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Abstract: Increasing globalization in the last two decades has transformed the environment; hence,
the demand for sustainable remediation approaches has also recorded an increasing trend. The varied
sources of soil pollution include the application of chemical fertilizers and pesticides, industrial
discharge, and transformed products of these accumulated chemical residues. These processes
may hamper the composition and soil ecosystem. Different types of methodologies ranging from
physical, chemical, and biological approaches have been exploited to tackle of this challenge. The last
decade has observed a significant application of nanotechnology for the treatment and removal of
contaminants. Nanomaterial (NMs) research has contributed to a new dimension for the remediation
of polluted soils. The use of engineered NMs has not only carried out the remediation of contaminated
sites but also has proven useful in combatting the release of soil pollutants. They have paved
the way for eco-friendly approaches for the detection of pollutants along with the restoration of
polluted sites to their nascent stages, which will also help in increasing soil fertility. Nano-enabled
remediation mechanisms require extensive field and target-specific research to deliver the required
output. This review focused on recent trends, emphasized the areas for further improvement, and
intended to understand the requirement of an interdisciplinary approach to utilize nanotechnology
for multitasking remediation approaches comprising different contaminants.

Keywords: remediation; sustainable; microbe; metal; nanoparticles

1. Introduction

The increasing accumulation of heavy metals (HMs) in the food and water supply
chain is a major cause of public health concern. Their high density and non-biodegradable
nature make HMs such as Hg(II), Cr(VI),Pb(II), and Cd(II), the potent and most challenging
environmental contaminants [1,2]. Soil acts as an important sink for supporting various
lifeforms on earth, ranging from organisms as small as microbes to the most complex ones,
i.e., animals and humans. The invasion of natural flora by various anthropogenic sources
has resulted in the disruption of the natural cycling of nutrients and the accumulation
of many undesired components such as HMs in the soil. The concept of sustainable
development is not attainable pertaining to the present scenario of soil pollution. Due to
rising populations, soil conservation should be a top priority in today’s society, which is
facing a challenging situation of diminishing land area and scarcity of food and shelter. The
various approaches employed to tackle this situation involve thermal treatment, filtration,
adsorption, chemical abstraction, membrane bound separation, microbial degradation,
etc. Heavy metal removal can also be efficiently accomplished by employing methylene
phosphonic acid (DTPMP) phosphonate intercalated with layered double hydroxide [3].
In another study, lysine intercalated with montmorillonite was reported to remove Pb (II)
from wastewater via an adsorption mechanism [4].
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The processes documented above consist of a single approach to treatment. It is true
that these treatments have been successful, however, they also have certain drawbacks
such as inefficiency, high costs, and failure at scale-up [5,6]. Acid mine drainage (AMD)
is a form of pollution caused by drainage water flowing from sulfur-bearing sites into
water bodies [7]. The mining of sulfide minerals exposes them to the environment, causing
excessive amounts of acid to be produced, which can cause both immediate and long-term
environmental harm. Some of the adverse effects of AMD include the corrosion of mining
machinery and equipment, degradation of soil quality, and groundwater contamination
due to the leaching of HMs present in mine and drainage water [8].

Air or water exposed to iron disulfide or iron pyrite produces acid mine drainage
by oxidizing mineral sulfides. Oxygen and water react with metal sulfides to produce
metal sulfates and sulfuric acid. Subsequent oxidation of the metals results in increased
acidity [9]. In one such example, ferrous sulfide (pyrite) undergoes oxidation on reacting
with water and oxygen to form ferrous sulfate and sulfuric acid. Ferrous sulfate oxidizes
further to form ferric sulfate, and the rate of this reaction can further be enhanced by the
action of certain bacteria such as Acidithiobacillus ferroxidans. Further, ferric sulfate reacts
with water to form ferric hydroxide releasing hydrogen ions, which subsequently enhance
the acidity of water. The resulting ferric hydroxide formed further reacts with pyrite and
produces more acid. The amount of acid produced depends on the amount of iron getting
oxidized [10].

FeS2 + H2O + 3 1/2 O2 → FeSO4 + H2SO4

FeSO4 → Fe2(SO4)3 → 2Fe3+ + 3SO4
−2

Fe3+ + 3H2O→ Fe(OH)3 + 3H+

Rainwater or water used in mining operations for dust control, drilling, or other
purposes enters the mine as fresh water. Fissures and cracks in underground mines can
allow ground water to seep into the mines. Sulfide minerals yield oxidized products that
are transported to nearby rivers and other water bodies by flowing into the surrounding
aqueous environment [11]. As pyritic sulfur reacts with water and oxygen, sulfuric acid
is produced, and iron sulfate is formed. As a result, certain acidophilic bacteria such as
Acidithiobacillus ferroxidans thrive and grow in this type of acidic environment created by
coal mines. As a result, the acid production reaction is catalyzed by the bacteria and occurs
more quickly than chemical oxidation [12]. The acidity in mine drainage water is primarily
due to the production of sulfuric acid and hydrolysis of oxidized pyrite products [11].

The selection of any remediation technique employed for the removal of HMs is
governed by several factors including the type and nature of the contaminant, its concen-
tration, its form (simpler or complex form), the objective and time frame for treatment,
the cost involved, and the environmental impact. Furthermore, treatment techniques are
categorized into in situ and ex situ types depending on the nature and location of the
site, the degree of contamination, and the treatment strategy to be employed (Figure 1).
The former category is the most preferred as it employs the treatment of soil at its nat-
ural site by utilizing air, water, microbes, and plants. On the other hand, the latter is
based on the excavation of contaminated soil to a point where it can be treated, i.e., into
a fermenter, which makes it more complex and ultimately leads to a higher cost. All the
conventional methods being employed today have several drawbacks including cost, time
frame, and the release of by products, which result in post-treatment challenges involving
environmental contamination.
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The last two decades have documented a considerable rise in the synthesis and
application of NMs in several fields, and bioremediation is one of the important areas of
their application. Nanoparticles are known to exhibit multiple unique properties owing
to their optimum size range and increased surface area making them a preferred choice
as environmental remediation agents, which can be employed in various forms such as
nanoadsorbents, nanocatalysts, nanofilters, etc., [13]. These novel candidates still pose a risk
to the environment due to their unnecessary build up in the environment and then causing
toxicity to plants and other living systems in the ecosystem. In view of their technological
importance, there is a need to understand their post-treatment behavior and the movement
of nanoparticles in soil or aquatic ecosystems. An emphasis must be placed on their design
during the developmental phase, their effective management during application, and the
disposal pathways post application in the environment in order to avoid and overcome
the risks posed by them and ensure environmental safety. Another option is to utilize
plant systems for tackling the issues by exploiting their hyperaccumulator potential for
the removal of nanoparticle residues and thus attributing beneficial aspects to the use
of nanoparticles [14]. Additionally, NMs provide a means of detecting contaminants in
addition to removing them. NMs have been found to have a wide range of applications,
which have been the subject of extensive research. The present review addresses the
mechanisms for the removal of HMs from contaminated soils and mine spills by using
various facets of nanotechnology and the challenges they present.

2. Mechanism of Action of Nanoparticles

To work as bioremediation agents, NMs should possess the following characteristics:
(1) be deliverable to the target site and (2) be confined to the site without getting aggre-
gated [15]. These challenges can be overcome by employing organic stabilizers such as
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collagen, starch, etc., [16]. The conventional methods employed for the removal of HMs
suffer from a variety of drawbacks, hence the consortia of nanotechnology along with the
available methods can offer a solution to the existing associated challenges [17]. Various
NMs have been explored for the removal of a wide variety of contaminants including
HMs via various modes such as precipitation, catalysis, conjugation, adsorption, and redox
properties [18]. They can be further employed in a variety of forms, i.e., based on sensors,
nanotubes, oxides, catalysts, and membranes, and the most commonly used NMs are
magnetic-based NMs, which can be easily recovered and reused [19].

The enormous specific surface area of NMs makes them ideal for removing contami-
nants through several physicochemical and biological methods based on redox reactions,
precipitation, co-precipitation, adsorption, ion-exchange, bioremediation, and phytoreme-
diation [18].

Following the entry of NMs into the system, pollutants are subjected to a variety
of physicochemical processes and alterations representing abiotic mechanisms, which
include absorption, dissolution, adsorption, and photocatalysis [20]. In the next phase,
biotic processes are used to remove the pollutants, including biocides, biostimulation,
bioaccumulation, and biotransformation [21,22].

2.1. Remediation Techniques

There are numerous processes such as clarification, de-aeration, de-carbonation, sludge
densification, or the high-density sludge (HDS) process being extensively employed to
treat acid mine drainage water, but most of them are not sustainable and lead to the
production of secondary waste in the form of end-products such as methane (CH4) and
non-soluble metal oxides or hydroxides, which need to be treated further and hence may
not be cost-effective [23]. Acid mine drainage must therefore be properly remedied by
integrating novel emerging techniques. Phytoremediation and nanoremediation are two of
the most promising techniques for the remediation of acid mine drainage water (Figure 2).
The former involves using plants to decontaminate mine drainage water infested with
various toxic metals and pollutants. In contrast, the latter reduces the load of pollutants in
such water by using NMs with diameters below 100 nm [10]. Both these techniques are
effective in revegetating soils contaminated with heavy metals and have gained a high
degree of public acceptance as sustainable alternatives to eliminate emerging pollutants
such as heavy metals, chlorinated solvents, halogenated chemicals, or pesticides. Further-
more, the synergistic application of these techniques can result in improved heavy metal
removal, reducing environmental stress as a result of the application of nanomaterials in
low concentrations due to the inculcation of plants as additional remediation agents [24].

2.2. Reduction

A reduction reaction using nano-zero valent iron (nZVI) NMs can effectively remove
both HMs and organic compounds from contaminated soils as well as from polluted
groundwater and water [25]. There has been a wide application of nZVI NMs in wide fields.
Their large surface area and small size facilitate the direct contact of nZVI particles with
contaminants for an improved remediation efficiency. In addition to having a strong reduc-
tion capacity and superior adsorption ability, nZVI particles are competent in transforming
toxic contaminants into less noxious compounds such as transforming chromium(VI) into
chromium(III) and forming ferrous chromite [26]. Moreover, it has been demonstrated that
biochar added to nano-zero valent iron nanoparticles (nZVI NPs) enhances the reduction
reaction capacity of nZVI and increases its removal efficiency as well as reducing the move-
ment of mixture in the soil by strengthening the disparity of iron particles. For instance,
combining nZVI NMs with biochar has been found to remove 66% of the chromium (VI)
content in soil [25]. It has been found that one gram of nZVI injection into contaminated
soil reduces 28% of the mass of 1 kg chromium(VI). Additionally, in a treatment condition
with a pH level of 5, 98% of the chromium(VI) was removed within 24 h [27]. Another
study reported the successful application of biochar and NPs for the restoration of soils
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contaminated with potentially toxic elements [28]. Biochar prepared using low-cost raw
materials such as rice husk, water hyacinth, and black tea waste showed the removal of
copper, nickel, cadmium, and zinc from affected soils [29–31]. Burachevskaya et al. [32]
documented the decreased absorption of highly concentrated copper and zinc in Hordeum
sativum upon augmentation with biochar and granular activated carbon.

Moreover, it has also been shown that combining carboxymethyl cellulose (CMC) stabi-
lizer and nZVI significantly reduces the amount of chromium(VI) contaminants that can be
converted into carbonates as well as iron-manganese oxides, which will increase chromium
bioavailability and leachability by 50% when 1 g to 10 mL of soil is added [33]. It has
also been reported that nZVI combined with a carboxymethyl cellulose stabilizer removes
organic contaminants from soil columns such as trichloroethylene (TCE), dichlorodiphenyl-
trichloroethane (DDT), and pesticides. For example, an injection of nZVI stabilized with
CMC into potting soil containing 9.2% organic matter dechlorinated 44% of the TCE in the
soil within 30 h of treatment. One kg of soil containing 24 mg of DDT was effectively treated
with 20% aqueous nZVI within 72 h, thereby removing 25% of the DDT. To remediate soils
that have been contaminated for prolonged periods, a higher concentration of nZVI was
required to enhance its reaction activity [34].
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2.3. Phytoremediation

Rhizofiltration and avoidance mechanisms for HM uptake have enabled a few plants
to survive at an optimal level of HMs, including Amaranthus spinosus, Pedioplanis burchelli,
and Alternanthera pungens [35]. Plant growth and human health are adversely impacted
by HMs at concentrations above the optimum [36]. Despite this, metals are ingested in
high concentrations by hyperaccumulating plant species and are then transported and
accumulated in different parts at much higher concentrations than non-hyperaccumulators
without showing apparent phytotoxicity [37,38].

The mechanism of phytostabilization and phytoextraction can account for HMs with
a bioconcentration factor (BCF) more than one [39]. A TF (translocation factor) and BCF
of more than one demonstrates phytostabilization traits [40]. A similar study by Kisku
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et al. [41] found that Sacrum munja, Parthenium hysterophorus, and Ipomoea carnea had both
phytostabilization and phytoextraction activities, and the authors found that Cr, Ni, Cd,
and Pb had at least one BCF and TF, indicating a phytostabilization mechanism, while
Zn and Mn had more than one BCF and less than one TF, indicating a phytoextraction
mechanism. On the other hand, there is a need to understand the exact mechanism of the
interaction of NPs with plants as the studies are still in their initial stages, and this will
pave the way for better understanding of the synergistic potential of plants and NPs in the
remediation of contaminants [14].

2.4. Rhizodegradation of Heavy Metals

The bioavailability of metals in the rhizosphere is governed by several factors such
as the pH of the native soil, the ionic state and concentration of metal ions, the nature of
the microbial population, the plant species and their root secretions, etc. The rhizosphere
facilitates the degradation of contaminants through symbiotic relationships between plants
and soil microbes [42,43]. The process of rhizodegradation involves pollutants being ac-
cumulated in the rhizosphere of soil by the action of microbes and their breakdown for
getting energy and nutrition. Through this mechanism, microbes can decompose hazardous
pollutants into harmless and nontoxic substances [44]. The root systems of plants release
natural carbon compounds such as alcohols, sugars, and acids, thus providing microorgan-
isms with additional nutrients and stimulating the process of rhizodegradation [45]. The
secretions of root exudates may result in a decreased pH of the rhizosphere, which further
facilitates the absorption of HMs [46]. It has been found that Zea mays is more capable of
bioaccumulating mercury than other plants [47]. There are some plants that provide the
most favorable conditions for mycorrhizae and bacteria to associate and degrade toxins
effectively. This degradation results in the volatilization or incorporation of components
into the soil matrix [48]. Sugars and organic acids released by plants promote the growth of
bacteria and fungi [49]. It is possible to enhance rhizodegradation by improving soil charac-
teristics such as moisture content and soil aeration [49]. It was recently found that rhizomes
of Typha latifolia are capable of phytodegrading terbuthylazine (TER) in a wetland contami-
nated with terbuthylazine (TER) [50]. A study by Sampaio et al. found that a Rhizophora
mangle mangrove under the influence of plant-growth-promoting rhizobacteria (Bacillus sp.
and Pseudomonas aeruginosa) was capable of degrading polycyclic aromatic hydrocarbons
(PAHs) in contaminated sediment [51]. As a result of rhizodegradation, contaminants are
dissolved in their natural environment, which is its most significant benefit. Further, plant
species related to the oil family have been found to have a positive effect on the removal of
heavy metals from contaminated soils. In one such study, the application of nZVI particles
in a rhizospheric region of sunflowers resulted in a positive impact on the arsenic mobility
in the plant, which was due to a decreased percentage of accumulation into the roots and
shoots of the test plants as compared to the control plants [52]. The rhizospheric regions
of plants grown in heavy-metal-contaminated soils are inhabited by heavy-metal-tolerant
microflora such as arbuscular mycorrhizal fungi (AMF), mycorrhizal-helping bacteria
(MHB), and plant-growth-promoting rhizobial microbes (PGPR), which have been reported
to be beneficial for the process of nano-phytoremediation [53]. Hence, the fundamental
mechanism of rhizodegradation-assisted heavy metal removal from contaminated water
and soil relies on the synthesis and secretion of HM-affinity transporter nanomaterials by
inhabitant microflora, which can further bind and mobilize the available HMs into root
cells [54].

3. Types of Nanomaterials Used in the Removal of Heavy Metals

NMs are categorized into inorganic and carbon-based NMs [55]. There has been
a great deal of success with their application in the field of environmental remediation
(Table 1). The most commonly used and studied NMs are TiO2, nZVI, and carbon nanotubes
(CNTs) [56,57].
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Table 1. List of nano-adsorbents used for the removal of heavy metals/pollutants from contaminated
sites.

Sr. No. Adsorbent Target Heavy
Metals/Pollutants

Percentage
Removal Source pH References

1 nZVI Cr (VI) 98 Soil 5 [27]

2 nZVI + Carboxymethyl
cellulose DDT 25 Soil [34]

3 Technosol Cu, Cd, Zn, Pb, As 75 Soil [58]

4 nZVI + Carboxymethyl
cellulose TCE 44 Soil [34]

5 nZVI + Cellulose Cr(VI) 30 Soil 5 [59]
6 TiO2 Fe(III) 91.99 Mining waste water - [60]

Mn(II) 89.37 Mining waste water - [60]
Pb(II) 32.39 Mining waste water -
Cu(II) 81.95 Mining waste water - [45]
Cd(II) 96 Wastewater 7 [46]
Pb(II) 99.1 Wastewater 7 [46]
Cr(II) 94 Wastewater 7 [46]
Th(IV) 94 Soil 4 [21]

7 Biochar + nZVI Cr (VI) 66 Soil [21]
8 Biochar Phenol Mining waste water 5.8 [47]

Cd Mining waste water 7 [47]
9 Graphite oxide Cd 88.33 Soil 3 [48]

Pb 85 Soil 3 [48]
Cr 63 Soil 3 [48]
Ni 89.9 Soil 3 [48]
Zn 85.6 Soil 3 [48]

10 Silver-iron oxide NPs Cr (VI) 97 Soil 4 [49]
11 Magnetite Pb2+, Cd2+, Cu2+, Ni2+ ≈90 Soil 6 [50]
12 Carbon nanotubes Cu 79 Acid Mine drainage 5.5 [51]

Mn 78 Acid Mine drainage 5.5 [51]
Zn 48 Acid Mine drainage [51]
Mn 100 - 3 [52]

Cr(VI) - Soil 5 [53]
DDT 59 Soil - [54]
HCH 75 Soil - [54]

3.1. Nano Zero-Valent-Iron-Based Nanomaterials

nZVI is the most widely studied and applied NM for environmental remediation.
There is a wide range of contaminants that can be adsorbed, reduced, and catalyzed
with nZVI, including pharmaceuticals, HM ions, organic dyes, and halogenated organic
compounds [61–63]. Nano zero-valent iron consists of a core–shell structure that consists of
Fe(II), Fe(III), and zero-valent iron [64]. The various mechanisms involved in the removal
of heavy contaminants include precipitation, reduction, etc. [65–67]. These NMs have been
found to be effective in the removal of HM ions from contaminated soils and have proven
to be effective in the remediation of soil contaminated with chromium. Nano zero-valent
iron NMs have also been reported to stabilize the levels of arsenic and zinc in soils rich in
these microcontaminants [52]. NMs can also facilitate the remediation of acid mine water
by reducing the concentrations of microcontaminants [68]. The mine drainage sites treated
using technosols showed promising results and offered an alternative to conventional
removal processes. Technosols consisting of a mixture of iron-rich soils and plant-based
green-synthesized multicomponent NMs showed a 75% removal of HMs via adsorption,
which followed a pseudo-second-order model in a 4.24 min contact time [58].

Nanoremediation with zero-valent iron has proven successful in treating acidic water
polluted with several HMs [69]. nZVI immobilizes HMs dissolved in mine water by quickly
and effectively neutralizing them. It has been found that the adsorption of HMs onto
the surface of iron-based NMs is the main mechanism for removing HMs. The corrosion
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products of iron also serve as adsorption sites on unreacted metal surfaces. The metal
uptake process slows down with time, but bacteria that reduce sulfate can accelerate it
even further [70]. However, the traditional methods for preparing these iron NPs have
the drawback of agglomerating and reacting quickly with the substrate, reducing their
mobility and reactivity. Due to their micron-scale size, agglomerated iron NPs cannot be
transported or delivered in soils, so in situ treatment is not possible [71]. Another problem
that is limiting the engineering applications of iron-based materials is the cost factor due to
the large amount of chemical reagents such as ferrous sulfate and ferrous chloride that are
consumed during the material’s conventional preparation technologies [72].

3.2. Magnetic Nanomaterials

Magnetic NMs based on iron oxide may be more effective at removing HMs depend-
ing on their size, surface area, and magnetic properties [73,74]. Adsorbents can be easily
separated from the system due to their magnetic character. Iron oxide NPs (Fe2O3 and
Fe3O4) have been found to remove a wide variety of HMs, such as arsenic and Cu(II) [75,76].
Coprecipitation-produced maghemite (γ Fe2O3) NPs have been proven to be suitable for
selectively removing toxic metals from wastewater [77], whereas hydrothermal prepara-
tions of Fe3O4 NPs functionalized with amino groups have been found to be useful for
adsorbing HMs such as cadmium, lead, and copper [78]. Polymer-fused Fe2O3 NPs have
been proven to be effective in the expulsion of divalent metal microparticles of Co, Ni, and
Cu at pH levels ranging from 3 to 7. HMs such as arsenic have also been demonstrated to
be decontaminated by iron oxide NPs. Fan et al. [79] examined novel MNPs (core–shell
Fe3O4@SiO2 NPs coated with iminodiacetic acid chelators) as potential remediators of
contaminated soil.

3.3. Carbon Nanotubes (CNTs)

CNTs are made up of a graphitic sheet that is rolled and shaped into a cylindrical
shape [80,81]. CNTs are extremely durable substances that are six times lighter and over
100 times more resistant in comparison to steel [82]. A significant advantage of CNTs is
their ability to bind strongly to the functional groups of pollutants, making them highly
effective adsorbents [83]. CNTs can be classified into two categories based on how many
cylindrical shells they contain, namely single-wall CNTs (SWCNTs) and multi-wall CNTs
(MWCNTs). CNTs are considered to be excellent NMs for the removal of various organic
and inorganic pollutants due to their extraordinary characteristics such as their unique
morphology, high reactivity, and a large specific surface area [84,85]. A variety of methods
can be used to manufacture CNTs, including arc discharge, chemical vapor deposition,
and laser ablation. Different methods of synthesizing CNTs with different reactants and
catalysts have a large impact on their adsorption capacities [86]. Rodríguez and Leiva [87]
studied the application of oxidized and double-oxidized MWCNTs for the removal of Zn2+,
Cu2+, and Mn2+ from acid waters, where the latter showed a higher adsorption rate close
to neutral pH as compared to the former and hence can be utilized as an alternative with
a high performance rate.

The successful usage of TFN membranes for the removal of HM ions from acid mine
drainage holds promising results for the future. In a recent study, the use of multi-walled
carbon nanotubes (MWCNTs) in the manufacture of TFN membranes further enhanced
their capacity owing to an increase in the diffusion of target monomers to the interface,
restricting the change in pH and increasing the rejection affinity for HM ions [88,89].

3.4. Metal Oxide Nanomaterials

Metal oxide NMs are considered as the primary choice for the removal of HMs via
surface complexation from varied targets on account of their promising physicochemical
properties. The surface complexation process increases with the decrease in the pH of the
soil, thus promoting the removal of contaminants at a higher pace. For the production of
NMs, raw materials are a major challenge, which is gradually being replaced by alternatives
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such as biopolymers produced from plants, microorganisms, or microbial sources. Ease of
synthesis, chemical stability, reactivity, and photocatalysis make TiO2 NMs the most widely
studied candidate for removal of HMs from a variety of sources [90,91].

Soil-augmented TiO2 NMs resulted in a 2.6 times increase in the removal of cadmium
and its accumulation in aerial parts of Glycine max via phytoremediation [92]. In an another
study, a 94 percent removal rate for Th(IV) was reported by the application of TiO2 at 4.0
pH [93]. A similar impact of acidic pH on cadmium removal was observed for iron(III)
oxide NMs at a pH of 6.0 [25]. A variety of iron oxide NMs have been designed and
successfully applied for the remediation of soil and water systems owing to their ease of
synthesis and negligible environmental impact. Some of the members of the iron oxide
family that have been successfully employed for the removal of HMs such as As5+, As3+,
Cr6+, Cr3+, and Pb2+ include magnetite, geothite, and maghemite [94]. A widely accepted
mechanism behind the removal of HMs from aqueous environments is the ability of NMs
to confiscate HM ions via adsorption, thus restricting their availability for further reaction.
The low toxicity of iron oxides to living organisms is another factor contributing to their
increased application in soil and water treatment schemes.

Studies on the impact of size of iron oxide NMs on a human cell line A549 involv-
ing various parameters such as DNA lesions and damage and mitochondrial damage
documented a low toxicity with a negligible impact of size on the cell line [95]. The low
toxicity of maghemite was attributed to its organic coating, which prevented the direct
exposure of the NMs to the cells [96]. The oxidizable fraction of HMs present in acid mine
drainage was successfully removed by employing Fe and Mn oxides, which were further
recovered by a series of chemical reactions [58]. The availability of wide structures and
a uniform size distribution resulting in an increased adsorption capacity make CuO-based
NMs demanding candidates for the successful removal of some prominent HMs ions such
as As5+, As3+, and Cr6+ from various matrices [97]. The advancement in technology leads
to the production of organic surfactant-bearer SiO2 NMs. An organic carrier with cyano as
the prominent functional group acting as the adsorption site resulted in an enhanced Cr3+

ion removal from a polluted site [98]. Metal-oxide-based NMs showed varying behaviors
under different environments and may be prone to losing their activity. For example, Fe
and Mn showed a reduction in their valent states in wetland environments. Similarly, acidic
environments resulted in a decreased activity in Al and Zn oxides [99].

4. Impact of Environmental Factors

Environmental factors play a prominent role in governing the impact of the activity
of NMs. The contaminant’s persistence and removal tendency are impacted by its sur-
roundings and the composition of the matrix. Some of the vital governing physicochemical
factors are temperature, pH, and contact time.

4.1. Temperature

The removal of HMs by NMs is aided by the adsorption process, which is impacted by
a change in temperature. A temperature rise beyond a threshold limit resulted in reduced
activity due to a rise in the rate of redox reactions. A temperature increase to 40 ◦C reduced
the removal rate of Hg(II) from chitosan–alginate NMs [100]. In some cases, a reverse
trend was observed, where the efficiency increased with the increase in temperature. The
dimensions, optical activity, and photocatalytic activity of titanium oxide NMs vary with an
increase in temperature. NM powder treated at 800 ◦C exhibited decreased photocatalytic
activity as compared to those treated with a 100 and 450 ◦C exposure due to the higher
recombination of photo-generated electrons and holes [101]. The effect of heat treatment
on the confiscation of metal ions from mine drainage using cobalt and ferrite NMs revealed
that heating facilitates the formation of magnetic NMs, thereby removing a significant
proportion of the contaminant metal ions such as Mg, Mn, and Al [102].
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4.2. pH

pH is another crucial aspect in determining the activity and efficiency of NMs. The
adsorption capacity of NPs, their ionic state, and the availability of HM is primarily
governed by the environmental pH [103]. The rate at which HMs are removed is highly
influenced by pH changes, and it was observed that phenomena such as precipitation and
electrostatic sorption become more prominent at neutral pH conditions [104]. Different
NMs showed varied trends at a similar pH. Su et al. [105] reported a positive effect of
S-nZVI on the removal of cadmium at a pH of 5. However, a reverse increasing trend was
observed for Cr(VI) involving similar NPs [106]. Similar observations were reported in
NZVI-treated samples containing Cr(VI) and Hg(II), in which the former led to a reduction
in the removal rate while the latter showed an increasing trend on raising the pH from
3.1–8.1 [107]. In another study carried by Xu and Zhao [59], a pH change from 9.0 to
5.0 had an alarming impact on the cellulose-stabilized NZVI-aided immobilization of
Cr(VI), thus reducing its leaching rate from initially 30% to 20%. The acidic pH of acid
mine drainage is the biggest challenge for its treatment. Graphene oxide (GO) has been
successfully employed for the treatment of such waters and shows a high removal capacity
at a lower pH. Furthermore, the complexation of GO with zinc nanocomposites under
different pH ranges was studied [108]. In similar studies, divalent metals’ adsorption using
GO was studied from a pH range of 2 to 8, and a 90% removal rate was achieved with the
maximum activity being at an acidic pH followed by a constant trend and a steady decline
at pH 8 [109].

4.3. Contact Time

The contact time is an important aspect in determining the efficiency of NM-mediated
HMs removal from the target sites. An increased contact time is generally accompanied by
an increased removal rate, as is evident from the increased adsorption rate. The impact
of contact time was studied using different models such as the Zeldowitsch model and
pseudo-first- and second-order models [110]. The trend of the adsorption of HMs ions on
the surface of NMs reported a rise during the initial stages followed by a snag until the
sorption equilibrium was reached. Similar findings were reported by Khoso et al. [111],
where nickel ferrite NMs were employed for the removal of Cd(II), Cr(VI), and Pb(II). Their
studies reported that the removal of metal ions increased with a rise in contact time, but
after 90 min, a reverse phenomenon of the desorption of metal ions began and adsorption
forces started to diminish as soon as the maximum equilibrium was attained. At a constant
adsorbent dosage of 10 mg and a 90 min contact time of nickel ferrite, a maximum removal
efficiency up to 85.21% and 84.45% was achieved for Cr(VI) and Cd(II) ions, respectively
whereas for Pb(II) ions, this rate was 77.41% in 120 min. In another study, nZVI–Fe3O4 NMs
eliminated Cr(VI) within 2 h followed by a declining trend after attaining equilibrium [112].
Mine and farmland soils contaminated with Pb(II), Cd(II), and Zn(II) treated with organic
acids combined NZVI reported an increased removal efficiency in 120 min followed by
a steady decrease until the point of equilibrium was attained [61].

5. Conclusions

The increasing accumulation of contaminants at all levels of the environment has
increased demands for sustainable technology. NMs hold a promising future in this
direction owing to their inertness, eco-friendly nature, high efficiency, and size flexibility,
which gives them an edge over conventional techniques. They can be easily applied
across different matrices, i.e., soil, surface, or ground water as remediation tools. Other
characteristics which make NMs a preferred means of decontamination are their high
adsorption abilities and reusability, which remain unaffected by rapid changes in pH
and temperature, thus making them suitable for highly acidic acid mine treatment. As
the research on NMs is still in its infancy, there are certain disadvantages and possible
risks linked with their use. The major limitations associated with use of NMs include
accumulation and toxicity, owing to their possible interaction with the environmental
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components and thus posing another challenge for researchers in terms of their potential
role as decontaminants. NMs get easily mobilized and hence can be dispersed across
long distances, because of which they may be difficult to track and might pose a risk
of bioaccumulation in non-target species resulting in ecotoxicity. NMs may further get
oxidized on encountering microbial entities and varying environmental factors resulting in
the production of reactive oxygen species, which may have a detrimental effect on plants
and other living organisms. Hence, detailed studies are needed to determine the precise
fate of NPs in the environment in order to establish their utility in harmony with nature
and in order to obtain sustainable solutions for environmental remediation.
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