Characterizing Aqueous Cd2+ Removal by Plant Biochars from Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization Analysis
2.2. Experimental Method of RSM
2.3. Adsorption Kinetics Test
3. Results and Discussion
3.1. Characterization Analysis
3.2. Electron Microscopic Analysis
3.3. Analysis of Adsorption Kinetics
3.4. Infrared Analysis
3.5. Brauer–Emmett–Teller (BET) Analysis
3.6. Thermogravimetric Analysis
3.7. Analysis of RSM
3.7.1. BBD Model
3.7.2. Comparative Study on Adsorption Capacity
3.7.3. Analysis of the Interaction of Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, L.; Luo, J.; Chen, Y. Dilemma of sewage sludge treatment and disposal in China. Environ. Sci. Technol. 2015, 49, 4781–4782. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Jin, L.; Tu, J.; Le, M.; Wang, F. Advances in research on comprehensive utilization of tea waste. Agric. Sci. Technol. 2015, 16, 1552–1557. [Google Scholar]
- Brudevold, F.; Reda, A.; Aasenden, R.; Bakhos, Y. Determination of trace elements in surface enamel of human teeth by a new biopsy procedure. Arch. Oral Biol. 1975, 20, 667–673. [Google Scholar] [CrossRef]
- Guo, W.; Wu, T.; Jiang, G.; Pu, L.; Zhang, J.; Xu, F.; Yu, H.; Xie, X. Spatial Distribution, Environmental Risk and Safe Utilization Zoning of Soil Heavy Metals in Farmland, Subtropical China. Land 2021, 10, 569. [Google Scholar] [CrossRef]
- Wang, L. Exploration of Strategies for Chronic Disease Prevention and Control and Relevant System Development in China. Front. Eng. Manag. 2015, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Zhao, J.; Song, L.; Mashayekhi, M.; Chefetz, B.; Xing, B. Adsorption and desorption of phenanthrene on carbon nanotubes in simulated gastrointestinal fluids. Environ. Sci. Technol. 2011, 45, 6018–6024. [Google Scholar] [CrossRef]
- Deng, G.; Li, M.; Li, H.; Yin, L.; Li, W. Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). Aquat. Bot. 2014, 112, 23–32. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Zhang, B. Research on the coal industry development and transition in China under the background of carbon neutrality. China Min. Mag. 2021, 30, 1–6. [Google Scholar]
- Xin, H.; Ding, Z.H.; Zimmerman, A.R.; Wang, S.; Gao, B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015, 68, 206–216. [Google Scholar]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Qiu, L.; Cheng, H.-M. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 2020, 120, 2811–2878. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Fang, S.; Hu, Y.H. 3D graphene materials: From understanding to design and synthesis control. Chem. Rev. 2020, 120, 10336–10453. [Google Scholar] [CrossRef] [PubMed]
- Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 2018, 207, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.F.; Liu, Y.G.; Zeng, G.M.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Balwant, S.; Bhupinderpal, S.; Annettel, C. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar]
- Zhou, J.; Chen, H.; Thring, R.W.; Arocena, J.M. Chemical pretreatment of rice straw biochar: Effect on biochar properties and hexavalent chromium adsorption. Int. J. Environ. Res. 2019, 13, 91–105. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, J.; Zhao, J.; Luo, Z.; Tu, S.; Yin, Y. Properties of biochar obtained from pyrolysis of bamboo shoot shell. J. Anal. Appl. Pyrolysis 2015, 114, 172–178. [Google Scholar] [CrossRef]
- Moradi-Choghamarani, F.; Moosavi, A.A.; Sepaskhah, A.R.; Baghernejad, M. Physico-hydraulic properties of sugarcane bagasse-derived biochar: The role of pyrolysis temperature. Cellulose 2019, 26, 7125–7143. [Google Scholar] [CrossRef]
- Khanmohammadi, Z.; Afyuni, M.; Mosaddeghi, M.R. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manag. Res. 2015, 33, 275–283. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, X.; Zhao, F.; Lu, P. Phosphorus Adsorption Characteristics of Sediments and Its Influencing Factors in Rongcheng Swan Lake Wetland. China Water Wastewater 2009, 25, 91–94. [Google Scholar]
- Li, Q.; Li, H.; Zhang, S. Yield and water use efficiency of dryland potato in response to plastic film mulching on the Loess Plateau. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 68, 175–188. [Google Scholar] [CrossRef]
- Arias, F.E.A.; Beneduci, A.; Chidichimo, F.; Furia, E.; Straface, S. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere 2017, 180, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Li, X.; Sun, B.; Shen, M.; Tan, X.; Ding, Y.; Jiang, Z.; Wang, C. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 2015, 268, 290–299. [Google Scholar] [CrossRef]
- Septiana, L.M.; Djajakirana, G.; Darmawan, D. Characteristics of Biochars from Plant Biomass Wastes at Low-Temperature Pyrolysis. SAINS TANAH J. Soil Sci. Agroclimatol. 2018, 15, 15–28. [Google Scholar] [CrossRef]
- Li, H.; Mahyoub, S.A.A.; Liao, W.; Xia, S.; Zhao, H.; Guo, M.; Ma, P. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresour. Technol. 2017, 223, 20–26. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Liu, K.; Bai, Y.; Kang, Y.X.; Zhang, L. Investigation of particle characteristics, composition, and microstructure of LaxCe1 (-) O-x(2) (-) (x/2) thermal barrier coatings during supersonic atmospheric plasma spray using Box-Behnken design. Surf. Coat. Technol. 2016, 286, 9–15. [Google Scholar] [CrossRef]
- Nisar, S.; Hanif, M.A.; Zahid, M.; Ghaffar, A. Enzymatic glycosylation of menthol: Optimization of synthesis and extraction processes using response surface methodology and biological evaluation of synthesized product. Chem. Pap. 2022, 76, 2649–2675. [Google Scholar] [CrossRef]
- Lakshmi, E.S.; Rao, M.R.N.; Sudhamani, M. Response surface methodology-artificial neural network-based optimization and strain improvement of cellulase production by Streptomyces sp. Biosci. J. 2020, 36, 1390–1402. [Google Scholar]
- Yao, T.; Guo, S.; Zeng, C.; Wang, C.; Zhang, L. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. J. Hazard. Mater. 2015, 292, 90–97. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Jiang, H.; Yu, H.Q. Fates of Chemical Elements in Biomass during Its Pyrolysis. Chem. Rev. 2017, 117, 6. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Productivity (%) | Ash Content (%) | C (%) | H (%) | O (%) | H/C | (N + O)/C | O/C |
---|---|---|---|---|---|---|---|---|
GBB350 | 35.2 | 6.31 | 71.54 | 3.97 | 21.65 | 0.72 | 0.37 | 0.15 |
GBB500 | 28.9 | 11.7 | 74.15 | 2.81 | 12.11 | 0.44 | 0.33 | 0.06 |
GBB650 | 25.1 | 19.65 | 74.42 | 1.62 | 11.79 | 0.16 | 0.28 | 0.06 |
QBB350 | 29.4 | 10.56 | 64.33 | 2.98 | 27.43 | 0.41 | 0.31 | 0.11 |
QBB500 | 21.2 | 19.64 | 69.78 | 2.54 | 18.97 | 0.28 | 0.34 | 0.10 |
QBB650 | 16.3 | 26.16 | 70.76 | 1.88 | 10.76 | 0.27 | 0.24 | 0.03 |
SBB350 | 43.2 | 4.51 | 74.18 | 3.79 | 19.22 | 0.56 | 0.41 | 0.22 |
SBB500 | 35.5 | 9.82 | 81.67 | 1.76 | 10.65 | 0.21 | 0.33 | 0.15 |
SBB650 | 30.3 | 13.22 | 87.15 | 2.91 | 6.31 | 0.11 | 0.25 | 0.08 |
Preparation Temperature (°C) | BET Surface Area (m2/g) | t-Plot Micropore Area (m2/g) | Total Pore Volume (m3/g) | t-Plot Micropore Volume (m3/g) |
---|---|---|---|---|
300 | 77.40 | 90.33 | 0.08 | / |
500 | 310.21 | 241.38 | 0.10 | 0.09 |
650 | 788.83 | 365.86 | 0.25 | 0.17 |
Biochar Types | BET Surface Area (m2/g) | t-Plot Micropore Area (m2/g) | Total Pore Volume (m3/g) | t-Plot Micropore Volume (m3/g) |
---|---|---|---|---|
SBB650 | 428.83 | 345.39 | 0.24 | 0.15 |
QBB650 | 459.19 | 290.34 | 0.12 | 0.08 |
GBB650 | 788.83 | 365.86 | 0.25 | 0.17 |
Factor | Code | Standard | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
dosage (g) | X1 | 0.1 | 0.3 | 0.5 |
temperature (K) | X2 | 298 | 308 | 318 |
Preparation temperature (°C) | X3 | 350 | 500 | 650 |
Order Number | Value of Each Factor | QAct (mg/kg) | QPre (mg/kg) | ||
---|---|---|---|---|---|
X1 (g/L) | X2 (K) | X3 (°C) | |||
1 | 0.10 | 298.00 | 500 | 11.76 | |
2 | 0.50 | 298.00 | 500 | 3.92 | |
3 | 0.10 | 318.00 | 500 | 12.64 | |
4 | 0.50 | 318.00 | 500 | 3.97 | 12.84 |
5 | 0.10 | 308.00 | 350 | 12.36 | 2.83 |
6 | 0.50 | 308.00 | 350 | 2.64 | 13.74 |
7 | 0.10 | 308.00 | 650 | 19.48 | 2.89 |
8 | 0.50 | 308.00 | 650 | 3.98 | 11.65 |
9 | 0.30 | 298.00 | 350 | 3.22 | 4.06 |
10 | 0.30 | 318.00 | 350 | 4.24 | 18.06 |
11 | 0.30 | 298.00 | 650 | 6.62 | 4.74 |
12 | 0.30 | 318.00 | 650 | 6.81 | 2.89 |
13 | 0.30 | 308.00 | 500 | 6.53 | 3.90 |
14 | 0.30 | 308.00 | 500 | 6.47 | 6.93 |
15 | 0.30 | 308.00 | 500 | 6.38 | 6.95 |
16 | 0.30 | 308.00 | 500 | 6.33 | 6.56 |
17 | 0.30 | 308.00 | 500 | 6.61 | 6.56 |
GBB | QBB | SBB | ||||||
---|---|---|---|---|---|---|---|---|
Sources of Variation | F | p | Sources of Variation | F | p | Sources of Variation | F | p |
Model | 22.29 | 0.0002 | Model | 28.41 | 0.0001 | Model | 19.61 | 0.0004 |
X1 | 147.0 | <0.0001 | X1 | 182.8 | <0.0001 | X1 | 132.6 | <0.0001 |
X2 | 0.319 | 0.5893 | X2 | 0.10 | 0.7576 | X2 | 0.147 | 0.7125 |
X3 | 17.26 | 0.0043 | X3 | 31.62 | 0.0008 | X3 | 22.30 | 0.0022 |
X1X2 | 0.115 | 0.7435 | X1X2 | 0.115 | 0.7443 | X1X2 | 0.285 | 0.6097 |
X1X3 | 5.64 | 0.0491 | X1X3 | 7.46 | 0.0292 | X1X3 | 0.243 | 0.6370 |
X2X3 | 0.18 | 0.6779 | X2X3 | 0.021 | 0.8881 | X2X3 | 0.028 | 0.8701 |
X12 | 25.10 | 0.0015 | X12 | 29.41 | 0.0010 | X12 | 17.91 | 0.0039 |
X22 | 6.1 | 0.0428 | X22 | 5.41 | 0.0529 | X22 | 3.73 | 0.0946 |
X32 | 0.018 | 0.8955 | X32 | 0.054 | 0.8214 | X32 | 0.007 | 0.9320 |
Lack of Fit | 90.74 | 0.0004 | Lack of Fit | 90.42 | 0.0004 | Lack of Fit | 1075.36 | <0.0001 |
Variance | GBB | QBB | SBB |
---|---|---|---|
R2 | 0.9662 | 0.9736 | 0.9618 |
RAdj2 | 0.9229 | 0.9398 | 0.9128 |
Adeq Precision | 16.339 | 18.366 | 14.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, X.; Kong, H.; Zhang, D. Characterizing Aqueous Cd2+ Removal by Plant Biochars from Qinghai–Tibet Plateau. Water 2022, 14, 4085. https://doi.org/10.3390/w14244085
Li W, Wang X, Kong H, Zhang D. Characterizing Aqueous Cd2+ Removal by Plant Biochars from Qinghai–Tibet Plateau. Water. 2022; 14(24):4085. https://doi.org/10.3390/w14244085
Chicago/Turabian StyleLi, Wenxuan, Xueli Wang, Haizhen Kong, and Dan Zhang. 2022. "Characterizing Aqueous Cd2+ Removal by Plant Biochars from Qinghai–Tibet Plateau" Water 14, no. 24: 4085. https://doi.org/10.3390/w14244085
APA StyleLi, W., Wang, X., Kong, H., & Zhang, D. (2022). Characterizing Aqueous Cd2+ Removal by Plant Biochars from Qinghai–Tibet Plateau. Water, 14(24), 4085. https://doi.org/10.3390/w14244085