Optimization of Irrigation Scheduling for Improved Irrigation Water Management in Bilate Watershed, Rift Valley, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Available Data
2.3. SWAT Model
2.4. Coupling Degree among ETc and Effectivie Rainfall in Irrigation Season
2.5. Deficit Irrigation-Scheduling
2.6. Crop-Water Production Function
2.7. Irrigation-Scheduling Optimization Model
2.8. General Framework of the Study
3. Result
3.1. SWAT Model Performance
3.2. The Relationship between Pe and ETc in the Target Season
3.3. Statistical Analysis of the Simulated Yield
3.4. Irrigation-Scheduling Optimization
4. Discussion
5. Conclusions
- (1)
- The model can be applied to manage the complicated simulation-optimization irrigation-scheduling problems for wheat and potato, in the study area.
- (2)
- The Jensen moisture stress-sensitivity index indicated that the vegetative and starch-accumulation/grain-filling growth-stages of potato and wheat crops are the most moisture-stress-sensitive stages. Moisture stress at these stages would significantly lower the crop yield.
- (3)
- Optimizing irrigation-scheduling based on growth-stage moisture-stress-sensitivity levels can save up to 25.6% of irrigation water in the study area, with insignificant yield-reduction. Furthermore, optimizing deficit irrigation-scheduling based on moisture stress-sensitivity levels can maximize the yield of potato and wheat by up to 25% and 34%, respectively.
- (4)
- Planning to save irrigation water should be based on the ETc of the crops. That means irrigation-scheduling optimization may not be effective if the seasonal-irrigation water is too low, compared with ETc.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, J.; Zhang, X. Model Application for Sustainable Agricultural Water Use. Agronomy 2020, 10, 396. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S.; Moghaddasi, M. Evaluating the Potentials of Deficit Irrigation as an Adaptive Response to Climate Change and Environmental Demand. Environ. Sci. Policy 2011, 14, 1139–1150. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Singh, A. An Overview of the Optimization Modelling Applications. J. Hydrol. 2012, 466–467, 167–182. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization Ethiopia Country Programming Framework; FAO: Rome, Italy, 2012. [Google Scholar]
- Kassie, B.T.; Rötter, R.P.; Hengsdijk, H.; Asseng, S.; Van Ittersum, M.K.; Kahiluoto, H.; Van Keulen, H. Climate Variability and Change in the Central Rift Valley of Ethiopia: Challenges for Rainfed Crop Production. J. Agric. Sci. 2014, 152, 58–74. [Google Scholar] [CrossRef]
- Girma, M.M.; Awulachew, S.B. Irrigation Practices in Ethiopia: Characteristics of Selected Irrigation Schemes; IWMI Working Paper 124; International Water Management Institute: Colombo, Sri Lanka, 2007; 80p. [Google Scholar]
- Orke, Y.A.; Li, M.H. Hydroclimatic Variability in the Bilate Watershed, Ethiopia. Climate 2021, 9, 98. [Google Scholar] [CrossRef]
- Akhtar, F.; Tischbein, B.; Awan, U.K. Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin. Water Resour. Manag. 2013, 27, 3165–3178. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Li, M.; Shang, S.; Mao, X.; Yang, J.; Adeloye, A.J. Optimization of Irrigation Scheduling for Spring Wheat Based on Simulation-Optimization Model under Uncertainty. Agric. Water Manag. 2018, 208, 245–260. [Google Scholar] [CrossRef]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation Scheduling Approaches and Applications: A Review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Li, J.; Jiao, X.; Jiang, H.; Song, J.; Chen, L. Optimization of Irrigation Scheduling for Maize in an Arid Oasis Based on Simulation-Optimization Model. Agronomy 2020, 10, 935. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D.; Garcia, M. Using AquaCrop to Derive Deficit Irrigation Schedules. Agric. Water Manag. 2010, 98, 213–216. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–647.
- Fu, Q.; Yang, L.; Li, H.; Li, T.; Liu, D.; Ji, Y.; Li, M.; Zhang, Y. Study on the Optimization of Dry Land Irrigation Schedule in the Downstream Songhua River Basin Based on the SWAT Model. Water 2019, 11, 1147. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Ren, L. Assessing Crop Yield and Crop Water Productivity and Optimizing Irrigation Scheduling of Winter Wheat and Summer Maize in the Haihe Plain Using SWAT Model. Hydrol. Process. 2014, 28, 2478–2498. [Google Scholar] [CrossRef]
- Singh, A. Simulation-Optimization Modeling for Conjunctive Water Use Management. Agric. Water Manag. 2014, 141, 23–29. [Google Scholar] [CrossRef]
- Shang, S.; Mao, X. Application of a Simulation Based Optimization Model for Winter Wheat Irrigation Scheduling in North China. Agric. Water Manag. 2006, 85, 314–322. [Google Scholar] [CrossRef]
- Singh, A.; Panda, S.N. Optimization and Simulation Modelling for Managing the Problems of Water Resources. Water Resour. Manag. 2013, 27, 3421–3431. [Google Scholar] [CrossRef]
- Jamshidpey, A.; Shourian, M. Crop Pattern Planning and Irrigation Water Allocation Compatible with Climate Change Using a Coupled Network Flow Programming-Heuristic Optimization Model. Hydrol. Sci. J. 2021, 66, 90–103. [Google Scholar] [CrossRef]
- Padhiary, J.; Swain, J.B.; Patra, K.C. Optimized Irrigation Scheduling Using SWAT for Improved Crop Water Productivity. Irrig. Drain. 2020, 69, 387–397. [Google Scholar] [CrossRef]
- Rao, N.H.; Sarma, P.B.S.; Chander, S. A Simple Dated Water-Production Function for Use in Irrigated Agriculture. Agric. Water Manag. 1988, 13, 25–32. [Google Scholar] [CrossRef]
- Holland, J.H. Adaption in Natural and Artifical Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Golberg, D. Genetic algorisms. In Search, Optimization and Machine Learning; Addison-Wesley: New York, NY, USA, 1989; Volume 27, p. 27-0936. [Google Scholar] [CrossRef]
- Raju, K.; Kumar, D. Irrigation Planning Using Genetic Algorithms. Water Resour. Manag. 2004, 18, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Moghaddasi, M.; Araghinejad, S.; Morid, S. Long-Term Operation of Irrigation Dams Considering Variable Demands: Case Study of Zayandeh-Rud Reservoir, Iran. J. Irrig. Drain. Eng. 2010, 136, 309–316. [Google Scholar] [CrossRef]
- Wen, Y.; Shang, S.; Yang, J. Optimization of Irrigation Scheduling for Spring Wheat with Mulching and Limited Irrigation Water in an Arid Climate. Agric. Water Manag. 2017, 192, 33–44. [Google Scholar] [CrossRef]
- Hussen, B.; Mekonnen, A.; Pingale, S.M. Integrated Water Resources Management under Climate Change Scenarios in the Sub-Basin of Abaya-Chamo, Ethiopia. Model. Earth Syst. Environ. 2018, 4, 221–240. [Google Scholar] [CrossRef]
- Negash, W. Catchment Dynamics and Its Impact on Runoff Generation: Coupling Watershed Modelling and Statistical Analysis to Detect Catchment Responses. Int. J. Water Resour. Environ. Eng. 2014, 6, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Getahun, G.W.; Zewdu, E.; Mekuria, A.; Garedew Wodaje, G.; Eshetu, Z.; Argaw, M. Local Perceptions and Adaptation to Climate Variability and Change: In the Bilate Watershed. Afr. J. Environ. Sci. Technol. 2020, 14, 374–384. [Google Scholar] [CrossRef]
- Megebo, A. Assessment of Surface Water Potential and Evaluation of Demands: In Case of Bilate River Sub-Basin: Rift Valley Lakes Basin: Ethiopia. MS.c Thesis, Civil and Environmental Engineering, Addis Ababa University, Addis Ababa, Ethiopia, 2020. [Google Scholar]
- Monteith, J. Evaporation and the environment. In The State and Movement of Water in Living Organisims; Symposia of the Society for Experimental Biology, 205–234; Cambridge University Press: Swansea, Wales, 1965. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A Modelling Approach to Determining the Relationship between Erosion and Soil Productivity. Trans.—Am. Soc. Agric. Eng. 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Saltelli, A.; Chan, K.; Scott, M. Sensitivity Analysis; John Wiley & Sons publishers: New York, NY, USA, 2000; Volume 1. [Google Scholar]
- Abbaspour, K. SWAT-Calibration and Uncertainty Programs, a User Manual; Swiss Federal Institute of Aquatic Science and Technology, Eawag: Dübendorf, Switzerland, 2007. [Google Scholar]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R. The EPIC model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Sun, Z.X.; Zheng, J.M.; Chi, D.C. Analysis on Coupling Degree among Crop Evapotranspiration, Effective Precipitation and Water Requirement of Corn on Southern Kerqin Sandy Land in China. Adv. Mater. Res. 2013, 742, 331–336. [Google Scholar] [CrossRef]
- Doorenboos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements, Irrigation and Drainage Paper 24; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977; Volume 21. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Dirk, R.; Martin, S. Crop Evapotranspiration. FAO Irrigation and Drainage Paper No56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Doorenbos, J.; Kassam, A. Yield Response to Water. FAO Irrigation and Drainage Paper No. 33; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979. [Google Scholar]
- Igbadun, H.E.; Tarimo, A.K.P.R.; Salim, B.A.; Mahoo, H.F. Evaluation of Selected Crop Water Production Functions for an Irrigated Maize Crop. Agric. Water Manag. 2007, 94, 1–10. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit Irrigation as an On-Farm Strategy to Maximize Crop Water Productivity in Dry Areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Tsakiris, G.P. A Method for Applying Crop Sensitivity Factors in Irrigation Scheduling. Agric. Water Manag. 1982, 5, 335–343. [Google Scholar] [CrossRef]
- Jensen, M.E. Water consumption by agricultural plants. In Water Deficits and Plant Growth, Vol. II; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1968; Volume 1, pp. 1–22. [Google Scholar]
- Minhas, B.S.; Parikh, K.S.; Srinivasan, T.N. Toward the Structure of a Production Function for Wheat Yields with Dated Inputs of Irrigation Water. Water Resour. Res. 1974, 10, 383–393. [Google Scholar] [CrossRef]
- Steward, J.I.; Hagan, R.M. Functions to Predict Effects of Crop Water Deficits. ASCE J. Irrig. Drain. Div. 1973, 99, 421–439. [Google Scholar] [CrossRef]
- Bras, R.L.; Cordova, J.R. Intraseasonal Water Allocation in Deficit Irrigation. Water Resour. Res. 1981, 17, 866–874. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.; Li, X.; Deng, H.; Chen, X.; Liu, L. Modelling and Evaluation of Potato Water Production Functions in a Cold and Arid Environment. Water 2022, 14, 2044. [Google Scholar] [CrossRef]
- Jiang, Y.; Xiong, L.; Xu, Z.; Huang, G. A Simulation-Based Optimization Model for Watershed Multi-Scale Irrigation Water Use with Considering Impacts of Climate Changes. J. Hydrol. 2021, 598, 126395. [Google Scholar] [CrossRef]
- Memon, S.A.; Sheikh, I.A.; Talpur, M.A.; Mangrio, M.A. Impact of Deficit Irrigation Strategies on Winter Wheat in Semi-Arid Climate of Sindh. Agric. Water Manag. 2021, 243, 106389. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, J. Water Consumption of Potato (Solanum Tuberosum) Grown under Water Deficit Regulated with Mulched Drip Irrigation. Appl. Mech. Mater. 2013, 405–408, 2273–2276. [Google Scholar] [CrossRef]
- Zhang, H.; Oweis, T. Water-Yield Relations and Optimal Irrigation Scheduling of Wheat in the Mediterranean Region. Agric. Water Manag. 1999, 38, 195–211. [Google Scholar] [CrossRef]
Data Type | Data Source | Resolution | |
---|---|---|---|
Temporal | Spatial | ||
Streamflow data | MoWE | Daily (1991–2008) | - |
Climatic data | NMSA | Daily (1991–2014) | - |
Crop data | Zones and districts | Annual (2001–2014) | - |
Soil data | MoWE | - | 30 m × 30 m |
Land use and land cover | MoWE | - | 30 m × 30 m |
Digital Elevation Model (DEM) | USGS | 30 m × 30 m |
Growth-Stage-Based Deficit Irrigation (% of ETc) | ||||||||
---|---|---|---|---|---|---|---|---|
Growth-Stage Irrigation Depth for Potato (%) | Growth-Stage Irrigation Depth for Wheat (%) | |||||||
TRT | Seedling | Vege.t | Starch ac. | Maturity | Seedling | Vege.t | Grain fill. | Maturity |
CK | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
T1 | 25 | 100 | 100 | 100 | 25 | 100 | 100 | 100 |
T2 | 100 | 25 | 100 | 100 | 100 | 25 | 100 | 100 |
T3 | 100 | 100 | 25 | 100 | 100 | 100 | 25 | 100 |
T4 | 100 | 100 | 100 | 25 | 100 | 100 | 100 | 25 |
T5 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
T6 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
T7 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
Parameter | Parameter Description | Potato | Wheat | ||
---|---|---|---|---|---|
Before | After | Before | After | ||
BLAI | Maximum leaf-area index | 4 | 4.5 | 4.0 | 4.0 |
DLAI | Fraction of growing season when leaf area starts declining | 0.6 | 0.6 | 0.8 | 0.8 |
LAIMX1 | Fraction of BLAI at point 1 | 0.01 | 0.05 | 0.01 | 0.04 |
LAIMX2 | Fraction of BLAI at point 2 | 0.95 | 0.90 | 0.95 | 0.84 |
FRGRW1 | Fraction of the plant-growing season at point 1 | 0.10 | 0.15 | 0.15 | 0.10 |
FRGRW2 | Fraction of the plant-growing season at point 2 | 0.5 | 0.45 | 0.5 | 0.45 |
HVSTI | Harvest index | 0.95 | 0.90 | 0.4 | 0.35 |
Potato | Wheat | ||||
---|---|---|---|---|---|
TRT Rank | Yield (kg/ha) | % of Yield Reduced | TRT Rank | Yield (kg/ha) | % of Yield Reduced |
CK | 8056.609 a | - | CK | 4501.07 a | - |
T1 | 7308.935 b | 9 | T1 | 4060.017 b | 10 |
T4 | 7252.461 b | 10 | T4 | 3986.577 b | 11 |
T7 | 6742.744 c | 16 | T7 | 3678.789 c | 18 |
T2 | 5825.637 d | 28 | T2 | 3056.719 d | 32 |
T6 | 5576.38 d,e | 31 | T3 | 2829.889 e | 37 |
T3 | 5414.225 e | 33 | T6 | 2804.272 e | 38 |
T5 | 4193.523 f | 48 | T5 | 2086.153 f | 54 |
LSD | 288.3 | LSD | 165.7 |
Sub-Basins | Growth Stages of Potato | Growth Stages of Wheat | ||||||
---|---|---|---|---|---|---|---|---|
Seedling | Vege.t | Starch ac. | Maturity | Seedling | Vege.t | Grain fill. | Maturity | |
1 | 0.03 | 0.12 | 0.17 | 0.04 | 0.03 | 0.14 | 0.24 | 0.04 |
5 | 0.05 | 0.11 | 0.17 | 0.02 | 0.02 | 0.11 | 0.19 | 0.04 |
8 | 0.04 | 0.25 | 0.31 | 0.05 | 0.04 | 0.38 | 0.38 | 0.06 |
12 | 0.06 | 0.26 | 0.30 | 0.04 | 0.07 | 0.38 | 0.38 | 0.06 |
26 | 0.07 | 0.46 | 0.47 | 0.10 | 0.09 | 0.49 | 0.55 | 0.09 |
Basin level | 0.05 | 0.28 | 0.32 | 0.06 | 0.06 | 0.36 | 0.40 | 0.07 |
TRT | Potato | Wheat | ||
---|---|---|---|---|
SWAT Simulated Relative Yield | Jensen Predicted Relative Yield | SWAT Simulated Relative Yield | Jensen Predicted Relative Yield | |
1 | 0.91 | 0.93 | 0.90 | 0.91 |
2 | 0.72 | 0.68 | 0.68 | 0.60 |
3 | 0.67 | 0.64 | 0.63 | 0.57 |
4 | 0.90 | 0.91 | 0.89 | 0.90 |
5 | 0.52 | 0.37 | 0.46 | 0.29 |
6 | 0.69 | 0.61 | 0.62 | 0.54 |
7 | 0.84 | 0.82 | 0.82 | 0.77 |
R2 | 0.99 | 0.99 | ||
RMSE | 0.068 | 0.08 |
Potato | Wheat | ||
---|---|---|---|
DAP | Transformed Sensitivity Index | DAP | Transformed Sensitivity Index |
10 | 0 | 7 | 0 |
25 | 0.05 | 15 | 0.06 |
40 | 0.105 | 30 | 0.154 |
55 | 0.105 | 45 | 0.154 |
70 | 0.1157 | 60 | 0.211 |
85 | 0.1371 | 75 | 0.24 |
100 | 0.1371 | 90 | 0.07 |
115 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wabela, K.; Hammani, A.; Abdelilah, T.; Tekleab, S.; El-Ayachi, M. Optimization of Irrigation Scheduling for Improved Irrigation Water Management in Bilate Watershed, Rift Valley, Ethiopia. Water 2022, 14, 3960. https://doi.org/10.3390/w14233960
Wabela K, Hammani A, Abdelilah T, Tekleab S, El-Ayachi M. Optimization of Irrigation Scheduling for Improved Irrigation Water Management in Bilate Watershed, Rift Valley, Ethiopia. Water. 2022; 14(23):3960. https://doi.org/10.3390/w14233960
Chicago/Turabian StyleWabela, Kedrala, Ali Hammani, Taky Abdelilah, Sirak Tekleab, and Moha El-Ayachi. 2022. "Optimization of Irrigation Scheduling for Improved Irrigation Water Management in Bilate Watershed, Rift Valley, Ethiopia" Water 14, no. 23: 3960. https://doi.org/10.3390/w14233960
APA StyleWabela, K., Hammani, A., Abdelilah, T., Tekleab, S., & El-Ayachi, M. (2022). Optimization of Irrigation Scheduling for Improved Irrigation Water Management in Bilate Watershed, Rift Valley, Ethiopia. Water, 14(23), 3960. https://doi.org/10.3390/w14233960