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Abstract: In this study, we describe the variation in δ13C value in the litter of two species of
peat-forming plants: Sphagnum fuscum and Eriophorum vaginatum, during 3 years of field
decomposition in oligotrophic bog ecosystems drained for the purpose of forest melioration and
fire affected and at the stage of post-pyrogenic restoration. Litterbags were periodically retrieved in
the autumn and the δ13C value in the residual litter was related to mass loss, litter chemistry, and
hydrothermal conditions. Sph. fuscum decomposes much more slowly than E. vaginatum. Low rate of
transformation for Sph. fuscum is observed in drained and post-pyrogenic sites, while for E. vaginatum
minimal rate of transformation is observed in the native site. During the decomposition of Sphagnum
residues, 13C enrichment occurs, and during the decomposition of E. vaginatum, we observed 12C
enrichment. The changes in the isotope composition of carbon for investigation sites are insignificant
for Sphagnum fuscum, but it was observed for E. vaginatum, the largest of 13C depletion is observed in
the drained site (−28.3‰) and minimal in the postpyrogenic site (−27.4‰).

Keywords: peat-forming plants; carbon isotope composition; decomposition; oligotrophic bog;
drained peatlands; postpyrogenic peatlands

1. Introduction

Occupying a small area (about 3–5%) of the land surface, wetland ecosystems play
a significant role in the biosphere, including the global carbon cycle, being sources and
sinks of greenhouse gases [1–3]. On the territory of Western Siberia, the area of bog
ecosystems is almost 50%; peat deposits contain about 36% of the total pool of soil carbon
in Russia [1,4,5]. The process of carbon accumulation in peat prevails over the process
of its emission, due to the slow process of decomposition of plant residues. This causes
a constant increase in peat deposits and the development of bog ecosystems. There are
relatively few works devoted to the study of the dynamics of decomposition of peat-
forming plants in bog ecosystems [6–16]. The rate of decomposition of plant residues
depends on the chemical composition of plants and the hydrothermal conditions under
which these processes occur [6,17–19]. While humidity and temperature play a leading role
in the transformation of plant residues [6,7,17,20], changing weather conditions cause an
irregular, intermittent peat-forming process, which is typical for raised bogs that receive
their main water supply from precipitation. Climatic changes or anthropogenic impact
(drainage) influence the hydrothermal regime of bogs. These variations lead to changes in
biogeochemical cycles since warming and a decrease in the level of bog waters stimulate
the process of decomposition of organic matter and increase the intensity of CO2 release
into the atmosphere. In addition, it leads to changes in the composition and structure of
the vegetation cover [1,21–24].

Melioration, especially for agricultural purposes, leads to the stimulation of microbial
decomposition of organic matter and to an increase in the heterotrophic carbon flux into the
atmosphere [25,26]. Forest melioration is one of the most sparing options for draining peat
soils. Oligotrophic bogs of Western Siberia are in very favorable climatic conditions. Due to

Water 2022, 14, 4035. https://doi.org/10.3390/w14244035 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14244035
https://doi.org/10.3390/w14244035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w14244035
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14244035?type=check_update&version=1


Water 2022, 14, 4035 2 of 12

the predominance of precipitation over evaporation, there is a rapid recovery of bog ecosys-
tems after forest melioration [27]. Moreover, one of the most significant factors influencing
the biogeochemical cycles of bog ecosystems is fires [28]. The restoration of ecosystems
and their biogeochemical cycles after fires in natural conditions is of considerable scientific
and practical interest. Post-pyrogenic succession is characterized by a gradual change in
ecosystems, accompanied by a change in species richness and biomass, and, accordingly,
the rate of transformation of organic matter and its chemical composition [29,30].

Many biogeochemical processes are accompanied by a change in the stable carbon
isotope ratio, due to which different components of ecosystems and different ecosystems
differ in their isotope composition [31]. A change in the stable carbon isotope ratio in-
dicates ongoing biochemical transformations and, therefore, makes it possible to obtain
information about the functioning of ecosystems in natural or disturbed conditions, as
well as to use it to identify the direction and intensity of processes associated with isotope
fractionation [32–34]. A large number of studies are devoted to terrestrial and aquatic
ecosystems [35–41]. Changes in δ13C value during the decomposition of plant residues
depend on many factors, including changes in the ratio of chemical components of the
plant tissues themselves [42], as a result of which δ13C value may change non-linearly
during transformation. There are many studies devoted to the study of the isotope compo-
sition of natural ecosystems. However, data on changes in the isotope composition in bog
ecosystems are not so numerous; moreover, these data are often contradictory depending
on the study area, types of ecosystems, and plants themselves [35,36,38,41,43–45]. Studies
conducted in bog ecosystems are mainly related to the study of the isotope composition
of peat organic matter [46–51]. Very rarely have the plants themselves or the early stages
of transformation of plant remains been studied [52–57]. On the territory of the southern
taiga subzone of Western Siberia, the issue of changes in the isotope composition during
the transformation of plant remains has practically not been studied at all [58], especially
in bog ecosystems subject to anthropogenic or pyrogenic influence.

The purpose of the study was to assess the change in the carbon isotope composition
during the transformation of plant residues Sph. fuscum and Eriophorum vaginatum in
oligotrophic bog ecosystems drained for forest melioration and passed through by fire and
at the stage of postpyrogenic restoration.

2. Materials and Methods

The measurement site is located in the south of Western Siberia (Russia). The study was
carried out on two oligotrophic bogs “Vasuyganskoe” (field station “Vasyuganye” (IMCES
SB RAS)) and “Iksinskoe”, belonging to the northeastern spurs of the Great Vasyugan bog
and located in the Bakcharsky district of the Tomsk region. Since the 1970s, ameliorative
canal network has been operating in these bogs, as a result of which cardinal changes in
the natural environment occurred in the bogs, in particular, the drainage of significant bog
areas, which caused massive forest and peat fires [59].

Two observation sites were chosen for the study at Vasuyganskoe bog—the native
pine-shrub-sphagnum phytocenosis 56◦52′31.7′′ N 82◦48′27.3′′ E (VASnat) and the pine-
shrub-sphagnum phytocenosis located near the drainage canal 56◦53′33.3′′ N 82◦51′08.0′′ E
(VASdry). The Iksinskoe bog is located between the Iksa and Shegarka rivers (Figure 1). In
1998, a large part of the territory burned out in the drained area of the Iksinskoe bog. The
vegetation cover from the near-surface peat layer in the bogs was completely destroyed [59].
The following two sites with different degrees of pyrogenic succession were selected
for the study: a pine-shrub-sphagnum phytocenosis with a well-defined undergrowth
56◦51′42.1′′ N 83◦17′53.0′′ E (Iksa2) and a pine-birch-cotton grass-sphagnum phytocenosis
with a less pronounced degree of pyrogenic succession 56◦52′03.4′′ N 83◦11′52.1′′ E (Iksa1).

The data on weather conditions were obtained from the nearest meteorological station,
Bakchar [rp5.ru], located 40 km from the study site. An atmospheric soil measuring complex
was used to monitor the soil temperature and the level of bog waters [60]. The peat deposit
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temperature was measured 5; 10; 20 cm deep into the peat. Soil temperature data were
obtained for the period from September 2018 to September 2021.
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Figure 1. Site locations of studied peatlands, Western Siberia (Tomsk region).

2.1. Determination of the Decomposition Rate of Peat-Forming Plants

The following two dominant species of the modern plant cover of oligotrophic bogs
have been chosen to study the decomposition of peat-forming plants: Sph. fuscum and
E. vaginatum. The decomposition rate of plants was determined by the method of partially
isolated samples, which is widely used to study the transformation processes of plant
material and peat [Golovatskaya, Nikonova, 2017].

In September 2018, we sampled the moss litter of Sph. fuscum (their top 10 cm-long
parts) and remains of E. vaginatum on each of the studied bogs. The plant samples were
air-dried at a laboratory and placed in nylon bags 15 × 15 cm size. Each plant sample
weighed 10 g. The prepared bags with plants were placed into peat deposits at a depth of
10 cm from the moss surface (sphagnum fiber) in September 2018. In total, 96 bags were
prepared (48 bags for each type of plant residue)

Mass loss (ML, % of the initial mass of plant sample) was calculated by the follow-
ing equation:

ML(%) =
M0−Mt

M0
× 100 (1)

where M0 is dry mass of the initial sample and Mt is dry mass of sample remained in bag
over 12-, 24-, and 36-month-long periods after the experiment start.

To assess the change in the content of total C in the initial samples of the studied
plants, we used the method of simultaneous determination of the total C content in peat
soils elaborated by Anstett’s method modified by Ponomareva and Nikolaeva [61,62]. The
analyses were performed in three replications.

The carbon isotope composition was determined by isotope ratio mass spectrome-
try [63] using a DELTA V Advantage isotope mass spectrometer combined with a Flash
2000 elemental analyzer (Thermo Fisher Scientific, Bremen, Germany) equipped with a
redox reactor. All samples were milled, after which a sample was placed in tin capsules (tin
of a high degree of purity). The optimal weight of a sample for carbon isotope analysis was
450–500 µg. Encapsulated samples were placed in an autosampler of elemental analyzer.
The capsule fell into an oxidizing reactor heated to 1020 ◦C and filled with Cr2O3 and
Co3O4 granules, burned in a carrier gas flow (helium, 250 mL/min) with a simultaneous
supply of pure oxygen (180 mL/min). The resulting oxidation products (CO2) entered
the reduction reactor. A magnesium perchlorate trap was used to remove water. Carbon
dioxide entered the DELTA V Advantage mass spectrometer via a capillary through a
Conflo IV gas distribution system.
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The isotope composition was determined by the following formula:

δnX =

[Rsample − Rstandard

Rstandard

]
× 1000 (2)

where nX are 13C isotopes (‰); Rsample is the ratio of the heavy to light isotope in the test
sample; Rstandard is the ratio of heavy to light isotope in the standard.

Laboratory reference gas (CO2) was calibrated against IAEA Reference Material IAEA-
CH-3 Cellulose with a known stable isotope ratio as follows: δ13C VPDB = –24.72 ± 0.04‰.
The absolute measurement error for three repetitions of the analyzed samples is no more
than 0.2‰.

2.2. Statistical Analysis

The influence of plant species and site ecosystem type on the rate of decomposition
and dynamics of carbon isotope composition was tested using two-way analysis of variance.
Student’s t-test was used to assess significant differences in the chemical composition of
the litter within and between plant species. All statistical analyzes were performed using
Statistics for Windows v. 6.0.

3. Results
3.1. Weather and Hydrothermal Conditions

During the study period (2018–2021), the average annual temperature was
0.79 ± 1.47 ◦C, and the average annual cumulative precipitation was 524 ± 92 mm. The
average temperature of the growing season from the beginning of May to the end of
September was about 13.9 ◦C, and the amount of precipitation during the growing season
(May–September) was 277 mm (Figure 2).
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Figure 2. Weather conditions: average monthly air temperature and precipitation, average for
2019–2021.

On average, over the period of the experiment site, VASdry was characterized by
the lowest level of bog waters (WTL) −55 cm and the lowest average temperature at a
depth of 15 cm during the growing season (+9.5 ◦C). Iksa1 was the most watered area
(WTL = −17 cm) and was characterized by the warmest conditions of the peat deposit
(+13.6 ◦C).

Iksa2 was also quite watered (WTL −27), but the temperature of the peat deposit is
much lower (+10.7 ◦C). VASnat conditions occupied an intermediate position between
drained (VASdry) and pyrogenic (Iksa1) peatlands—low WTL (–40 cm), relatively warm
conditions of a peat deposit (+12.2 ◦C).
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3.2. Decomposition Rate

After 3 years of decomposition, the average mass loss for sphagnum litter was 25%
(from 19.3 to 30.9% depending on the sites), and E. vaginatum litter was on average 64%
(56.6–67.9%) (Table 1).

Table 1. Percentage of mass loss and chemical composition in initial samples and after 3 years of
field decomposition.

Plant Species Site Mass Loss, % C, % δ13C, ‰ N, % C/N Lig Lig/N

Sph. fuscum

Initial sample 45.1 ± 0.6 −31.2 ± 0.2 0.4 ± 0.0 118 ± 1 12.2 32
VASnat 30.9 ± 8.9 47.3 ± 0.5 −30.1 ± 0.1 - - - -
VASdry 27.6 ± 3.7 45.9 ± 1.4 −29.9 ± 0.2 - - - -

Iksa1 19.3 ± 1.1 44.2 ± 0.8 −30.1 ± 0.2 - - - -
Iksa2 22.3 ± 5.3 45.5 ± 0.1 −30.0 ± 0.2 - - - -

E. vaginatum

Initial sample 47.0 ± 0.4 −26.1 ± 0.2 1.0 ± 0.0 49 ± 0.1 20.3 22
VASnat 56.6 ± 5.8 47.4 ± 1.9 −27.9 ± 0.1 - - - -
VASdry 67.9 ± 1.4 47.8 ± 0.1 −28.3 ± 0.6 - - - -

Iksa1 67.4 ± 3.4 47.6 ± 0.6 −27.9 ± 0.2 - - - -
Iksa2 64.9 ± 5.4 47.5 ± 0.6 −27.4 ± 0.2 - - - -

The most intensive decomposition occurred within 1 year of the experiment, with
the exception of fuscum in the natural area, in which the maximum losses were obtained
within 3 years. On average, the loss of mass of organic matter during 1 year was 56% and
62% of the total loss for the entire period of the experiment (3 years) for Sph. fuscum and
E. vaginatum, respectively (Figure 3). The process of transformation of plant residues of
Sph. fuscum occurred more intensively in VASnat and VASdry sites, while the decomposition
of moss on Iksa1 and Iksa2 postpyrogenic peatlands was slower. On the VASdry and VASnat
sites, the mass loss during the 3 years of the experiment was comparable to (VASdry) or
even exceeded (VASnat) the weight loss during the 1-year period. We assume that the
increase in the rate of decomposition of Sphagnum fuscum during the third year of the
experiment is associated with the activation of microbiological activity. The decomposition
of E. vaginatum, on the contrary, proceeded more slowly in natural conditions.
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3.3. Variability of the Isotope Composition

The carbon content in the litter decreased after one year of the experiment, for
Sph. fuscum by 3–5% and for E. vaginatum by 1.5–4%. By the end of the second year,
the content of C had significantly increased in Sph. fuscum in the VASnat and Iksa1 (on
average, 5%). In E. vaginatum, the carbon content also increased, but not so significantly.
After 3 years, the carbon content returned to its initial values in all samples, with the
exception of Sph. fuscum in the VASnat (Figure 4).
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Figure 4. Dynamics of carbon content in the process of transformation of plant residues of Sph. fuscum
and E. vaginatum.

According to the analysis of the isotope composition of plant residuals (Figure 5),
during the transformation of Sph. fuscum at all sites, the carbon isotope composition became
heavier by an average of 1‰. For Sph. fuscum enrichment in the heavy carbon isotope was
observed throughout the period at all sites, except for the VASdry one, where during the
1st year of the experiment a low δ13C value was observed, followed by an increase. For
E. vaginatum, the reverse process was observed as follows: the carbon isotope composition
changed by an average of −1.8‰. A significant change in the isotope composition of
E. vaginatum occurred during 1 year of the experiment, when the average δ13C value
was −28‰. Low δ13C values occurred in the E. vaginatum at all sites during the first and
second years of incubation. During the third year, there is a slight enrichment by 13C; how-
ever, the δ13C value remains significantly lower than in the initial samples. An exception is
the E. vaginatum placed at the dried site, where, as a result of the leaching regime, continues
despite rather high mass losses.

The results of the correlation analysis showed a close relationship between weight loss
and changes in the isotope’s composition (Figure 6). For Sph. fuscum, the relationship was
positive (correlation coefficient 0.81), and for E. vaginatum, it was negative (−0.79).

According to a two-way analysis of variance, the δ13C value of the residual plants
significantly varied depending on the plant species and not depending on the location of
the samples (Table 2).
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Table 2. Summary of the ANOVA for the effect of plant species and location of the samples on value
δ13C in plant residuals.

Factor Df F Value p

Plant species 1 168.238 <0.05
Sites 3 1.3 <0.05

Plant species × Sites 3 0.892 <0.05

The influence of the location on the δ13C value most clearly appears during the 1st
year of the experiment for both Sph. fuscum and E. vaginatum. At the same time, samples
of Sph. fuscum incubated in the VASnat and in the Iksa2 area have similar δ13C values
throughout the period of investigation, significantly differing from the VASdry and Iksa1.
For E. vaginatum, significant differences in the δ13C value were found in the location for all
sites, and, unlike sphagnum, the maximum difference was observed between samples on
VASnat and Iksa2 during the first year. By the end of the third year, the differences in the
location of the samples are not significant.
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4. Discussion

The obtained differences in the rate of mass loss of Sph. fuscum and E. vaginatum are
significant and are consistent with previously obtained data [12,19]. Sphagnum mosses
contain the least amount of bitumen and many easily hydrolyzable and water-soluble
compounds of the carbohydrate complex; therefore, sphagnum mosses should be the least
resistant to decomposition. However, they also contain a specific phenolic compound,
sphagnol, which prevents rapid bacterial decomposition [64]. The low content of lignin
can also contribute to slow decomposition. Nutrient-enriched plant residues with a high
nitrogen content, a minimal C/N ratio, and a low lignin content usually quickly decompose.
For plant residues with a low nitrogen content, a wide C/N ratio, and a high lignin
content, the decomposition rate is much lower. In this case, not only the lignin content
but also the lignin/nitrogen ratio is an important factor, since it has been shown that
the higher the lignin/nitrogen ratio, the slower the decomposition occurs [65,66]. We
assume that due to the low nitrogen content (0.4%) with a rather high lignin content
(12%), a high lignin/nitrogen ratio (32) was obtained, which apparently contributes to a
lower decomposition rate of Sphagnum fuscum. Sphagnum mosses and in some species of
herbaceous plants (Carex, Eriophorum, Scheuchzeria) hemicellulose predominates among
carbohydrates, which is also more resistant to decomposition [64]. Thus, sphagnum
mosses have chemical and mechanochemical immunity, which allows them to remain
in deposits. The rapid decomposition of plant residues at the initial stages is associated
with the processes of leaching of easily soluble substances from fresh plant litter, as well
as the intensive activity of microorganisms [67–72]. Microorganisms destroy the easiest
available components of the carbohydrate and polypeptide complexes, the content of
which decreases with time, and, accordingly, the loss of organic matter decreases [8,73].
Sphagnum organic matter can contain up to 20% labile water-soluble components such as
carbohydrates [74]. The loss of these substances explains the large mass loss in the earliest
stages of peat formation [75].

The influence of the location on the change of δ13C value can be assessed through such
parameters as peat temperature and the water table level. The results of the correlation
analysis showed a weak relationship between the temperature of the peat deposit and
the δ13C value (r = −0.29, p < 0.05 and −0.41 p < 0.05 for Sph. fuscum and E. vaginatum,
respectively). The dependence dynamics of the δ13C value on temperature were noted in
the article by Bragazza and Iacumin [15]. They studied seasonal dynamics and observed
13C enrichment during the summer period and 13C depletion in the winter. In addition,
studies of litter decomposition under laboratory conditions show changes in the δ13C value
depending on temperature [76].

The analysis of the influence of the water table level in the studied areas did not reveal
a relationship between the δ13C value and the water table level. Obviously, this is because
even at sufficiently low water levels, the moisture content of the upper horizons of the peat
deposit remains quite high (80–85%). Therefore, the decrease in the water table level is less
critical for the dynamics of the δ13C value in comparison with the change in temperature.
At the same time, a decrease in the water table level leads to an increase in the rate of
transformation of plant residues under drier conditions, decomposition proceeds more
intensively, which is consistent with other studies [10,18,19,53]

The change in δ13C value was different for the two species, the δ13C value of
Sph. fuscum litter was enriched, while the δ13C value of E. vaginatum litter decreased.
We assume that this also depends on the chemical composition of the plants. Eriophorum
has a higher content of cellulose, lignin and lignin-like substances, alcohol-soluble com-
pounds (including aromatic and aliphatic carbohydrates, terpenes, carbolic acids, resins,
and fatty acids, essential oils, fats, and phytosterols) [58]. Since soluble elements are more
enriched in the heavy carbon isotope than lipids and lignins, the removal of the soluble
fraction as a result of leaching will lead to low δ13C values [36,77,78]. Our data are consis-
tent with previous studies in which low δ13C values were noted at the early stages of the
decomposition of plant residues [38,41]. Over time, the rate of transformation significantly
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decreases, probably due to the transformation process proceeds largely due to the activity of
microorganisms. Probably, as a result of the activation of microorganisms, the accumulation
of a heavy isotope can occur due to the contribution of microbial organic compounds [15].
Earlier studies also noted that enrichment by the heavy isotope can be caused by the
inclusion of carbon from soil organic matter by decomposers Wedin et al., [36], in addition,
it was found that significant changes occur in microfungal communities [79].

5. Conclusions

Quantitative estimates of the rate of decomposition of two species of peat-forming
plants (Sph. fuscum and E. vaginatum) were obtained during 36 months of a field experiment.
The highest resistance to decomposition, whose mass loss over the three years of the
experiment was 19–31%, characterized the samples of Sph. fuscum. E. vaginatum showed
the least resistance to decomposition with the maximum mass loss—56–68% after three
years. The most intensive decomposition of plant residuals was observed during the first
year of the experiment; further, the rate of decomposition of organic matter decreased.

The rate of decomposition is determined by environmental conditions, but primarily
the rate depends on the chemical composition of plants. The next most important factor
is the temperature, the higher the temperature. The influence of the water level on the
transformation process is unreliable. Our study revealed significant differences in the
dynamics of the δ13C value during the decomposition of plant residues. After 3 years,
Sph. fuscum showed a high δ13C value, while E. vaginatum showed a low δ13C value
relative δ13C values of the initial samples. Due to the peculiarities of the morphological
and chemical structure of Sphagnum fuscum, the δ13C value in plant residues is associated
with microbiological activity, and the enrichment by the 13C isotope most likely occurs due
to microbial biomass. E. vaginatum was characterized by rapid mass loss. This leads to
a sharp decrease in the δ13C value and subsequent slight enrichment in the 13C isotope
with a decrease in the transformation rate due to a decline in the role of leaching and an
increase in the role of microbial decomposition, which leads to an increase in the content of
13C isotope due to microbial biomass. The changes in the isotope composition of carbon at
the investigation sites are insignificant for Sphagnum fuscum, but they were observed for
E. vaginatum. The largest decrease in the δ13C value is observed in the drained site VASdry
(the δ13C value was −28.3‰ for the third year of the experiment relative −26.1‰ for the
initial sample) and minimal in the post-pyrogenic site Iksa2 (the difference between the
δ13C value in the third year of the experiment and the δ13C value of the initial sample
was −1.3‰).
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