The Chemically Modified Leaves of Pteris vittata as Efficient Adsorbent for Zinc (II) Removal from Aqueous Solution
Abstract
:1. Introduction
2. Experimental Set up
2.1. Preparation of Adsorbate Solutions
2.2. Preparation of Biosorbent
2.3. Chemical Modification of Biosorbent
2.4. Characterization of CMPVL
2.5. Adsorption Experiment
2.6. Isotherm Analysis
2.7. Kinetic Study
2.8. Influence of pH and Adsorbent Dose
2.9. Thermodynamic Study
3. Result and Discussion
3.1. Characterization of CMPVL
3.1.1. FTIR Spectra of Unloaded and Loaded Samples
3.1.2. SEM Study
3.1.3. EDX Study
3.1.4. TGA Analysis
3.1.5. Surface Area and Pore Volume
3.2. Adsorption Isothermal Investigation
3.2.1. Freundlich Isotherm
3.2.2. Langmuir Isotherm
3.2.3. Temkin Adsorption Isotherm
3.2.4. Jovanovic Isotherm Model
3.2.5. Harkins–Jura Isotherm
3.3. Kinetic Study
3.3.1. Pseudo First Order Kinetic Model
3.3.2. Pseudo Second Order Kinetic Model
3.3.3. Power Function Kinetic Model
3.3.4. Natarajan and Khalaf Kinetic Model
3.3.5. Intraparticle Kinetic Model
3.4. pH Study
3.5. Impact of the Biosorbent Dosage
3.6. Adsorption Thermodynamics
3.7. Comparative Study with the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panda, L.; Jena, S.K.; Rath, S.S.; Misra, P.K. Heavy metal removal from water by adsorption using a low-cost geopolymer. Environ. Sci. Pollut. Res. 2020, 27, 24284–24298. [Google Scholar] [CrossRef] [PubMed]
- Agoro, M.A.; Adeniji, A.O.; Adefisoye, M.A.; Okoh, O.O. Heavy Metals in Wastewater and Sewage Sludge from Selected Municipal Treatment Plants in Eastern Cape Province, South Africa. Water 2020, 12, 2746. [Google Scholar] [CrossRef]
- Hossain, N.; Nizamuddin, S.; Shah, K. Thermal-chemical modified rice husk-based porous adsorbents for Cu (II), Pb (II), Zn (II), Mn (II) and Fe (III) adsorption. J. Water Process. Eng. 2022, 46, 102620. [Google Scholar] [CrossRef]
- Brower, J.B.; Ryan, R.L.; Pazirandeh, M. Comparison of Ion-Exchange Resins and Biosorbents for the Removal of Heavy Metals from Plating Factory Wastewater. Environ. Sci. Technol. 1997, 31, 2910–2914. [Google Scholar] [CrossRef]
- Çay, S.; Uyanık, A.; Özaşık, A.J.S. Single and binary component adsorption of copper (II) and cadmium (II) from aqueous solutions using tea-industry waste. Sep. Purif. Technol. 2004, 38, 273–280. [Google Scholar] [CrossRef]
- Calace, N.; Di Muro, A.; Nardi, E.; Petronio, B.M.; Pietroletti, M. Adsorption Isotherms for Describing Heavy-Metal Retention in Paper Mill Sludges. Ind. Eng. Chem. Res. 2002, 41, 5491–5497. [Google Scholar] [CrossRef]
- Drinking Water and Health; Health. Safe Drinking Water Committee: Washington, DC, USA, 1977.
- Viswanadham, M.; Sriramulu, N.; Chary, M.A. Removal of Zn (II) and Ni (II) ions by using a bioplymer chitin. Indian J. Environ. Prot. 2000, 20, 515–520. [Google Scholar]
- Gupta, V.K.; Sharma, S. Removal of Zinc from Aqueous Solutions Using Bagasse Fly Ash—A Low Cost Adsorbent. Ind. Eng. Chem. Res. 2003, 42, 6619–6624. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 216, pp. 303–304. [Google Scholar]
- Bhattacharya, A.; Mandal, S.; Das, S. Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem. Eng. J. 2006, 123, 43–51. [Google Scholar] [CrossRef]
- Rahman, M.U.; Zahoor, M.; Muhammad, B.; Khan, F.A.; Ullah, R.; Salam, N.M. Removal of heavy metals from drinking water by magnetic carbon nanostructures prepared from biomass. J. Nanomater. 2017, 2017, 5670371. [Google Scholar] [CrossRef] [Green Version]
- Kukwa, R.E.; Kukwa, D.T.; Oklo, A.D.; Ligom, T.T.; Ishwah, B.; Omenka, J.A. Adsorption Studies of Silica Adsorbent Using Rice Husk as a Base Material for Metal Ions Removal from Aqueous Solution. Am. J. Chem. Eng. 2020, 8, 48. [Google Scholar] [CrossRef]
- Hannachi, Y.; Shapovalov, N.; Hannachi, A.J.D.; Treatment, W. Adsorption of nickel from aqueous solution by the use of low-cost adsorbents. Korean J. Chem. Eng. 2009, 12, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Khan, Q.; Zahoor, M.; Salman, S.M.; Wahab, M.; Bari, W.U. Phytoremediation of toxic heavy metals in polluted soils and water of Dargai District Malakand Khyber Pakhtunkhwa, Pakistan. Braz. J. Biol. 2022, 84, e265278. [Google Scholar] [CrossRef] [PubMed]
- Corapcioglu, M.; Huang, C. The adsorption of heavy metals onto hydrous activated carbon. Water Res. 1987, 21, 1031–1044. [Google Scholar] [CrossRef]
- Jabeen, S.; Alam, S.; Shah, L.A.; Zahoor, M.; Rahman, N.U.; Khan, F.A.; Ullah, R.; Ali, E.A.; Murthy, H.C.A.; Sohail, A. Removal of Safranin-T and Toluidine from Water through Gum Arabic/Acrylamide Hydrogel. Adsorpt. Sci. Technol. 2022, 2022, 6100791. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Sirilamduan, C.; Umpuch, C.; Kaewsarn, P. Removal of copper from aqueous solutions by adsorption using modify Za-laccaedulis peel modify. Songklanakarin J. Sci. Technol. 2011, 33, 725–732. [Google Scholar]
- Khan, Q.; Zahoor, M.; Salman, S.M.; Wahab, M.; Khan, F.A.; Gulfam, N.; Zekker, I. Removal of Iron(II) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation. Water 2022, 14, 2004. [Google Scholar] [CrossRef]
- Khan, Q.; Zahoor, M.; Salman, S.M.; Wahab, M.; Talha, M.; Kamran, A.W. Removal of Chromium (VI) from the Steel Mill Effluents Using the Chemically Modified Leaves of Pteris vittata as Adsorbent. Water 2022, 14, 2599. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über die adsorption in lösungen. Z. Für Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Mirsoleimani-Azizi, S.M.; Setoodeh, P.; Zeinali, S.; Rahimpour, M.R. Tetracycline antibiotic removal from aqueous solutions by MOF-5: Adsorption isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 2018, 6, 6118–6130. [Google Scholar] [CrossRef]
- LeVan, M.D.; Vermeulen, T. Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys. Chem. 1981, 85, 3247–3250. [Google Scholar] [CrossRef]
- Park, J.C.; Joo, J.B.; Yi, J. Adsorption of acid dyes using polyelectrolyte impregnated mesoporous silica. Korean J. Chem. Eng. 2005, 22, 276–280. [Google Scholar] [CrossRef]
- Rahman, N.U.; Bahadar, W.; Alam, S.; Zahoor, M.; Zekker, I.; Khan, F.A.; Ullah, R.; Ali, E.A.; Murthy, H.C.A. Activated Sawdust Based Adsorbent for the Removal of Basic Blue 3 and Methylene Green from Aqueous Media. Adsorpt. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Isotherms, T.A. Sorption Energies Estimation Using Dubinin-Radushkevich and. Life Sci. J. 2010, 7, 31–39. [Google Scholar]
- Podder, M.; Majumder, C.J.C.I. Studies on the removal of As (III) and As (V) through their adsorption onto granular activated carbon/MnFe2O4 composite: Isotherm studies and error analysis. Compos. Interfaces 2016, 23, 327–372. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. [Google Scholar]
- Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S.; Ng, J.; McKay, G.J.S. Kinetics of pollutant sorption by biosorbents. Sep. Purif. Methods 2000, 29, 189–232. [Google Scholar] [CrossRef]
- Srivastava, S.; Tyagi, R.; Pant, N.J.W.R. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 1989, 23, 1161–1165. [Google Scholar] [CrossRef]
- Riahi, K.; Chaabane, S.; Ben Thayer, B. A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J. Saudi Chem. Soc. 2017, 21, S143–S152. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, S.; Shuaib, D.; Ndamitso, M.; Etsuyankpa, M.; Sumaila, A.; Mohammed, U.; Nasirudeen, M.B. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb (II), Cd (II), Zn (II) and Cu (II) ions from aqueous solutions using Albizialebbeck pods. Appl. Water Sci. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Parwate, A.V.; Bhole, A.G. Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manag. 2002, 22, 821–830. [Google Scholar] [CrossRef]
- Gupta, S.; Babu, B.J.C.E.J. Removal of toxic metal Cr (VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chem. Eng. J. 2009, 150, 352–365. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Adsorption Mechanisms and Effect of Temperature in Reversed-Phase Liquid Chromatography. Meaning of the Classical Van’t Hoff Plot in Chromatography. Anal. Chem. 2006, 78, 4642–4653. [Google Scholar] [CrossRef]
- Zolgharnein, J.; Bagtash, M.; Feshki, S.; Zolgharnein, P.; Hammond, D. Crossed mixture process design optimization and adsorption characterization of multi-metal (Cu (II), Zn (II) and Ni (II)) removal by modified Buxus sem-pervirens tree leaves. J. Taiwan Inst. Chem. Eng. 2017, 78, 104–117. [Google Scholar] [CrossRef]
- Hafshejani, L.D.; Nasab, S.B.; Gholami, R.M.; Moradzadeh, M.; Izadpanah, Z.; Hafshejani, S.B.; Bhatnagar, A. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. J. Mol. Liq. 2015, 211, 448–456. [Google Scholar] [CrossRef]
- Shrestha, B.; Homagai, P.L.; Pokhrel, M.R.; Ghimire, K.N. Exhausted Tea Leaves—A low cost bioadsorbent for the removal of Lead (II) and Zinc (II) ions from their aqueous solution. J. Nepal. Chem. Soc. 2013, 30, 123–129. [Google Scholar] [CrossRef]
- Kumar, P.S.; Kirthika, K. Kinetics and equilibrium studies of Zn2+ ions removal from aqueous solutions by use of natural waste. Electron. J. Environ. Agric. Food Chem. 2010, 9, 264–274. [Google Scholar]
Biosorbent | CMPVL |
---|---|
BET surface area (m2/g) | 73.280 |
Pore volume (cc/g) | 0.820 |
Mesopore volume (cm3/g) | 0.042 |
Micropore volume (cm3/g) | 0.342 |
Pore diameter (Ao) | 128.59 |
Adsorption Isotherm | Parameters | Values |
---|---|---|
Freundlich | KF (mg/g) n R2 | 1.810 1.268 0.7913 |
Langmuir | qmax (mg/g) KL (L/mg) R2 | 84.74 0.0262 0.9738 |
Temkin | β α b R2 | 23.53 6.889 96.460 0.9533 |
Jovanovich | KJ (L/g) qmax (mg/g) R2 | 0.011 18.472 0.486 |
Harkins–Jura | AH (g2/L) BH (mg2/L) R2 | 0.294 2.029 0.4871 |
Kinetic Model | Parameters | Values |
---|---|---|
Pseudo first order | K1 (1/min) qe (mg/g) R2 | −0.0264 21.760 0.9474 |
Pseudo second order | K2 (1/min) qe (mg/g) R2 | 0.001988 38.46 0.9976 |
Power function | α b R2 | 12.445 0.2172 0.9853 |
Intra particle diffusion | Kdiff (mg/g min1/2) C R2 | 1.7457 16.286 0.9536 |
Natarajan–Khalaf | KN (1/min) R2 | 0.00529 0.9197 |
Parameters Values | Values |
---|---|
ΔH° (J/mol K) | −2.304 |
ΔS° (J/mol K) | 8.61 |
T(K) | ΔG° (KJ/mol) |
293 | −2.5.25 |
303 | −2.611 |
313 | −2.697 |
323 | −2.783 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Q.; Zahoor, M.; Salman, S.M.; Wahab, M.; Talha, M.; Kamran, A.W.; Khan, Y.; Ullah, R.; Ali, E.A.; Shah, A.B. The Chemically Modified Leaves of Pteris vittata as Efficient Adsorbent for Zinc (II) Removal from Aqueous Solution. Water 2022, 14, 4039. https://doi.org/10.3390/w14244039
Khan Q, Zahoor M, Salman SM, Wahab M, Talha M, Kamran AW, Khan Y, Ullah R, Ali EA, Shah AB. The Chemically Modified Leaves of Pteris vittata as Efficient Adsorbent for Zinc (II) Removal from Aqueous Solution. Water. 2022; 14(24):4039. https://doi.org/10.3390/w14244039
Chicago/Turabian StyleKhan, Qaiser, Muhammad Zahoor, Syed Muhammad Salman, Muhammad Wahab, Muhammad Talha, Abdul Waheed Kamran, Yousaf Khan, Riaz Ullah, Essam A. Ali, and Abdul Bari Shah. 2022. "The Chemically Modified Leaves of Pteris vittata as Efficient Adsorbent for Zinc (II) Removal from Aqueous Solution" Water 14, no. 24: 4039. https://doi.org/10.3390/w14244039
APA StyleKhan, Q., Zahoor, M., Salman, S. M., Wahab, M., Talha, M., Kamran, A. W., Khan, Y., Ullah, R., Ali, E. A., & Shah, A. B. (2022). The Chemically Modified Leaves of Pteris vittata as Efficient Adsorbent for Zinc (II) Removal from Aqueous Solution. Water, 14(24), 4039. https://doi.org/10.3390/w14244039