Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data and SWAT Setup
2.3. Discharge, Sediment, Phosphorous, and Nitrate Calibration
2.4. Scenarios for Sustainable Agricultural Practices (SAPs)
2.5. Statistical Analysis
3. Results and Discussion
3.1. SWAT Calibration and Validation
3.2. Single and Combined Effects of Sustainable Agricultural Practices
3.2.1. Effectiveness of Sustainable Agricultural Practices in Reducing Sediment Exports
3.2.2. Effectiveness of Sustainable Agricultural Practices in Reducing Nutrients Exports
3.2.3. Combination of Practices Allowing the Highest Reductions of Both Sediments and Nutrients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadoff, C.W.; Hall, J.W.; Grey, D.; Aerts, J.; Ait-Kadi, M.; Brown, C.; Cox, A.; Dadson, S.; Garrick, D.; Kelman, J.; et al. Securing Water, Sustaining Growth. Report of the GWP/OECD Task Force on Water Security and Sustainable Growth; University of Oxford: Oxford, UK, 2015. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. Water Pollution from Agriculture: A Global Review; FAO: Rome, Italy, 2017. [Google Scholar]
- US EPA—United States Environmental Protection Agency. Water Quality Assessment and TMDL Information; United States Environmental Protection Agency: Washington, DC, USA, 2016.
- FAO—Food and Agriculture Organization of the United Nations. Guidelines to Control Water Pollution from Agriculture in China; FAO: Rome, Italy, 2013. [Google Scholar]
- EEA—European Environment Agency. Water and Agriculture: Towards Sustainable Solutions; European Environment Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- UNDESA—United Nations Department of Economic and Social Affairs. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- European Commission. Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (Nitrates Directive); European Commission: Luxembourg, 1991.
- European Commission. Directive 2000/60/EC of the European Parliament and the Council Establishing a Framework for Community Action in the Field of Water Policy (Water Framework Directive); European Commission: Luxembourg, 2000.
- Dell, C.J.; Kleinman, P.J.A.; Schmidt, J.P.; Beegle, D.B. Low-Disturbance Manure Incorporation Effects on Ammonia and Nitrate Loss. J. Environ. Qual. 2012, 41, 928–937. [Google Scholar] [CrossRef]
- Liu, Y.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; Mcmillan, S.K.; Chaubey, I. Science of the Total Environment: A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Sci. Total Environ. 2017, 601–602, 580–593. [Google Scholar] [CrossRef]
- Chaubey, I.; Chiang, L.; Gitau, M.W.; Mohamed, S. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. J. Soil Water Conserv. 2010, 65, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.B.; Guse, B.; Fohrer, N. Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. J. Environ. Manag. 2017, 196, 347–364. [Google Scholar] [CrossRef]
- Jang, S.S.; Ahn, S.R.; Kim, S.J. Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT. Agric. Water Manag. 2017, 180, 224–234. [Google Scholar] [CrossRef]
- López-Ballesteros, A.; Senent-Aparicio, J.; Srinivasan, R.; Pérez-Sánchez, J. Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy 2019, 9, 576. [Google Scholar] [CrossRef] [Green Version]
- Bouraoui, F.; Grizzetti, B.; Aloe, A. Long Term Nutrient Loads Entering European Seas; European Commission: Luxembourg, 2011; Volume 72.
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 2014, 468–469, 1267–1277. [Google Scholar] [CrossRef]
- Leitão, M.; Cortez, N.; Pena, S.B. Valor Ecológico do Solo de Portugal Continental (Soil Ecological Value of Mainland Portugal). 2013. Available online: http://epic-webgis-portugal.isa.ulisboa.pt/ (accessed on 11 January 2018).
- DGT—National Territory Directorate. Carta de Uso e Ocupação de Solo—2010 (Land Use and Land Cover Map—2010). 2010. Available online: https://snig.dgterritorio.gov.pt/ (accessed on 11 January 2018).
- FAO—Food and Agriculture Organization of the United Nations. Barroso Agro-Sylvo-Pastoral System. 2018. Available online: https://www.fao.org/giahs/giahsaroundtheworld/designated-sites/europe-and-central-asia/barroso-agro-slyvo-pastoral-system/detailed-information/en/ (accessed on 6 January 2021).
- Tereso, J.; Honrado, J.; Pinto, A.; Rego, F. Florestas do Norte de Portugal: História, Ecologia e Desafios de Gestão (Forests of Northern Portugal: History, Ecology and Management Challenges); InBio—Rede de Investigação em Biodiversidade e Biologia Evolutiva: Porto, Portugal, 2011. [Google Scholar]
- APA—Portuguese Environment Agency. Plano de Gestão da Região Hidrográfica do Cávado, Ave e Leça (RH2) (Second River Basin Management Plan of the Water Framework); APA—Portuguese Environment Agency: Amadora, Portugal, 2016.
- DRAEDM—Direção Geral de Agricultura do Entre Douro e Minho (General Directorate of Agriculture of Entre Douro e Minho). Plano de Ordenamento da Bacia Leiteira Primária do Entre Douro e Minho (Management Plan of the Daury Basin of Entre Douro e Minho); DRAEDM—Direcção Regional de Agricultura de Entre Douro e Minho: Braga, Portugal, 2007. (In Portuguese) [Google Scholar]
- INE—Instituto Nacional de Estatística (National Institue of Statistics). Recenseamento Agrícola (Agricultural Census); INE—Instituto Nacional de Estatística (National Institue of Statistics): Lisbon, Portugal, 2009. (In Portuguese)
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT 2012 Input/Output Documentation; Texas Water Resources Institute: College Station, TX, USA, 2013.
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. Arcswat Interface for SWAT2012: User’s Guide; Blackland Research Center, Texas AgriLife Research: College Station, TX, USA, 2013. [Google Scholar]
- USGS—United States Geological Survey. Shuttle Radar Topography Mission 1 Arc-Second Global; United States Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- SNIAmb—National Environmental Information System. Massas de Água Superficiais Rios de Portugal Continental (Surface water bodies Rivers of mainland Portugal). 2018. Available online: https://sniamb.apambiente.pt/ (accessed on 11 January 2018).
- Carvalho-Santos, C.; Nunes, J.P.; Monteiro, A.T.; Hein, L.; Honrado, J.P. Assessing the effects of land cover and future climate conditions on the provision of hydrological services in a medium-sized watershed of Portugal. Hydrol. Process. 2016, 30, 720–738. [Google Scholar] [CrossRef]
- EDP—Portuguese Power Company. Declaração Ambiental 2019, Aproveitamentos Hidroelétricos da EDP Produção, Direção Centro de Produção Cávado-Lima (Environmental Declaration 2019, EDP Hydroelectric Plants, Cávado-Lima Production Center); EDP—Portuguese Power Company: Lisbon, Portugal, 2019. [Google Scholar]
- APA—Portuguese Environment Agency. Plano de Gestão da Região Hidrográfica do Cávado, Ave e Leça (First River Basin Management Plan of the Water Framework); APA—Portuguese Environment Agency: Amadora, Portugal, 2012. [Google Scholar]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Iturbide, M.; Bedia, J.; Herrera, S.; Baño-Medina, J.; Fernández, J.; Frías, M.D.; Manzanas, R.; San-Martín, D.; Cimadevilla, E.; Cofiño, A.S.; et al. The R-based climate4R open framework for reproducible climate data access and post-processing. Environ. Model. Softw. 2019, 111, 42–54. [Google Scholar] [CrossRef]
- ICNF—National Institute for Nature Conservation and Forests. 6° Inventário Florestal Nacional (6th National Forest Inventory); ICNF—National Institute for Nature Conservation and Forests: Lisbon, Portugal, 2015. [Google Scholar]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Science of the Total Environment Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Zanden, E.H.; Van Der Poesen, J.; Alewell, C. ScienceDirect Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Land Use Policy Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Johnson, C.A.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. The fallacy in the use of the “best-fit” solution in hydrologic modeling. Sci. Total Environ. 2022, 802, 2021–2022. [Google Scholar] [CrossRef]
- Molina-Navarro, E.; Andersen, H.E.; Nielsen, A.; Thodsen, H.; Trolle, D. The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environ. Model. Softw. 2017, 93, 255–267. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Dechmi, F.; Skhiri, A. Evaluation of best management practices under intensive irrigation using SWAT model. Agric. Water Manag. 2013, 123, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Tuppad, P.; Kannan, N.; Srinivasan, R.; Rossi, C.G.; Arnold, J.G. Simulation of Agricultural Management Alternatives for Watershed Protection. Water Resour. Manag. 2010, 24, 3115–3144. [Google Scholar] [CrossRef]
- GPP—Gabinete de Planeamento Políticas e Administração Geral (Planning Policy and General Administration Office). Relatório Sobre o Plano Estratégico da PAC de 2021 (Report on the Strategic Plan of the Common Agricultural Policy); GPP—Gabinete de Planeamento Políticas e Administração Geral: Lisboa, Portugal, 2021. (In Portuguese)
- Copernicus Programme. Delineation of Riparian Zones. 2015. Available online: https://land.copernicus.eu/local/riparian-zones/riparian-zones-delineation?tab=metadata (accessed on 1 June 2022).
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only a NOVA Procedures. In Proceedings of the International Conference on Human Factors in Computing Systems, CHI 2011, Vancouver, BC, Canada, 7–12 May 2011; pp. 143–146. [Google Scholar]
- Elkin, L.A.; Kay, M.; Higgins, J.J.; Wobbrock, J.O. An aligned rank transform procedure for multifactor contrast tests. In Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology, Virtual, 10–14 October 2021; pp. 754–768. [Google Scholar]
- Feys, J. Nonparametric Tests for the Interaction in Two-way Factorial Designs Using R. R J. 2016, 8, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Leys, C.; Schumann, S. Journal of Experimental Social Psychology A nonparametric method to analyze interactions: The adjusted rank transform test. J. Exp. Soc. Psychol. 2010, 46, 684–688. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.; Van Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: A case study in the Logone catchment, Lake Chad basin. Stoch. Environ. Res. Risk Assess. 2018, 32, 1665–1682. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Roebeling, P.; Rial-Rivas, M.E. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model. Sci. Total Environ. 2015, 536, 48–58. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land—Ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Walling, D.E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges; UNESCO: Paris, France, 2009. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Maguire, R.O.; Kleinman, P.J.A.; Dell, C.J.; Beegle, D.B.; Brandt, R.C.; McGrath, J.M.; Ketterings, Q.M. Manure Application Technology in Reduced Tillage and Forage Systems: A Review. J. Environ. Qual. 2011, 40, 292–301. [Google Scholar] [CrossRef]
- Gumiero, B.; Boz, B.; Cornelio, P.; Casella, S. Shallow groundwater nitrogen and denitrification in a newly afforested, subirrigated riparian buffer. J. Appl. Ecol. 2011, 48, 1135–1144. [Google Scholar] [CrossRef]
- Li, Y.; Shao, X.; Sheng, Z. Field Experiments on Reducing Pollutants in Agricultural-Drained Water Using Soil-Vegetation Buffer Strips. Polish J. Environ. Stud. 2016, 25, 183–192. [Google Scholar] [CrossRef]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse water pollution from agriculture: A review of nature-based solutions for nitrogen removal and recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Dorioz, J.-M.; Wang, D.; Poulenard, J.; Trevisan, D. The effect of grass buffer strips on phosphorus dynamics—A critical review and synthesis as a basis for application in agricultural landscapes in France. Agric. Ecosyst. Environ. 2006, 117, 4–21. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Zhang, M. Major factors influencing the efficacy of vegetated buffers on sediment trapping: A review and analysis. J. Environ. Qual. 2008, 37, 1667–1674. [Google Scholar] [CrossRef]
- Buckley, C.; Hynes, S.; Mechan, S. Supply of an ecosystem service—Farmers’ willingness to adopt riparian buffer zones in agricultural catchments. Environ. Sci. Policy 2012, 24, 101–109. [Google Scholar] [CrossRef]
- Helmers, M.J.; Isenhart, T.M.; Dosskey, M.; Dabney, S.M.; Strock, J.S. Buffers and Vegetative Filter Strips; USDA Forest Service: Washington, DC, USA, 2008.
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011.
- Steegen, A.; Govers, G.; Takken, I.; Nachtergaele, J.; Poesen, J.; Merckx, R. Factors controlling sediment and phosphorus export from two Belgian agricultural catchments. J. Environ. Qual. 2001, 30, 1249–1258. [Google Scholar] [CrossRef]
- Powers, S.M.; Robertson, D.M.; Stanley, E.H. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes. Hydrol. Process. 2014, 28, 5919–5937. [Google Scholar] [CrossRef]
- Goel, P.K.; Rudra, R.P.; Khan, J.; Gharabaghi, B.; Das, S.; Gupta, N. Pollutants removal by vegetative filter strips planted with different grasses. In Proceedings of the 2004 ASAE Annual Meeting, Ottawa, Canada, 1–4 August 2004; p. 1. [Google Scholar]
- Johnson, K.N.; Kleinman, P.J.A.; Beegle, D.B.; Elliott, H.A.; Saporito, L.S. Effect of dairy manure slurry application in a no-till system on phosphorus runoff. Nutr. Cycl. Agroecosyst. 2011, 90, 201–212. [Google Scholar] [CrossRef]
- Little, J.L.; Bennett, D.R.; Miller, J.J. Nutrient and sediment losses under simulated rainfall following manure incorporation by different methods. J. Environ. Qual. 2005, 34, 1883–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, M.R. Conservation Tillage in Temperate Agroecosystems; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Novara, A.; Pulido, M.; Kapović-Solomun, M.; Keesstra, S.D. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy 2018, 75, 734–745. [Google Scholar] [CrossRef] [Green Version]
- FAO—Food and Agriculture Organization of the United Nations. NBS in Agriculture: The Case and Pathway for Adoption; FAO: Rome, Italy, 2021. [Google Scholar]
- Liu, H.; Brouwer, R. Incentivizing the future adoption of best management practices on agricultural land to protect water resources: The role of past participation and experiences. Ecol. Econ. 2022, 196, 107389. [Google Scholar] [CrossRef]
- Brito, L.M.; Alonso, J.M.; Mamede, J.; Rey-Graña, J. Slurry Management in the Milk Farms of Entre Douro e Minho. Rev. Ciências Agrárias 2011, 34, 80–93. [Google Scholar]
- DRAPLVT-Regional Directorate of Agriculture and Fisheries of Lisbon and Tagus Valley. Anexo V da Portaria 259/2012 de 28 de Agosto, Anexo I–Quantidade e Composição Média de Estrumes e de Chorumes Não Diluídos, Produzidos Anualmente Por Diferentes Espécies Pecuárias e Sua Conversão Em Cabeça Normal (Average Quantity and Composition of Manure and Undiluted Manure Produced Annually by Different Livestock Species); DRAPLVT-Regional Directorate of Agriculture and Fisheries of Lisbon and Tagus Valley: Santarém, Portugal, 2012. (In Portuguese) [Google Scholar]
- ADP Fertilizers. Fertilizantes Guia de Fertilização Por Cultura (Crop Fertilization Guide). 2020. Available online: https://www.adp-fertilizantes.pt/pt/agricultura/servi%C3%A7o-ao-agricultor/culturas/ (accessed on 1 October 2021). (In Portuguese).
- Anpromis-National Association of Maize and Sorghum Producers. Milho (Corn). 2020. Available online: https://anpromis.pt/o-milho.html (accessed on 1 October 2021). (In Portuguese).
- Margarete, A.; Gomes, V. Perdas de Azoto Por Lixiviação Numa Cultura de Milho Para Silagem, Fertilizada Com Chorume de Bovino Leiteiro Em Condições Mediterrânicas (Nitrogen Leaching Losses in a Corn Silage Crop Fertilized with Dairy Cattle Manure under Mediterranean Conditions); University of Lisbon: Lisbon, Portugal, 2018. [Google Scholar]
- Monteiro, D.; Mestre, R.; Fontes, A.; Azevedo, J. A Raça Bovina Barrosã (The Barrosã Bovine Breed); University of Trás-os-Montes and Alto Douro: Vila Real, Portugal, 2005. (In Portuguese) [Google Scholar]
- Yang, Q.; Zhang, X. Improving SWAT for Simulating Water and Carbon Fluxes of Forest Ecosystems. Sci. Total Environ. 2016, 569–570, 1478–1488. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.; Lopes, D.; Castro Rego, F.; Gower, S.T. Aboveground Biomass and Net Primary Production of Pine, Oak and Mixed Pine-Oak Forests on the Vila Real District, Portugal. For. Ecol. Manage. 2013, 305, 38–47. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling Climate Change Impacts on Viticultural Yield, Phenology and Stress Conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
Parameter | Description | Calibrated (Initial Values) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RYE | CTSR | GRAP | ORCD | LAME | FOLH | RESI | INVA | MATO | ZDPV | URBAN | ||
T_BASE | Minimum temperature for plant growth (ºC) | - | - | - | - | 5 (12) | - | - | - | - | - | - |
HVSTI | Harvest index for optimal growing conditions | - | - | 0.4 (0.02) | 0.3 (0.1) | - | - | - | - | - | - | - |
BIO_LEAF | Fraction of tree biomass accumulated each year that is converted to residue each year | - | - | 0.4 (0.3) | 0.2 (0.3) | - | 0.02 (0.3) | 0.015 (0.3) | 0.02 (0.3) | - | - | - |
BIO_E | Radiation use efficiency | - | - | - | - | - | 25 (15) | 16 (15) | 32 (22) | - | - | - |
FRGRW1 | Fraction of the plant growing season corresponding to the first point on the optimal leaf area development curve | - | - | - | - | - | 0.01 (0.05) | - | - | - | - | - |
FRGRW2 | Fraction of the plant growing season corresponding to the second point on the optimal leaf area development curve | - | - | - | - | - | 0.1 (0.4) | - | - | - | - | - |
ALAI_MIN | Minimum leaf area index | - | - | - | - | 0.2 (0) | 3 (0.75) | - | - | - | - | - |
USLE_P | Support practice factor | 0.5 (1) | 0.5 (1) | 0.6 (1) | 0.6 (1) | 0.5 (1) | 0.65 (1) | 0.65 (1) | 0.65 (1) | 0.6 (1) | 0.6 (1) | 0.65 (1) |
USLE_C | Cover management factor | - | 0.1 (0.005) | 0.33 (0.1) | 0.05 (0.001) | - | 0.0015 (0.001) | 0.0015 (0.001) | 0.002 (0.1) | - | 0.005 (0.002) | - |
Type of Agricultural Practice | Agricultural Practice | Where it was Implemented | How it was Implemented |
---|---|---|---|
Fertilizer application method | Broadcast application | Irrigated (CTRS) & Non-irrigated arable lands (RYE) | FRT_SURFACE = 1 |
Fertilizer incorporation | FRT_SURFACE = 0.2 | ||
Tillage operation | Conventional tillage | Irrigated (CTRS) & Non-irrigated arable lands (RYE) | TILLAGE_ID = 1 (Generic Fall Plowing Operation); EFFMIX = 0.95; DEPTIL = 150 |
Conservation tillage | TILLAGE_ID = 3 (Generic Conservation Tillage); EFFMIX = 0.25; DEPTIL = 100 | ||
No tillage | TILLAGE_ID = 4 (Generic No-till Mixing); EFFMIX = 0.05; DEPTIL = 25 | ||
Filter strips | Current riparian cover | - | - |
Filter strip | All agricultural areas in riparian zone | If 0% < Slope < 10% then FILTERW = 3 m; If 11% < Slope < 25% then FILTERW = 10 m; If Slope ≥ 25% then FILTERW = 15 m; |
Dependent Variable | Effect | df | F | p-Value |
---|---|---|---|---|
Sediment export | Tillage operation | 2 | 3.83 | 0.02 |
Filter strips | 1 | 11.7 | 0.0006 | |
Precipitation | 3 | 4.36 | 0.005 | |
Phosphorous export | Fertilizer application method | 1 | 6.45 | 0.01 |
Filter strips | 1 | 24.6 | <0.0001 | |
Nitrate export | Fertilizer application method | 1 | 7.6 | 0.006 |
Tillage operation | 2 | 3.2 | 0.04 | |
Filter strips | 2 | 41.4 | <0.0001 | |
Precipitation | 3 | 8.8 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramião, J.P.; Carvalho-Santos, C.; Pinto, R.; Pascoal, C. Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin. Water 2022, 14, 3962. https://doi.org/10.3390/w14233962
Ramião JP, Carvalho-Santos C, Pinto R, Pascoal C. Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin. Water. 2022; 14(23):3962. https://doi.org/10.3390/w14233962
Chicago/Turabian StyleRamião, José Pedro, Cláudia Carvalho-Santos, Rute Pinto, and Cláudia Pascoal. 2022. "Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin" Water 14, no. 23: 3962. https://doi.org/10.3390/w14233962
APA StyleRamião, J. P., Carvalho-Santos, C., Pinto, R., & Pascoal, C. (2022). Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin. Water, 14(23), 3962. https://doi.org/10.3390/w14233962