsig t0.95IA − t0.05IA

Note: ü(t), u̇(t) and u(t) are acceleration, velocity and displacement time histories, respectively.

4. Data Structure

So far, all the design variables including the geometry parameters, material properties,
and loading have been discussed. In this section, the finite element software is introduced,
and the data structure is explained.

4.1. Software

The finite element code EAGD [60] is used for dynamic analyses, where the foundation
rock is idealized as a homogeneous, isotropic, viscoelastic half-plane. A two-dimensional
model is developed including 480 elements which is reasonable for linear elastic systems.
The dam-foundation interaction effects are included by adding the dynamic stiffness matrix
for the rock region in the dam’s equation of motion. This frequency-dependent matrix is
defined with respect to the degree of freedom of the nodal points at the dam base [61].
The reservoir water is idealized by a fluid domain of constant depth and infinite length in
the upstream direction. The dissipation of hydrodynamic pressure waves by the reservoir
bottom materials is accounted for by applying a boundary condition that partially absorbs
the incident waves. The system is analyzed based on the following load cases: dam
self-weight, water pressure, and the free-field horizontal component of the earthquake
ground motion.

4.2. Input-Output Coverage

Matlab [62] is paired with EAGD to automate the finite element simulations. A total of
24,000 simulations have been conducted which cover a wide range of dam shapes, material
properties, and ground motions. Figure 6 shows the data structure. Two side matrices of
160× 15× 150 and 15× 150 are used as inputs in AutoML. The former one is a 3D matrix
that identifies the characteristics of the ground motion record. One may note that some
of the IM parameters depend on the vibration period of the dam (e.g., Sa(T1)), and thus,
this side matrix is three-dimensional and not two-dimensional. On the other hand, the side
matrix which defines the geometry, material, and water level is a two-dimensional matrix
as it does not depend on the applied seismic load.

Within the probabilistic simulation framework, and after completing any single finite
element analysis, the results are post-processed, and the required information is extracted.
Data are stored in the form of a 2D matrix (for scalar quantities) and a 3D matrix (for spatial
and temporal quantities).

• Scalar quantities cover the maximum (or minimum) response of the dam at a particular
location and the entire duration of the applied ground motion. For example, maximum
crest displacement shows the “global” behavior of the dam under the applied motion.
Similarly, the maximum first principal stress at the dam heel is a “local” metric that
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presents the onset of cracking (if exceeds the tensile strength). Other peaks (i.e.,
maximum or minimum) response quantities can be extracted from displacement,
stress, and strain results.

• Vector quantities cover the responses over time, or they present the spatial distribution
of the response parameters. Cumulative inelastic duration (CID) shows the time
intervals in which the stress at a particular location exceeds the tensile strength. The
overstressed area (OA) illustrates the spatial distribution of regions within the dam
body where the tensile strength exceeds the tensile strength (or a multiplayer of it).
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Figure 6. Data structure.

While it is possible to use as many as output parameters in developing a surrogate
model, for any practical implementation, a total of ten response quantities are considered
in this paper. They are:

• Out1: maximum horizontal crest displacement, ∆max

• Out2: maximum first principal stress at heel, σheel
p1,max

• Out3: maximum first principal stress at upstream face 5% from the heel, σUP5%
p1,max

• Out4: maximum first principal stress at toe, σtoe
p1,max

• Out5: minimum third principal stress at the heel, σheel
p2,min

• Out6: minimum third principal stress at the toe, σtoe
p2,min

• Out7: CID for demand capacity ratio exceeds one at the heel, CIDheel
DCR=1

• Out8: CID for demand capacity ratio exceeds two at the heel, CIDheel
DCR=2

• Out9: Overstressed area for demand capacity ratio exceeds one at the heel, OAheel
DCR=1

• Out10: Overstressed area for demand capacity ratio exceeds two at the heel, OAheel
DCR=2

5. Results: Surrogate Model

In this section, we examine the efficacy of auto-sklearn, explained in Section 2, for de-
veloping accurate machine learning-based surrogate models mapping the design variables
to the quantities of interests (QoI). Specifically, we consider three scenarios that involve pre-
dicting: (1) Out2, i.e., single output, (2) outputs 1 through 6, and (3) all 10 outputs discussed
in the previous section. The main intention behind this analysis is to better understand the
tradeoff between the number of outputs and the quality of the final surrogate models when
using AutoML techniques. We hypothesize that the increase in the number of outputs
makes it more challenging to find a model (and its corresponding hyperparameters) that
performs well across all the desired outputs. Before stating our results, note that the studied
outputs fall within substantially different ranges. Thus, it makes sense to use a linear
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transformation technique for each output individually such that all values of a desired
quantity of interest will be transformed into the range [0, 1]. That is, the minimum and
maximum values of the transformed output will be 0 and 1, respectively. To this end,
we use the “MinMaxScaler” method from sklearn, where the transformation is given by
(y−min)/(max−min) for each output value y.

For all experiments, we use three evaluation metrics that are specifically designed
for regression problems. The first one is R2 or the coefficient of determination, which is
defined as follows for a set of n finite element results y1, . . . , yn and their predicted values
obtained by a machine learning model ŷ1, . . . , ŷn:

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (2)

where ȳ = 1
n ∑n

i=1 yi is the sample mean or average. Therefore, the best possible score is
1 when yi = ŷi for all cases, and the result is 0 when all the predicted values are equal to
the sample mean ȳ, which means that the machine learning model has not learned any
patterns. Therefore, R2 values closer to 1 indicate a more accurate machine learning-based
surrogate model. The two other evaluation metrics are Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). We can compute these two metrics as follows:

RMSE(y, ŷ) =

(
1
n

n

∑
i=1

(yi − ŷi)
2

)1/2

(3)

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi|. (4)

Based on these formulas, when yi = ŷi for all cases, the return values are zeros, and,
overall, values closer to 0 indicate more accurate machine learning or surrogate models.

5.1. Scenario 1: Single Output

In the first scenario, we just consider Out2 (i.e., maximum principal stress at the heel)
and use the default time limit of one hour when using auto-sklearn for model selection (we
fix the time limit throughout this section). Table 2 reports the final result, including the
types of machine learning models used in the ensemble and their corresponding weights
βn as well as the length of time the model was optimized for (called duration). To interpret
this table, note that the rank of each model is based on the calculated value of the loss
function that we discussed in Section 2; Rank 1 has the lowest value of the loss. In terms of
the ensemble method selected by auto-sklearn, as expected, we can confirm that ∑n βn = 1.
Furthermore, we notice that the final model consists of two main types of machine learning
models: Gradient Boosting and ARD Regression. Gradient Boosting is a boosting-like
algorithm for regression that combines weak learners and the main difference between the
models listed in the table is related to critical hyperparameters, such as the maximum depth
of the tree and the minimum number of samples required to split an internal node [63]. On
the other hand, the most influential model in the ensemble according to the assigned weight
is ARD Regression, which can be viewed as a Bayesian extension of linear regression, where
the parameters of the regression model are assumed to be in Gaussian distributions. Due
to its probabilistic nature, training such models can be time-consuming, as evident from
the duration column of Table 2.

Next, we present a parity plot to better understand the performance of the final model
using both training and test data sets. This step is crucial because we should show that the
final model is not suffering from overfitting, which is a common problem when the selected
machine learning model is too complex for the problem at hand. Particularly, Figure 7
plots true values of the quantity of interest obtained via our finite element model versus
predicted values produced by the machine learning model that auto-sklearn selected. The
reason that we focus on the range [0, 0.3], instead of [0, 1], is that the majority of scaled
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output values fall within this range. Hence, this allows us to visualize the behavior of the
surrogate model more closely in this interesting regime. However, we use the entire data
set to report evaluation metrics. In the title of this figure, the accuracy score refers to R2 or
the coefficient of determinations, and the best possible score is 1. Therefore, we corroborate
that the trained surrogate model performs well on both training and test data sets. In
addition, we evaluated the performance of this model on the test data using the other
discussed metrics: RMSE = 0.008 and MAE = 0.004, showing the reasonable performance
of the final surrogate model.

Table 2. The result of model selection performed by auto-sklearn when considering a single output
(Scenario 1).

Rank Ensemble Weight Type Duration

1 0.16 Gradient Boosting 24.10
2 0.04 Gradient Boosting 3.85
3 0.14 Gradient Boosting 11.88
4 0.24 ARD Regression 103.09
5 0.06 Gradient Boosting 11.311
6 0.12 Gradient Boosting 3.21
7 0.06 Gradient Boosting 11.13
8 0.10 Gradient Boosting 8.95
9 0.06 Gradient Boosting 147.51
10 0.02 ARD Regression 1.65

Figure 7. Scenario 1 (Out2): plotting true vs. predicted values for both training and test samples. The
available data are split into train/test sets according to Figure 1. We see that the surrogate model
performs well on both training and test sets (acc in the title refers to R2).

5.2. Scenario 2: Multi-Output, Out1 through Out6

In the second scenario, we consider a multi-output setting, where the objective is to
develop a surrogate model to predict six quantities of interest: Out1 through Out6. Similar
to the previous experiment, we report the anatomy of the final model, including ranks,
ensemble weights/models, and duration, in Table 3. Note that the final model primarily
consists of tree-based machine learning models. In fact, Extra Trees and Random Forests
are similar in the sense that they both build multiple trees and split nodes using random
subsets of features. Therefore, their main goal is to improve the predictive accuracy and
control overfitting by constructing ensemble methods. However, as apparent in the table,
such methods are computationally expensive. On the other hand, K-Nearest Neighbor
methods are much faster when working with data sets consisting of a few thousand data
points, which is the case in our study. The number of nearest neighbors, which is the most
important hyperparameter, is set to 17 in this example.

Moreover, we provide parity plots in Figure 8, where each subfigure represents actual
vs. predicted values for both training and test sets accompanied by R2 values. Similar to the
previous scenario, we focus on the range [0, 0.3] (except for Out5 and Out6) because most
output values fall within this range. However, Out5 and Out6 take on negative values, and
using the transformation technique that we discussed earlier in this section, the majority
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of data points that have low absolute values fall within [0.7, 1]. This is because negative
numbers get smaller as their magnitude increases.

Table 3. The result of model selection performed by auto-sklearn when considering six outputs
(Scenario 2).

Rank Ensemble Weight Type Duration

1 0.84 Extra Trees 176.97
2 0.06 Random Forest 132.60
3 0.10 K-Nearest Neighbor 19.53

To interpret the reported results in Figure 8, note that Out2 is shared between scenar-
ios 1 and 2, and that the performance of the obtained surrogate model in the second case
is slightly worse than the one produced in the first scenario. This is consistent with our
hypothesis because the second case study aims to find a model that performs well across
all six outputs, instead of a single output. Despite the minor accuracy reduction, we believe
that the surrogate model in this scenario is more useful because of predicting multiple
outputs at the same time, while the reported R2 values are consistently above 0.9 across all
the desired quantities of interest.

Figure 8. Scenario 2 (Out1 through Out6): plotting true vs. predicted values for both training and
test samples. The available data are split into train/test sets according to Figure 1. We see that the
surrogate model performs well on both training and test sets, and the R2 values exceed 0.9 for all the
studied outputs.

In addition, Table 4 reports the performance of the machine learning-based surrogate
model on the testing data using three metrics. Based on these results, we conclude that
the overall performance of our model is satisfactory. RMSE and MAE values are less than
0.01 because the transformed output values are distributed in the range [0, 1]. Moreover,
the overall R2 value is about 0.95, meaning that the model has learned useful input-output
patterns from the training data set.
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Table 4. Evaluating the performance of the trained surrogate model using six outputs: Out1
through Out6.

Output R2 RMSE MAE

Out1 0.912 0.007 0.002
Out2 0.958 0.009 0.004
Out3 0.956 0.009 0.004
Out4 0.948 0.010 0.005
Out5 0.958 0.009 0.004
Out6 0.947 0.010 0.005

Overall 0.947 0.009 0.004

5.3. Scenario 3: Multi-Output, Out1 through Out10

In this section, we extend our previous analysis to account for the 10 outputs explained
in Section 4. Table 5 presents the structure of the final ensemble method identified by using
auto-sklearn. This model mainly contains Decision Trees and the K-Nearest Neighbor
regression models. From the computational standpoint, optimizing the Decision Tree
model is typically more time-consuming than training the K-Nearest Neighbor model.
However, from the predictive accuracy viewpoint, Decision Trees are popular because
they learn simple decision rules from the available data to approximate a wide range of
linear and nonlinear functions, which is helpful when considering various input-output
mappings. By carefully reviewing the selected hyperparameters, we noticed that the main
difference between the chosen Decision Trees is the minimum number of samples required
to split an internal node in the tree (ranging from 3 to 19). On the other hand, the number
of nearest neighbors for the two selected models is set to 4 and 17. As a final point, it is
interesting to observe that the K-Nearest Neighbor regression model with 17 neighbors
was also found in the previous scenario, where we considered 6 outputs.

Table 5. The result of model selection performed by auto-sklearn when considering all ten outputs
(Scenario 3).

Rank Ensemble Weight Type Duration

1 0.08 Decision Tree 1.88
2 0.04 Decision Tree 158.13
3 0.22 Decision Tree 161.25
4 0.04 Decision Tree 6.22
5 0.16 Decision Tree 7.37
6 0.06 Decision Tree 1.22
7 0.06 Decision Tree 160.86
8 0.20 Decision Tree 101.23
9 0.02 Decision Tree 1.7

10 0.04 Decision Tree 69.75
11 0.02 K-Nearest Neighbor 18.94
12 0.06 K-Nearest Neighbor 1.31

Furthermore, Figure 9 presents parity plots for the resulting surrogate model when
considering all ten outputs, showing actual values obtained by the finite element analysis
on the horizontal axis and the corresponding predicted values by the surrogate model
on the vertical axis. Comparing the first six outputs with the results from the previous
case study, we again notice an insignificant reduction in the predictive accuracy measured
by the R2 score. This reduction is reasonable given that the new surrogate model should
predict a larger number of outputs compared to the previous case. However, except for
Out1 and Out10, the accuracy score exceeds 0.9. To have a more detailed analysis of this
surrogate model, we report two other additional metrics (RMSE and MAE) in Table 6.
Based on these results, the overall R2 score is above 0.9 and the final RMSE and MAE values
are on par with the previous case that we just considered six outputs. Therefore, based
on our analysis, we conclude that auto-sklearn is capable of performing model selection
in challenging scenarios involving the prediction of multiple quantities of interest at the
same time. As a result, auto-sklearn provides an easy-to-use framework for non-experts in
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machine learning and practitioners because of eliminating the need to develop multiple
independent surrogate models for individual outputs.

Figure 9. Scenario 3 (Out1 through Out10): plotting true vs. predicted values for both training and
test samples. The available data are split into train/test sets according to Figure 1. We see that the
surrogate model performs well on both training and test sets, and the R2 values exceed 0.9 for all the
studied outputs except for Out1 and Out10.

Table 6. Evaluating the performance of the trained surrogate model using 10 outputs: Out1
through Out10.

Output R2 RMSE MAE

Out1 0.884 0.008 0.003
Out2 0.946 0.010 0.005
Out3 0.947 0.010 0.005
Out4 0.933 0.011 0.005
Out5 0.950 0.009 0.005
Out6 0.927 0.012 0.006
Out7 0.912 0.013 0.004
Out8 0.909 0.009 0.001
Out9 0.926 0.032 0.010

Out10 0.854 0.016 0.003
Overall 0.919 0.013 0.005

6. Results: Dam Design Engine

Having multiple surrogate models from Section 5, this section discusses the imple-
mentation of those in a context of a design engine. In general, a surrogate model aims to
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estimate the structural responses as a function of dam shape, material parameters, water
level, and applied ground motion:

QoI = g

Mat1, · · · , Mat7︸ ︷︷ ︸
Material

, L1, · · · , L7︸ ︷︷ ︸
Shape

, Lw︸︷︷︸
Water

, IM1, · · · , IM15︸ ︷︷ ︸
Seismic

 (5)

where the input parameters take a range of values for each of the 30 input parameters, and
QoI is a matrix of outputs (i.e., quantities of interests).

In any practical seismic dam design process, the seismic hazard scenario for which
the dam should be designed is known (from probabilistic or deterministic seismic hazard
analysis—PSHA/DSHA [64,65]) and is provided to the structural team by a seismologist.
Moreover, the basic material properties are also available with good confidence. The
foundation rock properties are determined by geologists including the profile of shear wave
velocity, mass density, elasticity, permeability, shear strength, etc. [66]. The mechanical
properties in concrete are governed by mix design and can be assumed to be known for the
feasibility level design [67,68]. Finally, some of the shape parameters are known with good
confidence at the feasibility level of design. For example, the total dam height is usually
provided to the engineer by the project manager (with inputs from the dam owner, and
hydrology team). Therefore, an inverse analysis can be performed on the pre-generated
surrogate model using the known variables (specified with an asterisk in the following
equation) to estimate the unknown ones:

[
Mat∼i, L∼j

]︸ ︷︷ ︸
Unknown variables

= g−1

 L∗w︸︷︷︸
Water

, IM∗1 , · · · , IM∗15︸ ︷︷ ︸
Seismic

, Mat∗i︸ ︷︷ ︸
Material

, L∗j︸︷︷︸
Shape

, QoI∗(σheel
p1,max, ∆max, · · · )

 (6)

where index i and j are known material and shape variables, and∼ i and∼ j are the remaining
unknown variables. QoI∗ are a series of target responses for the design earthquake.

To explain the technical aspects of the inverse analysis, let us assume that the final
surrogate model obtained by auto-sklearn (or other AutoML techniques) takes the form
of g(θi, θj, θ∼i, θ∼j), where θi and θj represent all known variables that we can treat them
as constants and the other two variables are unknown. Here, the goal is to find the “best”
choices of θ∼i, θ∼j such that the value of the function g gets as close as possible to the target
response g∗. There are two main steps involved in solving this problem: (1) defining a
search space, i.e., the set of possible values for the unknown variables, and (2) casting an
optimization problem. We denote the search space for each variable type by θmaterial and
θshape. With this notation in place, the optimization problem takes the following form:

arg min
θ1∈θmaterial,θ2∈θshape

|g∗ − g(θi, θj, θ1, θ2)|. (7)

Since the size of the search space is finite, we can find the objective function in the above
optimization problem for each feasible solution, and then sort them in ascending order.
This means that we will have a “ranked” list of possible solutions for the inverse problem.

Design earthquake and ground motion records for dam projects are typically obtained
from two main sources [7]: ICOLD and FEMA. While the detailed discussion on ground
motion selection and scaling is beyond the coverage of this paper, some major aspects are
clarified [69].

• ICOLD recommendations There are two basic seismic loads for the design of new
dams [70]: Operating Basis Earthquake (OBE) which represents the seismic intensity
level at the dam site for which only minor (easily repairable) damage is acceptable
and the dam should remain functional. The OBE corresponds to the return period of
145 years (50% probability of exceedance in 100 years). Safety Evaluation Earthquake
(SEE) represents the seismic intensity level at the dam site for which a dam must be
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able to resist without the uncontrolled release of the reservoir water. The SEE ground
motion can be obtained from a probabilistic and/or deterministic seismic hazard
analysis. For large and high consequence dams, SEE is defined as (a) Maximum
Credible Earthquake (MCE) from DSHA where the parameters should be estimated
at the 84th percentile level, (b) Maximum Design Earthquake (MDE) from PSHA
corresponding to return period of 10,000 years (1% probability of exceedance in
100 years) [71,72].

• FEMA recommendations Time-based performance assessment evaluates a dam’s
performance over a period considering all earthquakes that may occur in that period,
and the probability that each will occur [73]. This procedure follows the following
main steps: (a) generate a seismic hazard curve, i.e., λ vs. Sa(T1), (b) compute seismic
intensity range and split it into Ni equal intervals, (c) develop a target response
spectrum, Strg

a (T), for each intensity range, and (d) select and scale suites of Ngm
ground motions for each spectrum.

Having the scaled ground motions, all the intensity measure parameters listed in
Table 1 should be calculated. While the majority of these IMs are structure-independent,
some are calculated based on the vibration period of the system (e.g., Sa(T1)). However,
at this stage, the shape (and maybe some of the material properties) are unknown, and
thus, direct finite element modeling cannot be used. Instead, a simplified method is used to
estimate the initial fundamental period of the dam. The formulation is based on Algorithm 1
originally proposed by [74] by introducing a set of new dynamic compliance coefficients.

Algorithm 1 Estimation of the fundamental period of the coupled system [74,75].
Inputs: Lw [m], L6 [m], Ec [MPa], Er [MPa], αw
Output: Tdw f [sec].

1: procedure

2: Dr =
Lw
L6

. Depth ratio

3: Td = 0.38 L6√
Ec

. Fundamental period of a “standard” section

4: Rr = f (Dr , Ec, αw). Standard values for the period lengthening ratio due to hydrodynamic [74], Figure 10

5: R f = 0.21(Er)−0.75 + 0.98 . Standard values for the period elongation ratio due to foundation [75]

6: Tdw f = Rr R f Td . Fundamental period of dam-water-foundation system

7: end procedure
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Figure 10. Standard values for the period lengthening ratio due to hydrodynamic effects, Rr.

Example of AutoML Seismic Design

In this section, we elaborate on the practical implementation of the design engine for
a hypothetical site in the central north United States. The objective is to design a straight
concrete gravity dam with a 100 m height. The dam is located in a relatively wide valley.
The normal water level is provided to be 95 m. According to the concrete mix design, the
concrete modulus of elasticity and mass density are 22 GPa, and 2400 kg/m3, respectively.
The measured shear wave velocity for the top 30 m of rock is about 2250 m/s, and the rock
mass density is 2600 kg/m3. Therefore, the modulus of elasticity of the rock is estimated
to be 35 GPa. For the feasibility level design, a 0.06 and 0.04 constant hysteretic damping is
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assumed for the dam and foundation respectively, which correspond to 3% and 2% of viscous
damping for each substructure. The combined damping value for the overall dam-water-
foundation system is then larger than damping values measured from field tests on several
dams, and it is close to the 90% percentile of the collected data by Chopra [7]. Moreover, the
reservoir bottom wave reflection coefficient of 0.9 is used.

Following a probabilistic seismic hazard analysis (which is beyond the coverage of
this paper), two seismic hazard levels with 2500 and 5000 years of the return period (RP)
are identified for the dam site (denoted as RP2500 and RP5000). The target and individual
response spectra for the scaled records are plotted in Figure 11a. The scaled records are
also shown in Figure 11b. While the three-component records are typically scaled based on
the target spectra, only a single component is shown for this hypothetical example.
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Figure 11. Uniform hazard response spectra and three scaled ground motions for each hazard level.
(a) Response spectra. (b) Ground motion records (left to right: GM1, GM2, and GM3).

While different objectives can be defined by the design team for the feasibility level
design, this example is solely focused on the structural aspects and does not consider the
construction cost, as well as risk-informed constraints [13]. This means that the design does
not consider the concrete volume used for construction and also the architectural elements.
It also does not consider the population at risk in the downstream dam.

We assume that the maximum dynamic tensile stress at the dam heel should be
limited to 0.75 MPa under the 2500 years return period scenario. No other constraint is
considered in this example. However, it is possible to add more constraints on stress and/or
displacement components. Three ground motion records in Figure 11b are processed, and
fifteen IM parameters are extracted as discussed in Table 1. Using engineering judgment,
the strongest one (i.e., GM1) is used for design. The most comprehensive surrogate scenario
is used (see Section 5.3) which is developed based on ten outputs. An inverse analysis
is run, and the top 100 design candidates are identified. Figure 12 illustrates a parallel
plot that connects all the design variables for the top 100 candidates to five major outputs
(including crest displacement, and maximum/minimum principal stresses at the heel and
toe). A large variety of L1 (dam base) values have been included for these top 100 design
candidates. The ∆max varies from 8.5 to 9.5 mm which corresponds to 0.0085–0.0095% of
dam height. This is close to a threshold value of 0.01% recommended in [76] for gravity
dams. The value of σheel

p1,max is in the [0.81–0.82] MPa range which is close to the threshold
value (i.e., 0.75 MPa) previously defined for inverse analysis. The variation in the other
three stress quantities is small too.

The small variation of displacement and stress responses for the top 100 design
candidates, Figure 12, shows that all these models are more or less acceptable from an ML-
engine point of view. However, they need to be verified by direct finite element simulations.
Therefore, a series of new analyses are conducted using L1 to L7 (and also Lw) values in
Figure 12 based on GM1 of RP2500, and also the material properties described earlier in
this section. The results of direct finite element simulations are collected and compared
to those estimated from inverse analysis based on the trained surrogate model. First, the
ratio of direct finite element results to the machine learning engine is computed for all
top 100 design candidates, as well as five response parameters. Next, a Kernel density
function is fitted to each of the five response parameters as shown in Figure 13. As seen,



Water 2022, 14, 3898 20 of 24

all four stress responses are centered at one showing that the results of inverse analysis
fluctuate around the direct finite element simulation. The range of significant ratio variation
is 0.7–1.3 (and for compressive stress up to 1.5). This means that despite the similarity
of 100 design candidates from the ML point of view, the direct finite element simulation
causes considerable differences among them. In the cases of displacement response, a bias
is observed between the direct finite element and machine learning engine, as the former
tends to 20% more results (on average).
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Figure 12. Parallel plot for top 100 design cases including eight shape variables (L6 and Lw are
constant) and five response parameters. Each line from left to right is a single design. Delta: ∆max;
Sp1-heel: σheel
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Figure 13. Kernel distribution fitted on the ratio of FE to ML-engine results.

So far, Figure 13 showed the variation of the top 100 design candidates specified by
the ML engine and tested by direct finite element simulation. Since only a single design
should be selected at the end, we have a closer look at the top three candidates provided by
the ML engine. Six (unknown) shape variables for each design are listed here:

• Candidate 1: L1 = 72 m, L2 = 0, L3 = 15.4 m, L4 = 14 m, L5 = 40 m, L7 = 75 m.
• Candidate 2: L1 = 72 m, L2 = 0, L3 = 15.4 m, L4 = 14 m, L5 = 40 m, L7 = 85 m.
• Candidate 3: L1 = 70 m, L2 = 0, L3 = 15.4 m, L4 = 14 m, L5 = 40 m, L7 = 80 m.

As seen, only L1 and L7 values change for these top three candidates. Figure 14
illustrates the non-concurrent envelop for the first principal stress for top three candidates.
Figure 14a presents σp1,max only for the dynamic response under RP2500 and GM1. As
seen, in all cases σheel

p1,max is about 0.8 MPa which is close to the predefined value of 0.75 MPa.
The locations with high dynamic tensile stress are the dam heel and (to some extent) the
downstream face in the vicinity of neck discontinuity. Figure 14b shows the same designs;
however, the stress results include the static loads too. In this load combination, the tensile
stresses of about 0.2 MPa are only limited to the heel. This is somehow consistent with
the traditional design approach that specifies no/limited tension in the dam. While the
initial design is based on the RP2500 scenario, the candidate models are further analyzed
for RP5000. Figures 14c,d present the results of dynamic only and static+dynamic load
combinations for the same three candidates. As seen, the dynamic tensile stresses are
increased to about 1.2 MPa in all cases, while the combined tensile stress is about 0.7 MPa at
the heel (and for the 1st candidate also around the neck). Depending on the design tensile
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strength f ′t , cracking might be expected at the dam-foundation interface which necessitates
conducting a nonlinear simulation (beyond the coverage of this paper).
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Figure 14. Direct finite element analysis of top three single-constraint surrogate-assisted design
candidates (left to right: candidate 1, 2 and 3) based on GM1; Non-concurrent envelope of maximum
first principal stresses are shown in MPa. (a) RP2500; Dynamic only (σheel

p1,max constraint to 0.75).
(b) RP2500; Static + Dynamic. (c) RP5000; Dynamic only. (d) RP5000; Static + Dynamic.

7. Summary

This paper proposed a finite element-based design engine to assist the practition-
ers in feasibility level layout development for 2D concrete gravity dams under seismic
events. The engine includes a large inventory of gravity dam shapes with different material
properties for concrete and foundation rock. Such a large inventory has been subjected to
different water levels and many ground motion records. The current database covers about
24,000 unique combinations of dam shapes, material properties, water, and earthquake
loading. Automated machine learning (AutoML) tool was used to develop a high-fidelity
surrogate model. Next, the surrogate model combined with inverse analysis to design new
dams that only few of the design variables are known priori.

Using auto-sklearn as an instance of AutoML techniques that are increasing in pop-
ularity, we showed that one could build accurate surrogate models capable of predicting
multiple quantities of interest simultaneously. Such models typically form an ensemble
containing a rich combination of various machine learning methods, such as Bayesian and
tree-based methods. Moreover, we presented a principled way to assess the performance
of surrogate models obtained by AutoML to understand the generalization error. Future
research directions for this task include (1) a comprehensive analysis of the impact of the
time budget in auto-sklearn on the quality of surrogate models, and (2) a comparison with
other AutoML techniques, including AutoKeras that allows us to restrict our focus on
neural network models.

On the design side, the surrogate-assisted inverse analysis showed promising results
in early design of concrete gravity dams. The results of inverse analysis was in very good
agreement with test data from same surrogate model. However, there were some differences
for data beyond those initially used for meta-modeling. This necessitates increasing the
database which covers even more ground motion records. We tested the design engine
for a single scenario (i.e., only based on maximum heel stresses); however, a more refined
assessment should be performed in future to cover multi-output design scenarios. For
future studies, the current engine needs to be validated by other high-fidelity simulations
specially for the higher seismic intensity levels. As discussed in the paper, the current
seismic design engine is only based on structural analysis results and does not cover the
construction complexities and also the failure risk. Those metrics will be integrated with
the design engine in future to make it a robust tool for decision makers.
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