A Monthly Hydropower Scheduling Model of Cascaded Reservoirs with the Zoutendijk Method
Abstract
:1. Introduction
2. Problem Formulation
- 2
- The water balance,
- 2
- Upper and lower bounds on storage and release, respectively,
- 3
- Firm hydropower output,
- 4
- Hydropower output and the capacity of generating discharge,
3. Solution Techniques
3.1. Reformulation into Lagrange Dual Problem
3.2. Initial Feasible Solutions
3.3. Application of the Zoutendijk Method
4. Case Studies
4.1. Engineering Background
4.2. Results of Curve Fitting
4.3. Scheduling Results of the Cascaded Hydropower Plants
5. Conclusions
- (1)
- The Zoutendijk method is well applicable to the monthly hydropower scheduling of cascaded reservoirs, deriving results that are reasonable and reliable;
- (2)
- The exponential functions used to fit the forebay and tailwater curves showed a very high fitting accuracy at more than 99.5%, showing a great prospect to make segmented curves derivable when formulating a hydropower scheduling problem.
- (3)
- The Zoutendijk method can significantly increase the total hydropower production while ensuring the highest firm power output of the whole cascade.
- (4)
- This solution procedure is very fast in securing the optimum to the problem.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nautiyal, H.; Singal, S.; Varun; Sharma, A. Small hydropower for sustainable energy development in India. Renew. Sustain. Energy Rev. 2011, 15, 2021–2027. [Google Scholar] [CrossRef]
- Galletti, A.; Avesani, D.; Bellin, A.; Majone, B. Detailed simulation of storage hydropower systems in large Alpine watersheds. J. Hydrol. 2021, 603, 127125. [Google Scholar] [CrossRef]
- Kang, C.; Chen, C.; Wang, J. An Efficient Linearization Method for Long-Term Operation of Cascaded Hydropower Reservoirs. Water Resour. Manag. 2018, 32, 3391–3404. [Google Scholar] [CrossRef]
- Chen, C.; Kang, C.; Wang, J. Stochastic Linear Programming for Reservoir Operation with Constraints on Reliability and Vulnerability. Water 2018, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Zheng, H.; Qiao, Y.; Yang, Z.; Wang, J.; Liu, S. Weekly hydropower scheduling of cascaded reservoirs with hourly power and capacity balances. Appl. Energy 2022, 311, 118620. [Google Scholar] [CrossRef]
- Zheng, H.; Feng, S.; Chen, C.; Wang, J. A new three-triangle based method to linearly concave hydropower output in long-term reservoir operation. Energy 2022, 250, 123784. [Google Scholar] [CrossRef]
- de Barros, M.T.L.; Tsai, F.T.-C.; Yang, S.-L.; Lopes, J.E.G.; Yeh, W.W.-G. Optimization of Large-Scale Hydropower System Operations. J. Water Resour. Plan. Manag. 2003, 129, 178–188. [Google Scholar] [CrossRef]
- Ji, C.-M.; Wu, H.; Li, C.-G. Optimal scheduling system for reservoir electric power generation based on functional dynamic programming algorithm. J. Interdiscip. Math. 2018, 21, 1267–1272. [Google Scholar] [CrossRef]
- Wang, W.; Ding, Y.S.; Li, R.F.; Chen, L.J. A Modified Particle Swarm Optimization Algorithm for Optimal Scheduling of Multi-Reservoir System. In Proceedings of the 3rd International Conference on Risk Analysis and Crisis Response, Laredo, TX, USA, 22–25 May 2011; pp. 88–94. [Google Scholar]
- Arunkumar, R.; Jothiprakash, V. Chaotic Evolutionary Algorithms for Multi-Reservoir Optimization. Water Resour. Manag. 2013, 27, 5207–5222. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Janbaz, M.; Loáiciga, H.A. Application of the gravity search algorithm to multi-reservoir operation optimization. Adv. Water Resour. 2016, 98, 173–185. [Google Scholar] [CrossRef]
- Shang, L.; Shang, Y.; Hu, L.; Li, J. Performance of genetic algorithms with different selection operators for solving short-term optimized reservoir scheduling problem. Soft Comput. 2019, 24, 6771–6785. [Google Scholar] [CrossRef]
- Avesani, D.; Zanfei, A.; Di Marco, N.; Galletti, A.; Ravazzolo, F.; Righetti, M.; Majone, B. Short-term hydropower optimization driven by innovative time-adapting econometric model. Appl. Energy 2022, 310, 118510. [Google Scholar] [CrossRef]
- De Ladurantaye, D.; Gendreau, M.; Potvin, J.-Y. Optimizing profits from hydroelectricity production. Comput. Oper. Res. 2009, 36, 499–529. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zheng, H.; Feng, S.; Chen, C.; Wang, J. Optimal multireservoir operation for flood control under constrained operational rules. J. Flood Risk Manag. 2022, 15, e12825. [Google Scholar] [CrossRef]
- Wang, T.; Mo, L.; Shen, Q.; Zou, Y.B.; Yi, M. Multi-objective ecological operation of cascade reservoirs based on MGCL-PSO algorithm. IOP Conf. Ser. Earth Environ. Sci. 2020, 612, 012025. [Google Scholar] [CrossRef]
- Wei, N.; Yang, F.; Lu, K.; Xie, J.; Zhang, S. A Method of Multi-Objective Optimization and Multi-Attribute Decision-Making for Huangjinxia Reservoir. Appl. Sci. 2022, 12, 6300. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, N.; Chen, L.; Ding, Y.; Zhou, J.; Zha, G.; Luo, G.; Dai, L.; Yang, X. Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin. Water 2018, 10, 1250. [Google Scholar] [CrossRef] [Green Version]
- Morovati, V.; Pourkarimi, L. Extension of Zoutendijk method for solving constrained multiobjective optimization problems. Eur. J. Oper. Res. 2018, 273, 44–57. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, Y.; Wei, Z. A descent nonlinear conjugate gradient method for large-scale unconstrained optimization. Appl. Math. Comput. 2007, 187, 636–643. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Hossain, F. Forecast-informed hydropower optimization at long and short-time scales for a multiple dam network. J. Renew. Sustain. Energy 2020, 12, 014501. [Google Scholar] [CrossRef]
Abbreviations | Corresponding Meaning |
---|---|
LP | Linear programming |
MILP | Mixed integer linear programming |
HOF | Hydropower output function |
NLP | Nonlinear programming |
DP | Dynamic programming |
HP | Heuristic programming |
PSO | Particle swarm optimization |
EA | Evolutionary algorithms |
GSA | Gravity search algorithm |
GA | Genetic algorithm |
MGCL-PSO | Multi group cooperation operation particle swarm optimization |
Number | Name | Annual Inflow (m3/s) | Installed Capacity (MW) | Storage Capacity (108 m3) | Dam Height (m) | Operability |
---|---|---|---|---|---|---|
1 | Wunonglong | 743 | 990 | 2.65 | 137.5 | Daily |
2 | Huangdeng | 902 | 1900 | 1.418 | 203 | Seasonal |
3 | Xiaowan | 1210 | 4200 | 145.57 | 1245 | Over-year |
4 | Manwan | 1230 | 1670 | 3.716 | 1002 | Seasonal |
5 | Dachaoshan | 1340 | 1350 | 7.42 | 906 | Seasonal |
6 | Nuozhadu | 1740 | 5850 | 217.776 | 821.5 | Over-year |
Name | Average MSE | |||||
---|---|---|---|---|---|---|
1 | Wunonglong | 0.13 | −5.43 | 1.01 | 1868.89 | 0.00% |
2 | Huangdeng | 0.08 | 648.49 | 0.91 | 1582.38 | 0.02% |
3 | Xiaowan | 0.04 | 4662 | 0.82 | 1165.98 | 0.05% |
4 | Manwan | 0.11 | 136.59 | 0.89 | 980.42 | 0.05% |
5 | Dachaoshan | 0.11 | 425.35 | 0.84 | 884.54 | 0.00% |
6 | Nuozhadu | 0.02 | 9554 | 0.82 | 760 | 0.06% |
Name | Average MSE | |||||
---|---|---|---|---|---|---|
1 | Wunonglong | 0.002 | 199.96 | 0.97 | 1818.23 | 0.02% |
2 | Huangdeng | 0.005 | 149.99 | 0.89 | 1473.8 | 0.03% |
3 | Xiaowan | 0.002 | −0.01 | 1.00 | 990.83 | 0.00% |
4 | Manwan | 0.014 | 197 | 0.76 | 896.36 | 0.02% |
5 | Dachaoshan | 0.009 | 300 | 0.9 | 811.63 | 0.05% |
6 | Nuozhadu | 0.38 | −31.98 | 0.45 | 591.49 | 0.00% |
Firm Output (MW) | Total Output (MW) | CPU Time (Second) | Number of Optimizations | Is Optimal |
---|---|---|---|---|
146,476.11 | 2,529,067 | 7.539 | 86 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Feng, S.; Xu, Z.; Jiang, Y.; Wang, Y.; Chen, K.; Wang, J. A Monthly Hydropower Scheduling Model of Cascaded Reservoirs with the Zoutendijk Method. Water 2022, 14, 3978. https://doi.org/10.3390/w14233978
Zhou B, Feng S, Xu Z, Jiang Y, Wang Y, Chen K, Wang J. A Monthly Hydropower Scheduling Model of Cascaded Reservoirs with the Zoutendijk Method. Water. 2022; 14(23):3978. https://doi.org/10.3390/w14233978
Chicago/Turabian StyleZhou, Binbin, Suzhen Feng, Zifan Xu, Yan Jiang, Youxiang Wang, Kai Chen, and Jinwen Wang. 2022. "A Monthly Hydropower Scheduling Model of Cascaded Reservoirs with the Zoutendijk Method" Water 14, no. 23: 3978. https://doi.org/10.3390/w14233978
APA StyleZhou, B., Feng, S., Xu, Z., Jiang, Y., Wang, Y., Chen, K., & Wang, J. (2022). A Monthly Hydropower Scheduling Model of Cascaded Reservoirs with the Zoutendijk Method. Water, 14(23), 3978. https://doi.org/10.3390/w14233978