Sustainable Membrane Technologies for By-Product Separation of Non-Pharmaceutical Common Compounds
Abstract
:1. Introduction
2. Membrane Filtration
2.1. Microfiltration (MF)
2.2. Ultrafiltration (UF)
2.3. Nanofiltration (NF)
2.4. Reverse Osmosis (RO)
3. Membrane Fabrication Method
3.1. Flat Membrane
3.1.1. Phase Inversion Membrane
3.1.2. Immersion Precipitation
3.1.3. Vapor Phase Precipitation
3.1.4. Precipitation by Controlled Evaporation
3.1.5. Thermally-Induced Phase Separation
3.2. Hollow Membrane Fabrication
3.2.1. Melt Spinning
3.2.2. Dry Spinning
3.2.3. Wet Spinning
4. Membrane Characterization
4.1. Mechanism of Designing and Modifying Membrane Materials to Improve the Removal Rate of Non-Pharmaceutical Common Compounds
4.1.1. Improvement of Anti-Pollution Performance of Film Surface
4.1.2. Optimum Design of the Membrane Surface
4.2. Mechanism of the Membrane Preparation Process for Improving the Removal Rate of Non-Pharmaceutical Common Compounds
4.2.1. Distribution and Regulation of Membrane Pore Size
4.2.2. Microscopic Regulation of Membrane Pore Structure
5. Non-Pharmaceutical Common Polymer Material Characterization
5.1. Ingredients (Effective Component or Effective Site)
5.2. Characteristic Methods of Non-Pharmaceutical Common Compounds
6. Membrane Separation Process
6.1. Mechanism of Chinese Medicine Membrane Separation Process Based on Molecular Structure Analysis
6.2. Mechanism of Membrane Pore Size Distribution and Its Structural Regulation of the Separation Process
6.3. Mechanism of Influence of Process Operating Conditions on Separation Process
7. Application of Membrane Integration Technology in Preparation of Non-Pharmaceutical Common Compounds
7.1. Preparation of Non-Pharmaceutical Common Compound Liquor
7.2. Pure Water Preparation
7.3. Comprehensive Utilization of Waste Resources of Non-Pharmaceutical Common Compounds
8. Membrane Technology Applications in the TCM Industry
8.1. TCM Extraction Process
8.1.1. Separation Process
8.1.2. Purification Process of TCM
8.1.3. Concentration Process
TCM Names | Membranes Type | Pore Size (μm) | Concentration (%) | Ref |
---|---|---|---|---|
Glycyrrhizae radix et rhizoma | NF and RO | 0.02 | 90.7 | [85] |
Leonuri herba | VMD: Hollow-fiber membrane | 0.2 | 10 | [86] |
Scutellariae radix | VMD: PVDF hollow-fiber membrane | 0.18 | 100 | [87] |
Roselle | NF and RO | 0.016 | 99.6 | [88] |
Salvia officinalis | MF, UF, and NF | 0.45 | 100 | [89] |
8.2. Electrodialysis (ED) Method for Traditional Chinese Medicine Recovery
9. By-Products Separation Process
9.1. Active Ingredients and Effective Parts Separation Process by Different Membrane Filtration Processes
9.2. Separation of Inorganic by-Products
9.3. Separation of Biological by-Products
9.4. Active Polysaccharides Purification from Non-Pharmaceutical Common Compounds by Membrane
10. Regeneration of Membrane
11. Nanotoxicology
12. Membrane Fouling
13. Challenges
14. Future Perspectives
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hesketh, T.; Zhu, W.X. Health in China: Traditional Chinese medicine: One country, two systems. BMJ 1997, 315, 115–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.J.; Wang, L.T.; Zhao, Z.P.; Zhu, L.M.; Zu, L.H.; Zhang, Q.; Dou, D.B. Prospects of a comprehensive evaluation system for traditional Chinese medicine services. J. Integr. Med. 2017, 15, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Takahashi, T.; Moriya, J.; Kawaura, K.; Yamakawa, J.; Kusaka, K.; Itoh, T.; Morimoto, S.; Yamaguchi, N.; Kanda, T. Traditional Chinese medicine and Kampo: A review from the distant past for the future. J. Int. Med. Res. 2006, 34, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovais, M.; Khalil, A.T.; Jan, S.A.; Ayaz, M.; Ullah, I.; Shinwari, W.; Shinwari, Z.K. Traditional Chinese Medicine Going Global: Opportunities for Belt and Road Countries: TCM Importance in the Context of Belt Road Initiative. Proc. Pak. Acad. Sci. B Life Environ. Sci. 2019, 56, 17–26. [Google Scholar]
- Zhongyi, J.; Hong, W. Application of Ultrafiltration Technology in the Modern Production of Traditional Chinese Medicine. Chem. Ind. Eng. Prog. 2002, 2, 122–126. [Google Scholar]
- Dong, J. The relationship between traditional Chinese medicine and modern medicine. Evid.-Based Complement. Altern. Med. 2013, 2013, 153148. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.B.; Li, B.; Guo, L.W.; Pan, L.M.; Zhu, H.X.; Tang, Z.S.; Xing, W.H.; Cai, Y.Y.; Duan, J.A.; Wang, M.; et al. Current and Future Use of Membrane Technology in the Traditional Chinese Medicine Industry. Sep. Purif. Rev. 2021, 51, 484–502. [Google Scholar] [CrossRef]
- Wang, Y.N.; Tang, C.Y. Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes—The role of hydrodynamic conditions, solution chemistry, and membrane properties. J. Membr. Sci. 2011, 376, 275–282. [Google Scholar] [CrossRef]
- Huisman, I.H.; Prádanos, P.; Hernández, A. The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration. J. Membr. Sci. 2000, 179, 79–90. [Google Scholar] [CrossRef]
- Chan, K. The evolutional development of Traditional Chinese Medicine (TCM) outside the Chinese Mainland: Challenges, training, practice, research, and future development. World J. Tradit. Chin. Med. 2016, 2, 6–28. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y. High and new technology urgently needed to be popularized in my country’s traditional Chinese medicine pharmaceutical industry. World Sci. Technol. 2000, 2, 18–23. [Google Scholar]
- Song, H.C.; Wang, J.M.; Guo, L.W. Study on mechanism and method of membrane preparation and membrane process optimization based on molecular structure analysis of noneffective common macromolecules. China J. Chin. Mater. Med. 2019, 44, 4060–4066. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Z.Y.; Wu, H.; Wang, Y.Q. Membrane used for separation of the effective parts and components of traditional Chinese medicine. China J. Chin. Mater. Med. 2005, 30, 165–170. [Google Scholar]
- Liu, H.D.; Yin, Q.X.; Gao, W.Y. Advances of polymeric materials applied in TCM preparation and separation. China J. Chin. Mater. Med. 2003, 28, 101–105. [Google Scholar]
- Jun, Z. Traditional Chinese Medicine Compounds—Natural Combinatorial Chemical Libraries and Multi-target Mechanisms of Action. Chin. J. Integr. Med. 1980, 2, 67. [Google Scholar]
- Sun, G.D.; Li, C.Y.; Cui, W.P.; Guo, Q.Y.; Dong, C.Q.; Zou, H.B.; Liu, S.J.; Dong, W.P.; Miao, L.N. Review of herbal traditional Chinese medicine for the treatment of diabetic nephropathy. J. Diabetes Res. 2016, 2016, 5749857. [Google Scholar] [CrossRef]
- Pervez, M.N.; Talukder, M.E.; Shafiq, F.; Hasan, K.M.F.; Taher, M.A.; Meraz, M.M.; Cai, Y.; Lin, L. Effect of heat-setting on UV protection and antibacterial properties of cotton/spandex fabric. In IOP Conference Series. Mater. Sci. Eng. 2018, 284, 012010. [Google Scholar]
- Liu, H. Study on the Separation Process and Influencing Factors of Typical Protein Pollutants in Water by Ultrafiltration Membrane. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2013. [Google Scholar] [CrossRef]
- Ngo, L.; Okogun, J.; Folk, W. 21st century natural product research and drug development and traditional medicines. Nat. Prod. Rep. 2013, 30, 584–592. [Google Scholar] [CrossRef]
- Bolton, G.; LaCasse, D.; Kuriyel, R. Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids. J. Membr. Sci. 2006, 277, 75–84. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, J.; Lekang Fu, T.; Guo, L. Influence of solution environment on ceramic membrane microfiltration process of traditional Chinese medicine simulation system. Chin. J. Tradit. Chin. Med. 2010, 13, 1691–1695. [Google Scholar]
- Wu, J. The Applicability of the Purification of Anti-Inflammatory Components from Cornus Officinalis Using Membrane Separation Technology; Shaanxi University of Chinese Medicine: Xianyang, China, 2016; Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201602&filename=1016149110.nh&uniplatform=NZKPT&v=aRGIasGb9CtL7fj8iz2pfmaESOgMlzOYoYWooVakR2Yza26FZCuYLZGZc76TnQrF (accessed on 5 October 2022).
- Wang, X.; Feng, H.; Muhetaer, H.; Peng, Z.; Qiu, P.; Li, W.; Li, Z. Studies on the Separation and Purification of the Caulis sinomenii Extract Solution Using Microfiltration and Ultrafiltration. Separations 2021, 8, 185. [Google Scholar] [CrossRef]
- Talukder, M.E.; Alam, F.; Pervez, M.N.; Jiangming, W.; Hassan, F.; Stylios, G.K.; Naddeo, V.; Song, H. New generation washable PES membrane face mask for virus filtration. Nanocomposites 2022, 8, 13–23. [Google Scholar] [CrossRef]
- Wang, L.; Cui, P.; Lu, X.; Tong, L.; Yao, L. Separation and Purification of Toosendanin Extraction Solution by Microfiltration Membrane Technology. Nat. Prod. Res. Dev. 2011, 23, 742–746. [Google Scholar]
- Yu, T.; Qian, H.J. The Application of Membrane Technology in Extracting Flavones Compounds in Ginkgo Leaves. Wuxi Univ. Light Ind. 2004, 23, 55–58. [Google Scholar] [CrossRef]
- Carneiro, L.; dos Santos Sa, I.; dos Santos Gomes, F.; Matta, V.M.; Cabral, L.M.C. Cold sterilization and clarification of pineapple juice by tangential microfiltration. Desalination 2002, 148, 93–98. [Google Scholar] [CrossRef]
- Pervez, M.N.; Talukder, M.E.; Mishu, M.R.; Buonerba, A.; Del Gaudio, P.; Stylios, G.K.; Hasan, S.W.; Zhao, Y.; Cai, Y.; Figoli, A.; et al. Fabrication of polyethersulfone/polyacrylonitrile electrospun nanofiber membrane for food industry wastewater treatment. J. Water Process Eng. 2022, 47, 102838. [Google Scholar] [CrossRef]
- Li, B.; Guo, L.; Wu, M.; Zhu, H.; Liu, H. Preliminary study on the “solution structure” and interaction between pharmacodynamic substances and common macromolecular substances in water extract of traditional Chinese medicine based on computer simulation technology—Taking Huanglian Jiedu Decoction as an example. Chin. J. Exp. Formulas 2014, 20, 1–6. [Google Scholar]
- Dong, J.; Guo, L.; Li, L.; Yuan, Y. Permeability and quantitative structure-activity relationship of alkaloids and iridoids by ultrafiltration membranes with a cut-off relative molecular mass of 1000. Chin. J. Tradit. Chin. Med. 2011, 36, 127–131. [Google Scholar] [CrossRef]
- Yan, J.; Liao, Q.; Li, X. Purification of polysaccharide from Poria Cocos by ultrafiltration membrane technology. J. Zhejiang Univ. Technol. 2013, 41, 1221125. [Google Scholar] [CrossRef]
- Vaillant, F.; Pérez, A.M.; Acosta, O.; Dornier, M. Turbidity of pulpy fruit juice: A key factor for predicting cross-flow microfiltration performance. J. Membr. Sci. 2008, 325, 404–412. [Google Scholar] [CrossRef]
- Pervez, M.N.; Bilgiç, B.; Mahboubi, A.; Uwineza, C.; Zarra, T.; Belgiorno, V.; Naddeo, V.; Taherzadeh, M.J. Double-stage membrane-assisted anaerobic digestion process intensification for production and recovery of volatile fatty acids from food waste. Sci. Total Environ. 2022, 825, 154084. [Google Scholar] [CrossRef]
- AlTaee, A.; Sharif, A.O. Alternative design to dual stage NF seawater desalination using high rejection brackish water membranes. Desalination 2011, 273, 391–397. [Google Scholar] [CrossRef]
- Song, Y.; Gao, X.; Gao, C. Evaluation of scaling potential in a pilot-scale NF–SWRO integrated seawater desalination system. J. Membr. Sci. 2013, 443, 201–209. [Google Scholar] [CrossRef]
- Saravanane, R.; Sundararaman, S. Effect of loading rate and HRT on the removal of cephalosporin and their intermediates during the operation of a membrane bioreactor treating pharmaceutical wastewater. Environ. Technol. 2009, 30, 1017–1022. [Google Scholar] [CrossRef]
- Pervez, M.N.; Balakrishnan, M.; Hasan, S.W.; Choo, K.-H.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. NPJ Clean Water 2020, 3, 43. [Google Scholar] [CrossRef]
- Pervez, M.N.; Stylios, G.K.; Liang, Y.; Ouyang, F.; Cai, Y. Low-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradation. J. Clean. Prod. 2020, 262, 121301. [Google Scholar] [CrossRef]
- Pervez, M.; Mishu, M.R.; Talukder, M.E.; Stylios, G.K.; Buonerba, A.; Hasan, S.W.; Cai, Y.; Zhao, Y.; Figoli, A.; Zarra, T.; et al. Electrospun nanofiber membranes for the control of micro/nanoplastics in the environment. Water Emerg. Contam. Nanoplastics 2022, 1, 10. [Google Scholar] [CrossRef]
- Zhong, W.; Guo, L.; Ji, C.; Dong, G.; Li, S. Membrane distillation for zero liquid discharge during treatment of wastewater from the industry of traditional Chinese medicine: A review. Environ. Chem. Lett. 2021, 19, 2317–2330. [Google Scholar] [CrossRef]
- Wang, J.; Song, H.; Ren, L.; Talukder, M.E.; Chen, S.; Shao, J. Study on the Preparation of Cellulose Acetate Separation Membrane and New Adjusting Method of Pore Size. Membranes 2021, 12, 9. [Google Scholar] [CrossRef]
- Wu, J.; Rohani, M.M.; Mehta, A.; Zydney, A.L. Development of high performance charged ligands to control protein transport through charge-modified ultrafiltration membranes. J. Membr. Sci. 2010, 362, 434–443. [Google Scholar]
- Pervez, M.N.; Talukder, M.E.; Mishu, M.R.; Buonerba, A.; Del Gaudio, P.; Stylios, G.K.; Hasan, S.W.; Zhao, Y.; Cai, Y.; Figoli, A.; et al. One-Step Fabrication of Novel Polyethersulfone-Based Composite Electrospun Nanofiber Membranes for Food Industry Wastewater Treatment. Membranes 2022, 12, 413. [Google Scholar] [CrossRef] [PubMed]
- Shi, H. Study of Nanofiltration Applicability on Effectual Components of Chinese Medicine; Nanjing University of Chinese Medicine: Nanjing, China, 2015; Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201601&filename=1015649487.nh (accessed on 5 October 2022).
- Li, W.; Li, Q.; Guo, L.; Liu, J.; Wang, K.; Zhong, W. Traditional Chinese Medicine Extract Properties Incorporated Energy Analysis for Membrane Concentration Processes. Membranes 2021, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Van Reis, R.; Zydney, A. Membrane separations in biotechnology. Curr. Opin. Biotechnol. 2001, 12, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Pervez, M.N.; Mahboubi, A.; Uwineza, C.; Zarra, T.; Belgiorno, V.; Naddeo, V.; Taherzadeh, M.J. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification—A review. Sci. Total Environ. 2022, 817, 152993. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Yoon, J.Y.; Haam, S.; Jung, J.K.; Kim, J.H.; Kim, W.S. Modeling of the permeate flux during microfiltration of BSA-adsorbed microspheres in a stirred cell. J. Colloid Interface Sci. 2000, 228, 270–278. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, X.; Zhou, Y.; Fan, J.; Zeng, G. Microfiltration Membranes for the Removal of Bisphenol A from Aqueous Solution: Adsorption Behavior and Mechanism. Water 2022, 14, 2306. [Google Scholar] [CrossRef]
- Pabby, A.K.; Rizvi, S.S.; Requena, A.M.S. Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Rana, D.; Matsuura, T. State of the art reviews in membrane science and research. J. Membr. Sci. Res. 2017, 3, 118–119. [Google Scholar] [CrossRef]
- Borea, L.; Naddeo, V.; Shalaby, M.S.; Zarra, T.; Belgiorno, V.; Abdalla, H.; Shaban, A.M. Wastewater treatment by membrane ultrafiltration enhanced with ultrasound: Effect of membrane flux and ultrasonic frequency. Ultrasonics 2018, 83, 42–47. [Google Scholar] [CrossRef]
- Gao, F.; Wang, J.; Zhang, H.; Jia, H.; Cui, Z.; Yang, G. Role of ionic strength on protein fouling during ultrafiltration by synchronized UV–vis spectroscopy and electrochemical impedance spectroscopy. J. Membr. Sci. 2018, 563, 592–601. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, R.; Cheng, H.; Zheng, Z. Studies on Process Parameters for Purification of Extract Solution of Herb Drugs Composing Huangqi Gegen Decoction Prescription by Ceramic Membrane Ultrafiltration. J. Guangzhou Univ. Tradit. Chin. Med. 2017, 6, 753–757. [Google Scholar] [CrossRef]
- Li, C.; Zhao, C.; Ma, Y.; Chen, W.; Zheng, Y.; Zhi, X.; Peng, G. Optimization of ultrasonic-assisted ultrafiltration process for removing bacterial endotoxin from diammonium glycyrrhizinate using response surface methodology. Ultrason. Sonochemistry 2020, 68, 105215. [Google Scholar] [CrossRef]
- Wickramasinghe, S.R.; Stump, E.D.; Grzenia, D.L.; Husson, S.M.; Pellegrino, J. Understanding virus filtration membrane performance. J. Membr. Sci. 2010, 365, 160–169. [Google Scholar] [CrossRef]
- Li, D.W.; Li, D.; Wang, K.H.; Yang, J.; Yuan, X. Wastewater treatment of traditional Chinese medicine by two phase anaerobic technology. Technol. Water Treat. 2006, 32, 81–83. [Google Scholar]
- Pervez, M.N.; Mishu, M.R.; Stylios, G.K.; Hasan, S.W.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. Sustainable Treatment of Food Industry Wastewater Using Membrane Technology: A Short Review. Water 2021, 13, 3450. [Google Scholar] [CrossRef]
- Košutić, K.; Dolar, D.; Ašperger, D.; Kunst, B. Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 2007, 53, 244–249. [Google Scholar] [CrossRef]
- Pervez, M.N.; Mahboubi, A.; Uwineza, C.; Sapmaz, T.; Zarra, T.; Belgiorno, V.; Naddeo, V.; Taherzadeh, M.J. Feasibility of nanofiltration process for high efficient recovery and concentrations of food waste-derived volatile fatty acids. J. Water Process Eng. 2022, 48, 102933. [Google Scholar] [CrossRef]
- Ali, M. Nanofiltration Process for Enhanced Treatment of RO Brine Discharge. Membranes 2021, 11, 212. [Google Scholar] [CrossRef]
- Kent, F.C.; Farahbakhsh, K.; Mahendran, B.; Jaklewicz, M.; Liss, S.N.; Zhou, H. Water reclamation using reverse osmosis: Analysis of fouling propagation given tertiary membrane filtration and MBR pretreatments. J. Membr. Sci. 2011, 382, 328–338. [Google Scholar] [CrossRef]
- Shafi, H.Z.; Matin, A.; Akhtar, S.; Gleason, K.K.; Zubair, S.M.; Khan, Z. Organic fouling in surface modified reverse osmosis membranes: Filtration studies and subsequent morphological and compositional characterization. J. Membr. Sci. 2017, 527, 152–163. [Google Scholar] [CrossRef]
- Jamal-Uddin, A.T.; Matsuura, T.; Al-Daoud, F.; Zytner, R.G. Treatment and Recycle of Greenhouse Nutrient Feed Water Applying Hydrochar and Activated Carbon Followed by Reverse Osmosis. Water 2022, 14, 3573. [Google Scholar] [CrossRef]
- Pervez, M.N.; Stylios, G.K. Investigating the Synthesis and Characterization of a Novel “Green” H2O2-Assisted, Water-Soluble Chitosan/Polyvinyl Alcohol Nanofiber for Environmental End Uses. Nanomaterials 2018, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Pervez, M.N.; Stylios, G.K. An Experimental Approach to the Synthesis and Optimisation of a ‘Green’ Nanofibre. Nanomaterials 2018, 8, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoseinpour, V.; Ghaee, A.; Vatanpour, V.; Ghaemi, N. Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr. Polym. 2018, 188, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kusumocahyo, S.P.; Ambani, S.K.; Marceline, S. Improved permeate flux and rejection of ultrafiltration membranes prepared from polyethylene terephthalate (PET) bottle waste. Sustain. Environ. Res. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Wan, C.F.; Yang, T.; Lipscomb, G.G.; Stookey, D.J.; Chung, T.S. Design and fabrication of hollow fiber membrane modules. J. Membr. Sci. 2017, 538, 96–107. [Google Scholar] [CrossRef]
- Li, S.G.; Koops, G.H.; Mulder, M.H.V.; Van den Boomgaard, T.; Smolders, C.A. Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret. J. Membr. Sci. 1994, 94, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Xiao, C.; Ji, D. Robust preparation and reinforcement mechanism study of PVDF hollow fiber membrane with homogeneous fibers. Polym. Test. 2022, 108, 107488. [Google Scholar] [CrossRef]
- Li, M.; Xu, Y.; Song, J.; Wang, Y.; Pan, Y.; Wang, Z.; Xiao, W.; Liu, T. Depyrogenation in key manufacturing processes of Reduning injection. China J. Chin. Mater. Med. 2011, 36, 663–665. [Google Scholar] [CrossRef]
- Gao, H.; Guo, L.; Jin, W. Research on the Clarifying Sophora Flavescens Decoctin by Microfiltration Technology of Ceramic Membrane. Technol. Water Treat. 2002, 18, 108–109. [Google Scholar]
- Li, H.; Dai, Q.; Ren, J.; Jian, L.; Peng, F.; Sun, R.; Liu, G. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydr. Polym. 2016, 136, 203–209. [Google Scholar] [CrossRef]
- Chen, D.; Yang, X.; Cao, W.; Guo, Y.; Sun, Y.; Xiu, Z. Three-liquid-phase salting-out extraction of effective components from waste liquor of processing sea cucumber. Food Bioprod. Process. 2015, 96, 99–105. [Google Scholar] [CrossRef]
- Ding, K.; Fang, J.-N.; Dong, T.; Tsim, K.W.-K.; Wu, H. Characterization of a Rhamnogalacturonan and a Xyloglucan from Nerium indicum and Their Activities on PC12 Pheochromocytoma Cells. J. Nat. Prod. 2003, 66, 7–10. [Google Scholar] [CrossRef]
- Zhang, H.; Row, K.H. Extraction and Separation of Polysaccharides from Laminaria japonica by Size-Exclusion Chromatography. J. Chromatogr. Sci. 2014, 53, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Preethi, S.; Saral, M. Screening of natural polysaccharides extracted from the fruits of Pithecellobium dulce as a pharmaceutical adjuvant. Int. J. Biol. Macromol. 2016, 92, 347–356. [Google Scholar] [CrossRef]
- Sun, H.; Qi, D.; Xu, J.; Juan, S.; Zhe, C. Fractionation of polysaccharides from rapeseed by ultrafiltration: Effect of molecular pore size and operation conditions on the membrane performance. Sep. Purif. Technol. 2011, 80, 670–676. [Google Scholar] [CrossRef]
- Marcati, A.; Ursu, A.V.; Laroche, C.; Soanen, N.; Marchal, L.; Jubeau, S.; Djelveh, G.; Michaud, P. Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res. 2014, 5, 258–263. [Google Scholar] [CrossRef]
- Silveira, D.B.; Celmer, Á.J.; Camelini, C.M.; Rossi, M.J.; Petrus, J.C.C.; de Mendonça, M.M.; Pinto, A.R.; Zanetti, C.R. Mass separation and in vitro immunological activity of membrane-fractionated polysaccharides from fruiting body and mycelium of Agaricus subrufescens. Biotechnol. Bioprocess Eng. 2012, 17, 804–811. [Google Scholar] [CrossRef]
- Nath, K.; Dave, H.K.; Patel, T.M. Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis. Trends Food Sci. Technol. 2018, 73, 12–24. [Google Scholar] [CrossRef]
- Sohrabi, M.R.; Madaeni, S.S.; Khosravi, M.; Ghaedi, A.M. Concentration of licorice aqueous solutions using nanofiltration and reverse osmosis membranes. Sep. Purif. Technol. 2010, 75, 121–126. [Google Scholar] [CrossRef]
- Cai, Y.; Gao, Z.; Chen, B.; Xu, Z.; Li, J. Vacuum Membrane Distillation for Concentration of Motherwort Extract. J. Zhejiang Univ. Technol. 2003, 31, 658–661. [Google Scholar]
- Shi, F.; Li, B.; Pan, L.; Guo, L. Vacuum Membrane Distillation for the Concentration of the Extract of Scutellariae Radix. Chin. Tradit. Pat. Med. 2015, 37, 95–99. [Google Scholar]
- Cissé, M.; Vaillant, F.; Pallet, D.; Dornier, M. Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Res. Int. 2011, 44, 2607–2614. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Tache, A.; Radu, G.L.; Parvulescu, V. Application of the Nanofiltration Process for Concentration of Polyphenolic Compounds from Geranium Robertianum and Salvia Officinalis Extracts. Chem. Biochem. Eng. Q. 2011, 25, 453–460. [Google Scholar]
- Shi, L.; Hu, Z.; Wang, Y.; Bei, E.; Lens, P.N.L.; Thomas, O.; Hu, Y.; Chen, C.; Zhan, X. In situ electrochemical oxidation in electrodialysis for antibiotics removal during nutrient recovery from pig manure digestate. Chem. Eng. J. 2021, 413, 127485. [Google Scholar] [CrossRef]
- Zhu, J. Progress in Study of the Characteristics and Treatments of Traditional Chinese Medicine Wastewater. Energy Environ. Prot. 2007, 15–17. [Google Scholar] [CrossRef]
- Wang, A. Comparison of Microfiltration-Ultrafiltration and Alcohol Sedimentation Method in Refining Water Extract of Hawthorn. Hubei Univ. Chin. Med. 2011, 13, 30–32. [Google Scholar] [CrossRef] [Green Version]
- Nian, L.; Xue, Y.; Chang, M.; Li, F.; Li, X. Optimization of Refined Production of Huangqi Granule with Pottery Membrane. Lishizhen Med. Mater. Med. Res. 2008, 19, 441–442. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.; Wang, J.; Wei, S.; Jin, H.; Zhao, J. Study on Simultaneous Extraction and Purification Technology of Glycyrrhizin Acid and Liquiritin Based on Ceramic Membrane Ultrafiltration Technology. Chin. Tradit. Herb. Drugs. 2016, 47, 4173–4178. [Google Scholar] [CrossRef]
- Talukder, M.E.; Hasan, K.M.; Wang, J.; Yao, J.; Li, C.; Song, H. Novel fibrin functionalized multilayered electrospun nanofiber membrane for burn wound treatment. J. Mater. Sci. 2021, 56, 12814–12834. [Google Scholar] [CrossRef]
- Zhongming, Z.; Wei, L. Filter Membrane Renders Viruses Harmless ScienceDaily. ScienceDaily, 3 June 2021. ETH Zurich. 2021. Available online: http://resp.llas.ac.cn/C666/handle/2XK7JSWQ/327568 (accessed on 5 October 2022).
- Devaisy, S.; Kandasamy, J.; Nguyen, T.V.; Johir, M.A.H.; Ratnaweera, H.; Vigneswaran, S. Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water. Water 2022, 14, 3708. [Google Scholar] [CrossRef]
- Liu, C.; Chen, H.; Chen, K.; Gao, Y.; Gao, S.; Liu, X.; Li, J. Sulfated modification can enhance antiviral activities of Achyranthes bidentata polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV) in vitro. Int. J. Biol. Macromol. 2013, 52, 21–24. [Google Scholar] [CrossRef]
- Ye, H.; Wang, K.; Zhou, C.; Liu, J.; Zeng, X. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem. 2008, 111, 428–432. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.; Chen, G.; Hu, Q. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2010, 80, 783–789. [Google Scholar] [CrossRef]
- Gui, Z. Research on lycium barbarum polysaccharid esextration by membrane separation. Food Eng. 2008, 9, 23–25. [Google Scholar]
- Sun, Y.; Zhou, Y.; Chen, D. Studies on application of ultra-filtration to purifying polysaccharides from Rhubarb. China J. Chin. Mater. Med. 2009, 34, 165–168. [Google Scholar]
- Xie, J.-H.; Shen, M.-Y.; Nie, S.-P.; Zhao, Q.; Li, C.; Xie, M.-Y. Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process. Carbohydr. Polym. 2014, 101, 479–483. [Google Scholar] [CrossRef]
- Ma, C.-w.; Feng, M.; Zhai, X.; Hu, M.; You, L.; Luo, W.; Zhao, M. Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. J. Taiwan Inst. Chem. Eng. 2013, 44, 886–894. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Wang, L.; Yu, X.; Shi, Z.; Ren, G.; Dong, C. Ultrafiltration Separation and Immune Enhancing Activity of American Ginseng Polysaccharide. Sci. Technol. Food Ind. 2014, 35, 49–52. [Google Scholar]
- Zheng, Y.; Shi, X.; Li, X.; Tong, C.; Li, W. Optimization process for separation of polysaccharides from Crassostrea gigas using ultrafiltration membrane. J. Anhui Agri. Sci 2016, 44, 104–106. [Google Scholar]
- Sheng, J.; Yu, F.; Xin, Z.; Zhao, L.; Zhu, X.; Hu, Q. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem. 2007, 105, 533–539. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Feng, S.; Liu, J.; Zhou, L.; Yuan, M.; Ding, C. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. Int. J. Biol. Macromol. 2016, 91, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, Y.; Xuemin, L. Traditional Chinese Medicinal Composition Containing Red Sage Root, Ligusticum Wallichii and Dalbergia Oil and Its Preparation. Patent CN101085005B. Available online: https://patents.google.com/patent/CN101085005B/en2006 (accessed on 5 October 2022).
- Talukder, M.E.; Pervez, M.N.; Jianming, W.; Gao, Z.; Stylios, G.K.; Hassan, M.M.; Song, H.; Naddeo, V. Chitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous solution. J. Environ. Chem. Eng. 2021, 9, 106693. [Google Scholar] [CrossRef]
- Talukder, M.E.; Pervez, M.; Jianming, W.; Stylios, G.K.; Hassan, M.M.; Song, H.; Naddeo, V.; Figoli, A. Ag nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metals. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Lu, D.; Harris, T.A.L.; Escobar, I.C. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes 2021, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 16, 4034–4059. [Google Scholar] [CrossRef]
- Zhan, C.; Zhang, L.; Ai, W.; Dong, W. Green and Sustainable Treatment of Urine Wastewater with a Membrane-Aerated Biofilm Reactor for Space Applications. Water 2022, 14, 3704. [Google Scholar] [CrossRef]
- Yang, H.; Yu, X.; Liu, J.; Tang, Z.; Huang, T.; Wang, Z.; Zhong, Y.; Long, Z.; Wang, L. A Concise Review of Theoretical Models and Numerical Simulations of Membrane Fouling. Water 2022, 14, 3537. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Khataee, A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. Sci. Total Environ. 2022, 838, 156010. [Google Scholar] [CrossRef]
- Roehl, E.A., Jr.; Ladner, D.A.; Daamen, R.C.; Cook, J.B.; Safarik, J.; Phipps, D.W., Jr.; Xie, P. Modeling fouling in a large RO system with artificial neural networks. J. Membr. Sci. 2018, 552, 95–106. [Google Scholar] [CrossRef]
- Mkilima, T.; Bazarbayeva, T.; Assel, K.; Nurmukhanbetova, N.N.; Ostretsova, I.B.; Khamitova, A.S.; Makhanova, S.; Sergazina, S. Pore size in the removal of phosphorus and nitrogen from poultry slaughterhouse wastewater using polymeric nanofiltration membranes. Water 2022, 14, 2929. [Google Scholar] [CrossRef]
- Mobin, S.; Alam, F. A review of microalgal biofuels, challenges and future directions. Appl. Thermo-Fluid Process. Energy Syst. 2018, 83–108. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, W.; Xiao, C.; Zhu, H.; Wang, Q. Membrane Fouling Mechanism of HTR-PVDF and HMR-PVDF Hollow Fiber Membranes in MBR System. Water 2022, 14, 2576. [Google Scholar] [CrossRef]
Saponins | Alkaloids | Flavonoids | Phenolic Acids | ||||
---|---|---|---|---|---|---|---|
Ingredients | M. m. (kDa) | Ingredients | M. m. (kDa) | Ingredients | M. m. (kDa) | Ingredients | M. m. (kDa) |
Timosaponin-A-III | 0.74093 | Aconitum | 0.64574 | Catechin Hydrate-98 | 0.29027 | Salvianolic acid-I | 0.49445 |
Timosaponin-Bii | 0.92108 | Rhynchophy-lline | 0.38446 | Kaempferi-de (KF) | 0.30027 | Salvianolic acid-II | 0.71862 |
E SCUlentOSide A | 0.82696 | Crotaline | 0.32536 | Isoginkgeti-n | 0.56652 | Salvianolic acid-III | 0.49244 |
Glycyrrhizinic acid | 0.82293 | Nuciferine-98 | 0.29538 | Puerarin | 0.41638 | Salvianolic acid-IV | 0.41835 |
Gypenoside-A | 0.89907 | Hyoscyamine or Levsin | 0.28938 | Edgar Morin | 0.30224 | Tanshinone-iiA | 0.29435 |
Saikosaponin-C | 0.92712 | Arecoline | 0.15519 | Hesperidin | 0.61057 | Tanshinone-I | 0.27629 |
Saikosaponin-A | 0.78098 | Matrine alkaloid | 0.24837 | Liquiritin | 0.41840 | Cryptotanshinone (CT) | 0.29637 |
TCM Names | Membranes Type | Pore Size | Filtration (%) | Ref |
---|---|---|---|---|
Sophora flavescens | Al2O3 ceramic MF membrane | 0.2 μm | 77.2 | [75] |
Toosendanin | PES MF membrane | 0.45 μm | 99.4 | [26] |
Cornus Officinalis | Al2O3 ceramic MF membrane | 0.05 μm | 80–90 | [23] |
Hawthorn | Ceramic MF membrane | 0.2 μm | 82.9 | [90] |
Ginkgo leaves | UF membrane 20 kDa | - | 96 | [27] |
Glycyrrhizae radix et rhizoma | PS UF membrane | 10 nm | 98.9 to 99.3 | [92] |
Polysaccharides | Membranes | Pressure | Membrane Separation (%) | Ethanol Extraction (%) | Water Flux | Feed Solid Concentration | Rejection Rate (%) | Feed Temperature (°C) | pH | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Rapeseed | PVDF UF membrane | 1 bar | 53.4 | 95.1 | 30 and 40 | 9 | [79] | |||
Porphyridium Cruentum | PES flat sheet UF membrane | 80 | 48 | 0.35 g L−1 | [80] | |||||
Fructus Lycii | MF and UF flat sheet membrane with 0.2 µm pore size | 90.4 | [99] | |||||||
Rhei Radix | PVDF UF flat sheet membrane | 0.08–0.12 MPa | 53.7 | 2.04–4.11 g L−1 | 35–40 | 6–8 | [100] | |||
Poria | PS MF and UF membrane with 0.2 μm pore size | 0.225 MPa | 88.4 | 42.9 | 34.7 L m-2 h−1 | 2 g/L | 77.3 | 25 | [32] | |
Cyclocarya | PS UF flat sheet membrane | 0.05 Mpa | 69.5 | 1 mg mL−1 | 8.5 | [101] | ||||
Ganoderma | UF flat membrane | Ultrasonic extraction | [102] | |||||||
Radix Panacis | MF and UF flat membrane (5 μm, 1.2 μm and 0.45 μm pore size) | 0.05 MPa | 37.98–46.61 | 6–8 | [103] | |||||
Concha Ostreae | PS UF flat membrane | 0. 04 MPa | 59.0% | 30 | 7 | [104] | ||||
Portulacae Herba | Al2O3 ceramic MF and PES UF flat membrane (5 μm, 1.2 μm and 0.45 μm pore size) | 0.05 MPa | 58.89%-38.89 | 100 | [105] | |||||
Alga Chlorella Pyrenoidosa | MF and UF flat membrane (pore size of 0.1 μm) | 1.0 bar | 87.9 | 96 L m−2 h−1 | 40 | [106] | ||||
Camellia Oleifera Seed | UF membrane | 0.05 MPa | 78.55 | 1 mL min−1 | 50 | 10 | [107] | |||
Sargassum Pallidum (Turner-c) | MF membrane (pore size of 0.1 μm) | 45 MPa | 86.6 | 20 L h−1 | 55 | 7 | [97] | |||
Agaricus Subrufescens | CA MF flat membrane (pore size of 0.22 μm); PVDF UF flat membrane | 0.5 bar | 98.3 | 98 | 5.6 | [81] | ||||
Ligusticum Chuanxiong Hort (LC) | ultrafiltration flux of TCM | 0.1 MPa | 78 | 10 mL h−1 | 45 ± 1 | 1.2 | [108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talukder, M.E.; Alam, F.; Mishu, M.M.R.; Pervez, M.N.; Song, H.; Russo, F.; Galiano, F.; Stylios, G.K.; Figoli, A.; Naddeo, V. Sustainable Membrane Technologies for By-Product Separation of Non-Pharmaceutical Common Compounds. Water 2022, 14, 4072. https://doi.org/10.3390/w14244072
Talukder ME, Alam F, Mishu MMR, Pervez MN, Song H, Russo F, Galiano F, Stylios GK, Figoli A, Naddeo V. Sustainable Membrane Technologies for By-Product Separation of Non-Pharmaceutical Common Compounds. Water. 2022; 14(24):4072. https://doi.org/10.3390/w14244072
Chicago/Turabian StyleTalukder, Md Eman, Fariya Alam, Mst. Monira Rahman Mishu, Md. Nahid Pervez, Hongchen Song, Francesca Russo, Francesco Galiano, George K. Stylios, Alberto Figoli, and Vincenzo Naddeo. 2022. "Sustainable Membrane Technologies for By-Product Separation of Non-Pharmaceutical Common Compounds" Water 14, no. 24: 4072. https://doi.org/10.3390/w14244072
APA StyleTalukder, M. E., Alam, F., Mishu, M. M. R., Pervez, M. N., Song, H., Russo, F., Galiano, F., Stylios, G. K., Figoli, A., & Naddeo, V. (2022). Sustainable Membrane Technologies for By-Product Separation of Non-Pharmaceutical Common Compounds. Water, 14(24), 4072. https://doi.org/10.3390/w14244072