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Abstract: The impacts of human activity (denoted by population), economic, and social develop-
ment (denoted by gross domestic product–GDP) on extremely wet/dry (or drought) events are
important for humans to tackle extreme hazards. This research aims to investigate the variations in
maximum values (SPEI_MAX) and minimum values (SPEI_MIN) of a 12 month standardized precipi-
tation evapotranspiration index (SPEI12-month) for the selected 525 sites at different socioeconomic
development levels (SDLs) (classified by population and GDP) in China between 2000–2018, and to
analyze the impacts of increased population/GDP/SDLs on extremely wet/dry events. The linear
correlations between SPEI12-month/SPEI_MAX/SPEI_MIN and population/GDP were conducted
for all the sites. The relationship between linear slopes of population (PopuLS)/GDP(GDPLS) and
SPEI_MAX (SPEI_MAXLS)/SPEI_MIN (SPEI_MINLS) were further studied. The results show that
the extremely wet events denoted by SPEI_MAX become worse and the extreme drought events
denoted by SPEI_MIN tend to be milder over time. The years 2016 and 2011 were extremely wet and
extremely dry in China. There were general increasing trends in SPEI_MAX and decreasing trends in
SPEI_MIN as the SDL increased from 1 to 6. This gradual, continuous increase/decrease potentially
affected levels 5 and 6. Moreover, extremely wet events were more severe in developed big municipal
cities of higher SDLs and extreme drought events were more severe for lower SDLs. This research
can supply references for policy makers to prevent extreme disasters.

Keywords: population; GDP; socioeconomic development level; standardized precipitation and
evapotranspiration index; extremely wet event; extremely dry event

1. Introduction

Extreme climate events, including extreme precipitation events [1], extreme tempera-
ture events [2], and extremely wet/dry events [3], have enormous and potentially severe
impacts on human, agriculture, economy, and ecology. Extremely wet/dry events have
brought much uncertainty, sensitivity, exposure, and vulnerability, as well as high risks all
over the world historically [4–8]. Extremely wet/dry events are unpredictable, severe, and
unseasonal, and lead to enormous loss of life and destruction, posing major impediments
to human security and sustainable socioeconomic development [9,10].

The evolution and mechanics of mild, severe, or extremely wet/dry events [11,12] are
complicated, and are caused not only by climate variability, but also human activities. Liu
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et al. [13] suggested that a substantial increase in the Atlantic intertropical convergence
zone swing induced severe droughts/floods in the Atlantic-rim countries by using state-of-
the-art climate models under a high-emission scenario. Collins [14] tested an increasing
trend of flood magnitudes after 1970 in New England watersheds with dominantly natural
streamflow, and manifested that this timing was broadly synchronous with a phase change
in the low frequency variability of the North Atlantic Oscillation. Daksiya et al. [15] inves-
tigated the climate change and urbanization (human activity) effects on flood protection
decision-making, and they concluded that climate change had a higher impact compared to
urbanization on the flood protection decisions. Modarres et al. [7] analyzed the changes of
extremely wet/dry events in Iran. They suggested that the increase in flood magnitude and
drought severity were attributed, partly, to an annual rainfall negative trend/maximum
rainfall increasing trend and land use changes/inappropriate water resources management
policies (human activity). Farhidi [16] explored whether environmental policies (of energy
consumption, gross domestic product (GDP), population, technology, head of the state
political affiliation, carbon emission, and waste generation) have been impacted by extreme
climatic events (such as droughts, floods, storms, etc.). They concluded that policymakers
make more imminent decisions that put human life at risk. Brunner et al. [17] stated that
the extreme events can be significantly influenced by human flow regulations through
hydropower production, water abstraction, or water diversions. However, data on hu-
man impacts, such as land use and channel morphology changes, water abstractions, or
reservoir regulations, lack sufficient temporal and spatial detail, or are not available at all.
Considering data availability, the present research of human activity influences on extreme
precipitation events is still limited. Issues about how population and GDP increases affect
extreme precipitation events, and the interactions between them, are still unclear.

China has also suffered from extremely wet/dry events with large losses. The dura-
tion of extremely wet/dry events may be short, but can cause great damage. Regarding
extremely wet conditions, Wang et al. [18] investigated the extreme stream-flow of the
Dongjiang River basin in southern China in the period 1956–2004. According to the year-
books, the years 1998 and 2016 were extremely wet in China, which caused agricultural
disaster areas of 22.29 and 26.1 × 106 ha, death numbers of 3656 and 684, affected pop-
ulations of 2.3 and 1.02 × 109, direct economic losses of 2484 and 3661 × 109 RMB, and
destroyed houses of 566 and 43 × 104, respectively [19]. In July 2021, Zhengzhou of Henan
Province was hit by a rainstorm of rare high intensity, which caused severe flooding (Zhao
et al.; Fan et al. [20,21]). Regarding extremely dry conditions, the extreme drought events in
2009–2010 in southwestern China, including Yunnan, Sichuan, and Guizhou provinces [22],
affected around 21 million people, causing shortages of drinking water, and economic
losses reached nearly USD 30 billion. The extreme drought between June and August 2022
was one of the worst droughts in around 60 years, which caused water levels in China’s
largest freshwater lake, Poyang Lake, to drop by almost 10 m [23]. Although climate
variability may have contributed more than human activities, due to the complex causes of
extreme events, further studies are necessary to reveal the connection between extremely
wet/dry events and human activity indicators in China [15].

Previous studies mainly focused on the natural characteristics and spatial–temporal
variations of extremely wet/dry events. Few works have been carried out on the impacts
of human activity (denoted by population), economic, and social development (denoted by
GDP) on extremely wet/dry events, which have complex internal structures. Among the
proposed indicators, the standardized precipitation and evapotranspiration index (SPEI)
has multiscale characteristics and implications in denoting global warming when compared
with SPI [24]. The maximum SPEI (SPEI_MAX) and minimum SPEI (SPEI_MIN) denote
extremely wet/dry events well, respectively. Population and GDP could accurately reflect
human activity and social development levels of a place because of its stability [25].

The objectives of this study were: (I) to detect the spatial–temporal variations of
population, GDP, and the extremely wet/dry indicators, site specifically during the period
2000–2018 in mainland China. The selected 525 sites were divided into six socioeconomic
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development levels (SDLs); (II) to identify the spatial variations of linear slopes (LS) of
population (PopuLS), GDPLS, and the extreme wet/dry indicators; (III) to analyze the
relationship between changes (LS) in extremely wet/dry events and human activity/SDL
in order to further reveal the impacts of population and GDP increase on extreme events;
(IV) to investigate the influences of different SDLs on extremely wet/dry events.

2. Materials and Methods
2.1. Study Area

China covers an area of 9.60340579 million km2, is located in the eastern Asia, and
on the west coast of the Pacific Ocean. The elevation of China gradually decreases from
west to east, generally similar to a ‘three-ladder’ structure [26]. The first ladder (with
the highest elevation) is the Qinghai–Tibet plateau. Regions including Inner Mongolia,
Xinjiang, Loess Plateau, Sichuan basin, and the Yunnan–Guizhou plateau belong to the
2nd ladder. The third ladder consists of east China and areas adjacent to oceans [27].
The average altitudes of the three ladders are 4500 m, 1000–2000 m, and below 500 m,
respectively. With the development of economy and society, China has become the largest
developing country [28]. China is divided into 34 provinces, and different provinces are
made up of different prefecture-level or county-level cities. The population of China grew
from 1.3 billion in 2000 to 1.4 billion in 2018, and the GDP grew from 10 × 1012 in 2000 to
90 × 1012 RMB in 2018, which was more than nine-fold the loss in 2000 due to the dramatic
economic growth and the rapid expansion of cities.

2.2. Data Collection

A total of 525 sites were selected for the study. The observed weather data were
collected from the Chinese Meteorological Data Sharing Service Network (http://data.
cma.cn/) (accessed on 15 August 2018) with strict quality control. The missing data were
interpolated by linear regression equation with the arithmetic average of adjacent days or
months.

The population data and GDP data at the selected 525 sites were collected from the
National of Bureau Statistics, the Statistical yearbook of China (http://www.stats.gov.cn/)
(accessed on 15 August 2018), and the Winds Database (https://www.wind.com.cn/)
(accessed on 15 August 2018). The selected 525 sites were divided into 6 SDLs first by
population in 2018, then by GDP in 2018, and finally by both population and GDP in 2018
(Table 1).

Table 1. SDLs of the selected sites classified by population, GDP, and both. RMB: Chinese currency.

SDL Classified by Population
(×104)

Classified by GDP
(×108 RMB)

Classified by Both Population (×104)
and GDP (×108 RMB)

1 <50 <100 Population < 50 and GDP < 100
2 50–100 100–400 50 ≤ Population < 100 and 100 ≤ GDP < 400
3 100–300 400–1000 100 ≤ Population < 300 and 400 ≤ GDP < 1000
4 300–500 1000–2000 300 ≤ Population < 500 and 1000 ≤ GDP < 2000
5 500–1000 2000–10,000 500 ≤ Population < 1000 and 2000 ≤ GDP < 10,000
6 ≥1000 ≥10,000 Population ≥ 1000 and GDP ≥ 10,000

Based on population, there were 266, 101, 64, 39, 43, and 12 sites that were classified as
SDLs of 1 to 6, respectively. Based on GDP, there were 156, 191, 62, 52, 52, and 12 sites that
were classified from levels 1 to 6, respectively. When taking account of both population
and GDP, scale levels were estimated by the average of that site for population and GDP. If
the level was 1.5, 2.5, 3.5, 4.5, or 5.5, it was classified as a scale of 1, 2, 3, 4, or 5, respectively.
Finally, 270, 113, 52, 47, 35, and 8 sites were classified as levels 1 to 6 considering both
population and GDP ranges, respectively.

The spatial distribution of digital elevation and weather stations, the classification
levels of the sites according to population, GDP, and both population and GDP are mapped

http://data.cma.cn/
http://data.cma.cn/
http://www.stats.gov.cn/
https://www.wind.com.cn/
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in Figure 1. The SDL classification based on both population and GDP are referred to
hereinafter for further analysis.
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Figure 1. The spatial distribution of digital elevation (m), weather station, and SDLs based on
population, GDP, or both (using data from 2018). (a) Elevation and weather station locations. (b)
SDL classification by population. (c) SDL classification by GDP. (d) SDL classification by population
and GDP.

2.3. Computation of SPEI

The SPEI value is computed based on the differences between precipitation and
reference crop evapotranspiration (ET0). In this study, SPEI values at the 12 month timescale
(SPEI12-month) are computed. A 12 month SPEI can be used to explore the impact of
precipitation change on hydrological systems [29,30]. Ojara et al. [31] concluded that
the temporal development of drought and wet events using a 3 month SPEI had higher
temporal frequencies, which stabilized over the 12 month SPEI timescale. Therefore, the
12 month SPEI has higher stability than smaller timescales, and it can still maintain the
details of temporal variations when compared to timescales longer than 12 months. The
calculation procedure contains three steps:

First, monthly ET0 is estimated The Penman–Monteith equation performs well for
estimating ET0 and is recommended as a standardized method by the Food and Agriculture
Organization [32]. The equation is written as:

ET0 =
0.48∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

The albedo (=0.23), the actual and maximum possible sunshine durations, the Stefan–
Boltzmann constant (4.903 × 10−9 MJ K−4 m−2 d−1), the maximum and minimum absolute
temperatures, and the coefficients as and bs in the Angstrom equation are used for cal-
culating ET0. In order to obtain better accuracy, the calibrated values of as and bs based
on the observed daily Rs at 139 stations of China were used [33], which were also used
for the nearby stations using the Thiessen polygon method in ArcGIS 10.2 software. De-
tailed computation procedures of the other variables in Equation (1) are referred to Allen
et al. [32].
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Second, to determine the 12 month cumulative water deficit D (=Pre-ET0 in mm) [34]:
Xk

i,j =
12
∑

l=13−k+j
Di−1,l +

l=j
∑

l=1
Di,l , i f j < k

Xk
i,j =

j
∑

l=j−k+1
Di,l , i f j ≥ k

(2)

where Xk
i,j is cumulative D in the jth month of the ith year for k-month timescale (k = 12);

Di,l is water deficit D in the first month of the ith year.
Third, the probability density function f (D) was calculated by using the three-parameter

log-logistic probability distribution function. The probability density function f (x) and the
probability distribution function F(D) are described as:

f (D) =
β

α

[
D − γ

α

]β−1[
1 +

[
D − γ

α

]]−2
(3)

F(D) =

[
1 + (

α

D − γ
)

β
]−1

(4)

where α, β, and γ are scale, shape, and origin parameters of log-logistic probability distri-
bution, respectively [34,35].

Finally, to normalize F(D) and obtain the SPEI values [36]:

P(D) = 1 − F(D) (5)

W =

{ √
−2 ln P(D) i f P ≤ 0.5√

−2 ln(1 − P(D)) i f P > 0.5
(6)

SPEI = W − c0 + c1W + c2W2

1 + d1W + d2W2 + d3W3 (7)

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and
d3 = 0.001308.

Wet/dry severity level based on SPEI12-month is classified and presented in Table 2.

Table 2. Wet/dry severity level classified by SPEI value.

SPEI Range Severity Level SPEI Range Severity Level

SPEI ≥ 2 Extremely wet −1.0 < SPEI ≤ −0.5 Mild drought
1.5 ≤ SPEI < 2 Severely wet −1.5 < SPEI ≤ −1.0 Moderate drought

1.0 ≤ SPEI < 1.5 Moderately wet −2.0 < SPEI ≤ −1.5 Severe drought
0.5 ≤ SPEI < 1.0 Mildly wet SPEI ≤ −2.0 Extreme drought
−0.5 < SPEI < 0.5 Normal

The annual maximum (SPEI_MAX), minimum (SPEI_MIN), and the value that
SPEI ≥ 2 and SPEI ≤ −2 of SPEI12-month are obtained for further analysis.

2.4. Linear Slope Estimation

In order to compare how the changes in population and GDP impact the extremely
wet/dry events, the linear slope (LS) values of annual population, GDP, and SPEI, SPEI_MAXLS,
SPEI_MIN in the period 2000–2018 versus time (year) are obtained (simplified as PopuLS,
GDPLS, SPEILS, SPEI_MAXLS, and SPEI_MINLS below, respectively). A negative LS in-
dicates that the time series has a downward trend, while a positive LS indicates an up-
ward trend. The Pearson correlations between pairs of PopuLS/GDPLS and SPEILS/SPEI_
MAXLS/SPEI_MINLS are conducted to reveal the responses of extreme wet/dry events
to human-activity-induced population and GDP changes. The larger the coefficient of
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determination (R2), the closer the relationship between two variables. The calculation is
implemented through R 3.4.3.

3. Results
3.1. The Spatial–Temporal Variations of Population and GDP at Different SDLs

The temporal variations of population and GDP at six different SDLs during the period
2000–2018 and spatial distribution of their linear slopes are illustrated in Figure S1. First,
population and GDP increase over time and their values increase as the level increases,
especially for level six. This manifested the rapid population extension and economic
development in China, especially in some large cities such as Beijing, Shanghai, Guangzhou,
and Shenzhen for level six. Second, the box plots of PopuLS and GDPLS both increase with
the increasing levels. Finally, from the spatial distribution of PopuLS, the sites that have
greater increase in population (PopuLS ranges between 1.5 to 6.0 × 105/year) and GDP
(GDPLS ranges between 7.0 to 16 × 1010 RMB/year) are distributed mostly in eastern China.

3.2. The Temporal Variations of SPEI_MAX and SPEI_MIN

SPEI_MAX/MIN represent the extreme flooding/drought conditions. The change
in SPEI_MAX and SPEI_MIN at six different SDLs during the period 2000–2018 and their
linear slopes are illustrated in Figure 2.
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Figure 2. The variations and LSs of SPEI_MAX and SPEI_MIN during the period 2000–2018 at
different SDLs. (a) Variations in SPEI_MAX. (b) LSs of SPEI_MAX. (c) Variations in SPEI_MIN.
(d) LSs of SPEI_MIN.

In Figure 2: (1) both average SPEI_MAX and SPEI_MIN vary and fluctuate with time
(Figure 2a,b). There is an overall consistence in the curve changes for different levels. The
values of average SPEI_MAX and SPEI_MIN tend to rise over time, which means that
extremely wet events have become worse and extremely dry events tend to be milder.
Especially during 2016, the average SPEI_MAX value reaches 1.83 and average SPEI_MIN
is also high, indicating an extremely wet year in China. Similar results were demonstrated
by Li et al. [37]. There was generally low precipitation in China in 2011, resulting in a
severely dry year with an average SPEI_MIN value of −1.58. Lu et al. [38] also reported a
dry 2011 in China. (2) As the SDL increases, the average values of SPEI_MAXLS increase
slightly, indicating small increases in extremely wet events from rural areas to urban areas;
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in the meantime, the tendency of SPEI_MINLS values decreases a little, showing that
extremely dry events tend to be milder (Figure 2c,d). (3) The variability of SPEI_MAXLS
and SPEI_MINLS decreases with the increase in level, since more sites are contained in the
results. (4) To show detailed variations in SPEI_MAX and SPEI_MIN at different SDLs
during the period 2000–2018, the box plots are presented (Figures S2 and S3), which indicate
more temporal variability of SPEI.

3.3. The Spatial Distribution of SPEILS, SPEI_MAXLS, and SPEI_MINLS

The spatial distribution of SPEILS, SPEI_MAXLS, and SPEI_MINLS are mapped in
Figure 3. It shows that: (1) The range of SPEILS is between −0.02 and 0.02 year−1. The value
of SPEILS gradually increases from west to east China, indicating less severe drought in the
west and more severe wet conditions in the east of China. The negative values of SPEILS
occur mainly in western China (Figure 3a). (2) SPEI_MAXLS ranges from −0.3 to 0.2 year−1

and increases from west to east China, revealing worse extremely wet events (Figure 3b).
The reason is that the sites at small level have gradually transferred to bigger sites from
the west to the east of China. In the northeast China especially, including the capital
city of Beijing, the trend of extremely wet events is very pronounced, with SPEI_MAXLS
ranging from 0.1 to 0.2 year−1. (3) Although the range of SPEI_MINLS is generally the
same as SPEI_MAXLS, the extreme drought events tend to be milder from west to east
and become more severe in northwest China, the Qinghai–Tibetan plateau, and southwest
China (Figure 3c). (4) By comparing Figure 3a–c, the range of SPEILS is −0.02 to 0.02 year−1,
while the range of SPEI_MAXLS and SPEI_MINLS vary from −0.3 to 0.2 year−1. Ranges
differ 10-fold and imply both aggravated extremely dry/wet events in the 18 year period.
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3.4. Relationship between PopuLS, GDPLS, SPEI_MAXLS, and SPEI_MINLS
3.4.1. LSs of Socioeconomic Dry/Wet Indices in Different SDLs

The Pearson correlations between SPEI_MAXLS (or SPEI_MINLS) and PopuLS (or
GDPLS) explored the connection between SPEI_MAX (or SPEI_MIN) and socioeconomic
indices.

The Pearson correlations between SPEI_MAXLS (or SPEI_MINLS) and PopuLS (or
GDPLS) at the six SDLs are shown in Figure 4, and the R2 values and the linear functions
are also presented. As PopuLS increases, SPEI_MAXLS (or SPEI_MINLS) generally increases
with the SDL levels of 3, 4, 5, and 6, which is more obvious for SPEI_MAXLS (with larger
LSs). However, there are contrary cases for levels 1 and 2. This implies that extremely
wet events tend to be worse in big cities (levels 5 and 6), while extremely dry events
may aggravate only small cities or towns (especially for level 4) (Figure 4a–f). As GDPLS
increases, SPEI_MAXLS and SPEI_MINLS increase, which shows that the risk of extremely
wet events increases while the risk of extremely dry events decreases (Figure 4aa–ff). It
is reasonable that the correlations between some variables are low because there is great
climate variability with complex circulation processes.
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SPEI_MINLS from SDL of 1 to 6.

The relationship between pairs of the average PopuLS, GDPLS, and SPEI_MAXLS, and
SPEI_MINLS at different SDLs are plotted in Figure 5. There are positive correlations
between average PopuLS and SPEI_MAXLS (R2 = 0.28), and between average PopuLS
and SPEI_MINLS (R2 = 0.40) (Figure 5a), which are similar for the relationship between
average GDPLS and SPEI_MAXLS (R2 = 0.26), and between average GDPLS and SPEI_MINLS
(R2 = 0.47) (Figure 5b). This indicates that the effects of population/GDP expansion in
China have exaggerated extremely wet/dry events, and their effects on extremely dry
events surpass extremely wet events. It shows that increasing human activity may lead
to more extremely dry events than extremely wet events (higher slopes). This result is
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reasonable, since a greater population consumes more water for living and agricultural
production.

Water 2022, 14, 3950 9 of 17 
 

 

Figure 4. Relationship between pairs of PopuLS, GDPLS and SPEI_MAXLS, SPEI_MINLS for the differ-

ent SDLs. (a–f) shows relationship between pairs of PopuL and SPEI_MAXLS and SPEI_MINLS from 

SDL of 1 to 6. (aa–ff) shows relationship between pairs of GDPLS and SPEI_MAXLS and SPEI_MINLS 

from SDL of 1 to 6. 

The relationship between pairs of the average PopuLS, GDPLS, and SPEI_MAXLS, and 

SPEI_MINLS at different SDLs are plotted in Figure 5. There are positive correlations be-

tween average PopuLS and SPEI_MAXLS (R2 = 0.28), and between average PopuLS and 

SPEI_MINLS (R2 = 0.40) (Figure 5a), which are similar for the relationship between average 

GDPLS and SPEI_MAXLS (R2 = 0.26), and between average GDPLS and SPEI_MINLS (R2 = 

0.47) (Figure 5b). This indicates that the effects of population/GDP expansion in China 

have exaggerated extremely wet/dry events, and their effects on extremely dry events sur-

pass extremely wet events. It shows that increasing human activity may lead to more ex-

tremely dry events than extremely wet events (higher slopes). This result is reasonable, 

since a greater population consumes more water for living and agricultural production. 

 

Figure 5. SPEI_MAXLS/SPEI_MINLS vs. average PopuLS (a) and GDPLS (b) for different SDLs. 

3.4.2. Relationship between PopuLS, GDPLS, and SPEI_MAXLS and SPEI_MINLS 

After classification of population and GDP, the influence of extremely wet/dry events 

is analyzed. In addition, the impact of climate change and the Yellow River regional cli-

mate differences cannot be ignored, thus, we also analyze the relationship between Pop-

uLS, GDPLS, and SPEI_MAXLS and SPEI_MINLS in China’s mainland and seven subregions 

(including the temperate and warm–temperate desert of northwest China (subregion I), 

the temperate grassland of Inner Mongolia (subregion II), the Qinghai–Tibetan Plateau 

(subregion III), the temperate humid and sub-humid northeast China (subregion IV), the 

warm–temperate humid and sub-humid north China (subregion V), the subtropical hu-

mid central and south China (subregion VI), and the tropic humid south China (subregion 

VII), as shown in Figure 6. 

Figure 5. SPEI_MAXLS/SPEI_MINLS vs. average PopuLS (a) and GDPLS (b) for different SDLs.

3.4.2. Relationship between PopuLS, GDPLS, and SPEI_MAXLS and SPEI_MINLS

After classification of population and GDP, the influence of extremely wet/dry events
is analyzed. In addition, the impact of climate change and the Yellow River regional climate
differences cannot be ignored, thus, we also analyze the relationship between PopuLS,
GDPLS, and SPEI_MAXLS and SPEI_MINLS in China’s mainland and seven subregions
(including the temperate and warm–temperate desert of northwest China (subregion I),
the temperate grassland of Inner Mongolia (subregion II), the Qinghai–Tibetan Plateau
(subregion III), the temperate humid and sub-humid northeast China (subregion IV), the
warm–temperate humid and sub-humid north China (subregion V), the subtropical humid
central and south China (subregion VI), and the tropic humid south China (subregion VII),
as shown in Figure 6.

The results show that: (1) from Figure 6A, it can be found that for subregion I, IV,
and VI, with the increase in population rate, the risk of extremely wet events tends to
increase, and extreme drought events gradually become milder, while it is the opposite for
subregions II and III. In addition, the risk of extremely wet/dry events tends to rise for
subregion V, while it is the opposite for subregion VII. (2) As for Figure 6B, for the GDP
aspect, the impact is slightly different from that of population. For subregions I and VI,
with the increase in GDP rate, the risk of extremely wet events gradually increases, and
extremely dry events tend to become milder, while it is opposite for subregions II and
III. For northeast China and north China, extremely wet/dry events are more and more
serious with the increase in GDP rate, while for subregion VII the opposite is true. (3) For
the whole country, no matter the population and GDP growth rate increase, the risk trend
of extremely wet/dry events increases.

3.5. The Variations of LSs for Dry Events at Different SDLs

The relationship between average SPEILS, SPEI_MAXLS, SPEI_MINLS, and SDLs is
illustrated in Figure 7. As the level changes from 1 to 6, the SPEILS, SPEI_MAXLS, and
SPEI_MINLS tend to increase, which means that either extremely wet/dry events tend to
intensify in urban areas and the risk of extremely dry/wet events increases. The higher the
degree of urbanization, the more urban construction land area there is with more obvious
urban rain and heat island effects than areas with low levels of urbanization. In addition,
the absolute values of LSs for SPEI_MINLS is much larger (0.0047) than SPEI_MAXLS
(0.0008), and also higher R2 values for the former (0.83) than the latter (0.12), implying
much greater effects of population and GDP expansion and urbanization on aggravating
extremely dry events. It shows fewer connections between SPEI_MAX (extremely wet
events) and SDL than SPEI_MIN (extremely dry events) and SDL. This result confirms
results from Figure 4, which also show closer connections between human activity and
extremely dry events.
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3.6. The Occurrence of Extremely Wet/Dry Events
3.6.1. Spatial Distribution of Occurrence Time of Extremely Wet/Dry Events

The spatial distribution of total occurrence times of extremely wet/dry events during
the period 2000–2018 in mainland China is mapped in Figure 8. The extremely wet events
happen 0 to 22 times and are randomly distributed (Figure 8a). The highest occurrence of
times of extremely wet events is 22 times at Yumen in Gansu province (northwest China).
In addition, there are 172 sites where no extremely wet events occur, and most of these
sites are located in central China. There are 185, 117, 42, and 7 sites where the occurrence
times of extremely wet events fall in the ranges of 1 to 5, 6 to 10, 11 to 15, and 16 to
20 times, respectively. The occurrence of extreme drought events ranges from 0 to 37 times
(Figure 8b). The highest occurrence of times of extreme drought is 37, which occurs at Aksu,
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Xinjiang province (northwest China). At Turpan, Hotan, Minfeng in Xinjiang, Erenhot in
Inner Mongolia (north China), and Yuxi in Yunnan (southwest China), the extreme drought
events occur 28, 28, 26, 26, and 25 times, respectively, which are also large drought events.
Moreover, at 168 sites, distributed intensively in the middle of China, no extreme drought
events occur. Furthermore, the occurrence of time ranges of extreme drought events of 1–8,
9–16, and 17–24 occur at 229, 105, and 17 sites, respectively, and are distributed randomly.
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In fact, Yumen in Gansu is a site with low precipitation. The extreme wet events
occur here 22 times, which is shown by SPEI_MAX. Except for Yumen, the results also
show a high occurrence of times of extreme events in several sites of northwest China (arid
and semi-arid zone). Since SPEI is a standardized index, it shows variations of D around
average levels. Such extreme wet events in some low precipitation areas are observed
because at the times of occurrence, the D values are much higher than the average D.
This is a shortcoming of standardized indices (not only SPEI), which denote the high/low
variations of D compared to the referenced standard (average value), but do not represent
the actual value of average D. Thus, the high/low values may be exaggerated if the D
values are relatively low.

3.6.2. Occurrence of Extremely Wet/Dry Events at Different SDLs

The average occurrence of times of extremely wet/dry events corresponding to the
six SDLs during the period 2000–2018 in China’s mainland are illustrated in Figure 9. The
extremely wet events occur more often than extreme drought events for levels 4, 5, and 6.
The opposite is true for extremely wet events at levels 1, 2, and 3. It indicates that extremely
wet events are more severe in developed cities or big municipal cities of high levels, and
extreme drought events are more severe in less developed sites of low levels.
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4. Discussion

From our classification, the larger the population and the higher the GDP, the higher
the SDL. The higher SDL is representative for the higher degree of urbanization. Urban-
ization development has been accompanied with an obvious urban heat island effect. The
most prominent phenomenon is that the urban air temperature is higher than in rural
areas, which increases the water-holding capacity and the instability of the atmosphere [39].
It also enhances the condensation nuclear effect. Thus, the urban air pollutants rise, the
concentration of pollutant particles in the air increases, pollutant particles produce an
enhancement of the condensation nucleus effect, hastens the water vapor condensation
catalyst, and, therefore, increases the probability and intensity of urban rainfall [40]. There
is also an obvious microtopographic obstruction effect, namely, warm and moist air in
the process of movement, encountered in urban high-rise buildings, microtopographic
obstruction effect in the climbing process, and rising cooling [41]. All of these changes result
in increased precipitation (enhanced urban rain island effect), which increases the risk of
extremely wet events. Zheng et al. [42] analyzed the spatial distribution of precipitation in
Beijing during the period 1971–2010 and investigated its city effects. The results show that
the precipitation has increased trends in urban areas, with decreased trends in the suburb
areas. Song et al. [43] analyze the influences of urbanization development on production
and confluence in Beijing and the results show that urbanization and human activities result
in a drastic adjustment of underlying surface conditions, increasing impermeable areas,
increasing run-off coefficients, run-off depth, and flood peak flow in urban catchment areas,
which leads to increased risks of urban flooding. Zhang et al. [44] analyze the urban flood
and waterlogging in China and indicate that disordered urban development destroys the
changes in urban drainage patterns and drainage patterns, and increases the vulnerability
of drainage systems, resulting in increased extremely wet events in cities. This research
applied SPEI_MAX at different SDLs and shows increasing extremely wet events at high
SDLs (developed regions), resulting in the increased risk of extremely wet events.

In addition, by analyzing the linear slopes of precipitation (simplified as PLS), ET0
(simplified as ET0LS), and P-ET0 (simplified as (P-ET0)LS) (Figure 10), an increased PLS,
decreased ET0LS, and subsequently decreased (P-ET0)LS are found as the SDL increases, and
this also verifies the occurrence of extremely wet events in developed areas. The decreased
ET0LS from Figure 10b also indirectly denotes the decreased trends in extremely dry events
as the SDL increases. This result partially explains the connections between extremely
wet/dry events and human activities, as shown in Figure 7. In addition, urban rain island
effect, heat island effect, changes in the underlying surface condition, enhancement of
condensation nucleus effect, and change in drainage patterns also indirectly alleviate
extremely dry events. Infrastructure construction, including disaster prevention systema
and the cultural and educational popularization of water resources protection, in urban
areas is far more stable and widespread than that in non-urban areas [45], which gradually
relieves the extremely dry events as the level increases. As a result of the comprehensive
effect of various factors, extremely wet/dry events have become more and more prominent.
There is also a common view, in recent years, that the “dry areas get drier, while the wet
regions get wetter” [46,47]. Some measures should be taken to deal with the occurrence
of extremely wet/dry events, such as to strengthen the construction of infrastructure,
to establish three-dimensional monitoring of extremely wet/dry events, or to improve
extremely wet/dry events emergency forecasting systems.

A total 525 sites were divided into six SDLs by population and GDP. However, site
distribution in China is uneven, which may lead to some deviations in regional analysis.
This research implies the possible impacts of human activity (denoted by population),
economic, and social development (denoted by population and GDP) on extremely wet/dry
events in China. Although difficult, more efforts should be devoted to identifying the
contributions of human activities and climate change on extremely wet/dry events.
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The inner reasons for the SDLs affecting extreme wet/dry events are complex [16,17].
The extremely wet/dry events in China are both affected by climate variability and human
activities, of which climate change plays a greater role [48]. On one hand, climate has great
variability and its changes are affected by diverse factors. For China, the uneven precipita-
tion distribution with synchronized rainfall–heat, as well as the summer monsoons, cause
generally wet/hot events in summer and cold/dry events in winter [18,49]. In addition,
atmospheric circulations such as ENSO, west Pacific subtropical ridge, tropical cyclones, or
typhoons also contribute to the extremely wet/dry events [19,22,23]. On the another hand,
various human activities intensify the severity of the wet/dry events [50]. These human
activities include industrial activities, which increase greenhouse gas concentrations [51];
agricultural management activities, which consume more water in plantings [52]; water al-
location/diversion/adjustment activities, which change the natural water distribution and
evapotranspiration patterns of waterbodies and watersheds [53]; and the over-exploration
of water resources and urbanization (denoted by increasing population and GDPs), which
generate more urban inland inundation events. These human activities disturb the natural
processes, induce a more vulnerable and sensitive world, and intensify the occurrence of
the extremely wet/dry events. In this paper, we only studied the SDL effects on extremely
wet/dry events. The effects of more types of human activities on extremely wet/dry events
are necessary in future studies.

5. Conclusions

The selected total 525 sites were divided into six SDLs by population and GDP in
2018. The population and GDP of each level tend to increase, especially in big cities such
as Beijing, Shanghai, Guangzhou, and Shenzhen, which belong to SDL 6 and are located
mostly in developed eastern China. Extremely wet events denoted by SPEI_MAX have
become worse and extremely dry events denoted by SPEI_MIN tend to be milder over time.
The years 2016, with average SPEI_MAX of SPEI12-month of 1.83, and 2011, with average
SPEI_MIN of SPEI12-month of −1.58, were found to be extremely wet/dry years in China,
respectively. This gradual, continuous increase in SPEI_MAX or decrease in SPEI_MIN has
been, potentially, affected by the fast expansion of population and rapid growing of GDP
and urbanization, especially for SDLs of levels 5 and 6. The extremely wet events are more
severe in developed cities at high levels, and the extremely dry events are more severe in
less developed sites at low levels.

The main reasons could be the urban rain island effect, heat island effect, and the
underlying surface condition changes. This research investigated the variations in extremely
wet/dry events in different SDLs in China from social and economic respects. It could be
used as a reference for policy makers to prevent extremely wet/dry events for prefecture-
level or county-level cities at different levels. Further studies need to be carried out on the
contribution of human activities and climate change to extremely wet/dry events.
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