Physical and Rheological Characteristics of Sediment for Nautical Depth Assessment in Bushehr Port and Its Access Channel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrographic Survey
2.3. Sediment Sampling
2.4. Grain-Size Distribution
2.5. Carbonate and Organic Matter Content
2.6. Rheometry
2.7. Consolidation and Settling of Sediment
3. Results
3.1. Depth Estimation from Dual-Frequency Echo Sounder
3.2. Grain-Size Distribution Analysis
3.3. Carbonate and Organic Matter Content Estimation
3.4. Rheological Properties of Sediment
3.5. Consolidation and Settling Analysis
3.6. Core Sample Analysis
4. Discussion
4.1. Surface Sediment Sample Properties
4.2. Sediment Sample Properties over Depth
4.3. Seasonal Variations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McAnally, W.H.; Kirby, R.; Hodge, S.H.; Welp, T.L.; Greiser, N.; Shrestha, P.; McGowan, D.; Turnipseed, P. Nautical Depth for U.S. Navigable Waterways: A Review. J. Waterw. Port Coast. Ocean Eng. 2016, 142, 04015014. [Google Scholar] [CrossRef]
- Mehta, A.J.; Samsami, F.; Khare, Y.P.; Sahin, C. Fluid Mud Properties in Nautical Depth Estimation. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 210–222. [Google Scholar] [CrossRef]
- PIANC. Minimising Harbour Siltation; MarCom Working Group 102 (Rep. No. 102); PIANC (World Association for Waterborne Transport Infrastructure): Brussels, Belgium, 2008. [Google Scholar]
- PIANC. Approach Channels—A Guide for Design; MarCom Working Group 30 (Joint PIANC-IAPH Report); PIANC (World Association for Waterborne Transport Infrastructure): Brussels, Belgium, 1997. [Google Scholar]
- Kirby, R.; Parker, W.R. Seabed density measurements related to echosounder records. Dock Harb. Auth. 1974, 54, 423–424. [Google Scholar]
- Kirby, R.; Parker, W.R.; van Oostrum, W.H.A. Definition of the seabed in navigation routes through mud areas. Int. Hydrogr. Rev. 1980, 57, 107–117. [Google Scholar]
- Vantorre, M. Ship behaviour and control in muddy areas: State of the art, manoeuvring and control of marine craft. In Proceedings of the 3rd International Conference on Manoeuvring and Control of Marine Craft, Southampton, UK, 14–17 July 1992; Roberts, G.N., Pourzanjani, M.M.A., Eds.; 1994; pp. 59–74. [Google Scholar]
- Vantorre, M.; Laforce, E.; Delefortrie, G. A novel methodology for revision of the nautical bottom. In Seminar: Flanders, a Maritime Region of Knowledge (MAREDFlow); Peeters, Y., Fockedey, N., Seys, J., Mees, J., Eds.; Vlaams Instituut voor de Zee (VLIZ): Ostend, Belgium, 2006; pp. 15–34. [Google Scholar]
- Kirby, R.; Wurpts, R.; Greiser, N. Chapter 1 Emerging Concepts for Managing Fine Cohesive Sediment. In Sediment and Ecohydraulics—INTERCOH 2005; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–15. [Google Scholar] [CrossRef]
- Johnson, H.N.; McAnally, W.H.; Ortega-Achury, S. Sedimentation Management Alternatives for the Port of Pascagoula; Mississippi State University: Starkville, MS, USA, 2010. [Google Scholar]
- NRC (National Research Council). Criteria for the Depths of Dredged Navigational Channels; National Academies Press: Washington, DC, USA, 1983. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, J. Study on the possibility of occurrence of fluid mud in the Yangtze deep waterway. In Proceedings of the International Conference on Estuaries and Coasts, Hangzhou, China, 9–11 November 2003; pp. 516–520. [Google Scholar]
- Wurpts, R.; Torn, P. 15 years experience with fluid mud: Definition of the nautical bottom with rheological parameters. Terra et Aqua 2005, 99, 22–32. [Google Scholar]
- Delefortrie, G.; Vantorre, M. The Nautical Bottom Concept in the Harbour of Zeebrugge. In Proceedings of the 31st PIANC Congress, Estoril, Portugal, 14–18 May 2006. [Google Scholar]
- Kirichek, A.; Chassagne, C.; Winterwerp, H.; Vellinga, T. How navigable are fluid mud layers? Terra et Aqua 2018, 151, 6–18. [Google Scholar]
- Verwilligen, J.; Vantorre, M.; Delefortrie, G.; Kamphuis, J.; Meinsma, R.; van der Made, K.J. Manoeuvrability in proximity of nautical bottom in the harbour of Delfzijl. In Proceedings of the 33rd PIANC World Congress, San Francisco, CA, USA, 1–5 June 2014. [Google Scholar]
- Ferket, B.; Heredia Gomez, M.; Rocabado, I.; De Sutter, R.; Van Hoestenberghe, T.; Kwee, J.; Werner, C.; Verwilligen, J.; Vos, S.; Vantorre, M.; et al. Assessment of siltation processes and implementation of nautical depth in the Port of Cochin, India. In Proceedings of the CEDA Dredging days, Rotterdam, The Netherlands, 9–10 November 2017. [Google Scholar]
- Delefortrie, G.; Vantorre, M.; Eloot, K. Modelling Navigation in Muddy Areas through Captive Model Tests. J. Mar. Sci. Technol. 2005, 10, 188–202. [Google Scholar] [CrossRef]
- Delefortrie, G.; Vantorre, M. Effects of a muddy bottom on the straight-line stability. In Proceedings of the 7th IFAC Conference on Manoeuvring and Control of Marine Craft, Lisbon, Portugal, 20–22 September 2006. [Google Scholar]
- Delefortrie, G.; Vantorre, M.; Verzhbitskaya, E.; Seynaeve, K. Evaluation of Safety of Navigation in Muddy Areas through Real-Time Maneuvering Simulation. J. Waterw. Port Coast. Ocean Eng. 2007, 133, 125–135. [Google Scholar] [CrossRef]
- Vantorre, M.; Eloot, K.; Delefortrie, G.; Lataire, E.; Candries, M.; Verwilligen, J. Maneuvering in Shallow and Confined Water. Encycl. Mar. Offshore Eng. 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, J.C.; Fonseca, D.L.; Vinzon, S.B.; Gallo, M.N. Strategies for Measuring Fluid Mud Layers and Their Rheological Properties in Ports. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017008. [Google Scholar] [CrossRef]
- Chandrasekharan Nair, V.; Prasad, S.K.; Sangwai, J.S. Characterization and Rheology of Krishna-Godavari Basin Sediments. Mar. Pet. Geol. 2019, 110, 275–286. [Google Scholar] [CrossRef]
- Messaoudi, A.; Bouzit, M.; Boualla, N. Physical and Rheological Properties of the Chorfa Dam Mud: Dependency on Solids Concentration. Appl. Water Sci. 2018, 8, 178. [Google Scholar] [CrossRef]
- Yang, W.; Yu, M.; Yu, G. Stratification and Rheological Properties of Near-Bed Cohesive Sediments in West Lake, Hangzhou, China. J. Coast. Res. 2018, 341, 185–192. [Google Scholar] [CrossRef]
- Shakeel, A.; Kirichek, A.; Chassagne, C. Rheological Analysis of Mud from Port of Hamburg, Germany. J. Soils Sediments 2020, 20, 2553–2562. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, A.; Chassagne, C.; Bornholdt, J.; Ohle, N.; Kirichek, A. From Fundamentals to Implementation of Yield Stress for Nautical Bottom: Case Study of the Port of Hamburg. Ocean Eng. 2022, 266, 112772. [Google Scholar] [CrossRef]
- JWERC. Monitoring and Modeling Study of Some Coastal Parts of Sistan and Baluchestan and Bushehr Provinces—Phase III; PMO: Tehran, Iran, 2011. [Google Scholar]
- Oceans Research Co. Investigation of Sedimentation Pattern in the Bushehr Port after Its Development Project; PMO: Tehran, Iran, 2020. [Google Scholar]
- Carneiro, J.C.; Gallo, M.N.; Vinzón, S.B. Detection of Fluid Mud Layers Using Tuning Fork, Dual-Frequency Echo Sounder, and Chirp Sub-Bottom Measurements. Ocean Dyn. 2020, 70, 573–590. [Google Scholar] [CrossRef]
- Kirichek, A.; Rutgers, R. Monitoring of settling and consolidation of mud after water injection dredging in the Calandkanaal. Terra et Aqua 2020, 160, 16–26. [Google Scholar]
- ISO 13320; Particle Size Analysis—Laser Diffraction Methods. ISO 13320 (International Organization for Standardization): Geneva, Switzerland, 2020.
- Deng, Z.; Huang, D.; He, Q.; Chassagne, C. Review of the Action of Organic Matter on Mineral Sediment Flocculation. Front. Earth Sci. 2022, 10, 965919. [Google Scholar] [CrossRef]
- ASTM D2974-20E01; Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM (American Society for Testing and Materials): West Conshohocken, PA, USA, 2014. [CrossRef]
- Mezger, T.G. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; Vincentz Network, Corp.: Hannover, Germany, 2014. [Google Scholar]
- PIANC. Harbour Approach Channels Design Guidelines; MarCom Working Group 121 (Rep. No. 121); PIANC (World Association for Waterborne Transport Infrastructure): Brussels, Belgium, 2014. [Google Scholar]
- Peixoto, R.S.; Rosman, P.C.C.; Vinzon, S.B. A Morphodynamic Model for Cohesive Sediments Transport. Braz. J. Water Resour. 2017, 22, e57. [Google Scholar] [CrossRef]
Sampling Point No. | Longitude | Latitude | In Situ Depth (m) | Depth Based on the Latest Hydrographic Survey Data (m, Relative to CD) |
---|---|---|---|---|
S1 | 50.75677 | 28.9774 | −9.5 | −9.4 |
S2 | 50.77087 | 28.9909 | −8.5 | −9.0 |
S3 | 50.78357 | 29.0030 | −9.1 | −8.0 |
S4 | 50.79344 | 29.0112 | −8.0 | −8.5 |
S5 | 50.80781 | 29.0252 | −9.8 | −7.6 |
S6 | 50.83674 | 28.9911 | −8.0 | −10.1 |
S7 | 50.84524 | 28.9883 | −1.2 | −1.0 |
C | 50.7832 | 29.00332 | −7.0 | −8.3 |
Name and Class | Size Range (mm) | ||
---|---|---|---|
Very coarse | Boulders | >200 | |
Cobbles | 60–200 | ||
Coarse | Gravel (G) | Coarse | 20–60 |
Medium | 6–20 | ||
Fine | 2–6 | ||
Sand (S) | Coarse | 0.6–2.0 | |
Medium | 0.2–0.6 | ||
Fine | 0.06–0.2 | ||
Fine | Silt (M) | Coarse | 0.02–0.06 |
Medium | 0.006–0.02 | ||
Fine | 0.002–0.006 | ||
Clay (C) | <0.002 |
Sample | w (%) | Clay | Silt | Sand | D50 (µm) | Carbonate Content | Organic Matter Content |
---|---|---|---|---|---|---|---|
S1 | 67% | 26% | 73% | 1% | 4.66 | 52.92% | 0.25% |
S2 | 60.23% | 18% | 77% | 5% | 8.51 | 57.23% | 0.24% |
S3 | 80.90% | 23% | 77% | - | 5.22 | 56.3% | 0.25% |
S4 | 75.08% | 30% | 67% | 3% | 6.77 | 56.09% | 0.28% |
S5 | 59.85% | 31% | 69% | - | 3.39 | 54.79% | 0.29% |
S6 | 99.35% | 31% | 69% | - | 3.22 | 53.06% | 0.27% |
S7 | 37.45% | - | 48% | 52% | 63.76 | 70.62% | 0.31% |
Sample No. | (I) Stirring the Sample | (II) Two Days of Resting | (III) Two Weeks of Resting | ||||||
---|---|---|---|---|---|---|---|---|---|
w (%) | ρ (kg/m3) | C (kg/m3) | w (%) | ρ (kg/m3) | C (kg/m3) | w (%) | ρ (kg/m3) | C (kg/m3) | |
S1 | 67 | 1612.31 | 965.46 | 68.39 | 1604.72 | 952.98 | 68.83 | 1602.36 | 949.10 |
S2 | 60.23 | 1652.32 | 1031.22 | 61.63 | 1643.60 | 1016.90 | 62.60 | 1637.71 | 1007.20 |
S3 | 80.90 | 1544.32 | 853.69 | 81.62 | 1541.23 | 848.60 | 84.60 | 1528.8 | 828.17 |
S4 | 75.08 | 1558.03 | 889.90 | 68.66 | 1589.49 | 942.43 | 73.66 | 1564.68 | 901.01 |
S5 | 59.85 | 1639.25 | 1025.50 | 61.85 | 1627.20 | 1005.38 | 61.56 | 1628.92 | 1008.25 |
S6 | 99.35 | 1470.49 | 737.64 | 101.17 | 1464.73 | 728.11 | 99.93 | 1468.64 | 734.58 |
S7 | 37.45 | 1828.36 | 1330.20 | 34.92 | 1855.63 | 1375.36 | N/A | N/A | N/A |
Sample No. | (I) Stirring the Sample | (II) Two Days of Resting | (III) Two Weeks of Resting | ||||||
---|---|---|---|---|---|---|---|---|---|
C (kg/m3) | τyC (Pa) | ηC (Pa.s) | C (kg/m3) | τyC (Pa) | ηC (Pa.s) | C (kg/m3) | τyC (Pa) | ηC (Pa.s) | |
S1 | 965.46 | 779.05 | 3.42 | 952.98 | 771.7 | 8.7 | 949.10 | 1057.27 | 4.47 |
S2 | 1031.22 | 507.63 | 3.56 | 1016.90 | 421.58 | 2.88 | 1007.20 | 702.61 | 4.02 |
S3 | 853.69 | 226.79 | 0.78 | 848.60 | 77.58 | 19.77 | 828.17 | 70.18 | 20.03 |
S4 | 889.90 | 275.77 | 1.32 | 942.43 | 72.36 | 18.92 | 901.01 | 223.76 | 9.87 |
S5 | 1025.50 | 1018.75 | 2.97 | 1005.38 | 1395.54 | 23.28 | 1008.25 | 1913.68 | 3.97 |
S6 | 737.64 | 317.58 | 1.52 | 728.11 | 205.51 | 12.16 | 734.58 | 324.5 | 5.25 |
S7 | 1330.20 | N/A | N/A | 1375.36 | N/A | N/A | N/A | N/A | N/A |
Sample No. | (I) Stirring the Sample | (II) Two Days of Resting | (III) Two Weeks of Resting | ||||||
---|---|---|---|---|---|---|---|---|---|
C (kg/m3) | τyos (Pa) | τf (Pa) | C (kg/m3) | τyos (Pa) | τf (Pa) | C (kg/m3) | τyos (Pa) | τf (Pa) | |
S1 | 965.46 | 19.5 | 187 | 952.98 | 59.9 | 164 | 949.10 | 73.1 | 181 |
S2 | 1031.22 | 24.3 | 96.8 | 1016.90 | 20.2 | 70.1 | 1007.20 | 41.8 | 108 |
S3 | 853.69 | 19.3 | 61.2 | 848.60 | 15.1 | 56.5 | 828.17 | 18.1 | 51.7 |
S4 | 889.90 | 17.1 | 67.6 | 942.43 | 20.1 | 66 | 901.01 | 24 | 74.9 |
S5 | 1025.50 | 75.5 | 206 | 1005.38 | 121 | 305 | 1008.25 | 123 | 271 |
S6 | 737.64 | 18.3 | 101 | 728.11 | 24.5 | 79.3 | 734.58 | 26.9 | 85.6 |
S7 | 1330.20 | N/A | N/A | 1375.36 | N/A | N/A | N/A | N/A | N/A |
Core Sample | Sample No. | w (%) | Carbonate Content | Organic Content | D50 (µm) | Clay | Silt | Sand | Oscillatory Test | |
---|---|---|---|---|---|---|---|---|---|---|
τyos (Pa) | τf (Pa) | |||||||||
C1 | 8.44% | 47.24% | 0.19% | 2.43 | 40% | 60% | - | 32.1 | 71.1 | |
C2 | 45.49% | 47.05% | 0.19% | 55.11 | 5% | 53% | 42% | 103 | 234 | |
C3 | 32.51% | 50.85% | 0.18% | 29.95 | 10% | 85% | 5% | 24 | 121 | |
C4 | 65.34% | 49.12% | 0.18% | 3.37 | 32% | 68% | - | 38.1 | 107 | |
C5 | 66.08% | 44.33% | 0.18% | 3.56 | 30% | 70% | - | 58.9 | 150 |
Tests/Steps | (I) Stirring the Sample | (II) Two Days of Resting | (III) Two Weeks of Resting |
---|---|---|---|
Rotary | τyC = 0.0737 e0.0094C | τyC = 0.0634 e0.0091C | τyC = 0.0582 e0.0098C |
Oscillatory | = 0.0639 e0.0064C | = 0.0637 e0.0068C | = 0.058 e0.0072C |
= 0.0748 e0.0078C | = 0.0714 e0.0078C | = 0.0669 e0.0081C |
Month | Sample No. | w (%) | ||
---|---|---|---|---|
September | S2 | 58.83% | 20.7 | 47 |
S5 | 100.82% | 10.8 | 58.8 | |
November | S2 | 76.97% | 31.7 | 61 |
S5 | 84.36% | 14.2 | 74.6 |
Month | Sample No. | SiO2 | CaO | Na2O | P2O5 | Al2O3 | MgO | SO3 | K2O | Fe2O3 |
---|---|---|---|---|---|---|---|---|---|---|
September | S2 | 19.40 | 57.57 | 1.539 | 0.845 | 2.895 | 1.519 | 0.452 | 1.763 | 9.117 |
S5 | 20.42 | 52.54 | 1.689 | 0.898 | 3.469 | 1.865 | 0.644 | 2.55 | 12.66 | |
November | S2 | 18.34 | 59.73 | 1.294 | 1.056 | 2.906 | 1.557 | 0.37 | 2.008 | 11.72 |
S5 | 20.15 | 55.50 | 1.397 | 0.837 | 3.456 | 1.834 | 0.436 | 2.301 | 11.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samsami, F.; Haghshenas, S.A.; Soltanpour, M. Physical and Rheological Characteristics of Sediment for Nautical Depth Assessment in Bushehr Port and Its Access Channel. Water 2022, 14, 4116. https://doi.org/10.3390/w14244116
Samsami F, Haghshenas SA, Soltanpour M. Physical and Rheological Characteristics of Sediment for Nautical Depth Assessment in Bushehr Port and Its Access Channel. Water. 2022; 14(24):4116. https://doi.org/10.3390/w14244116
Chicago/Turabian StyleSamsami, Farzin, Seyyed Abbas Haghshenas, and Mohsen Soltanpour. 2022. "Physical and Rheological Characteristics of Sediment for Nautical Depth Assessment in Bushehr Port and Its Access Channel" Water 14, no. 24: 4116. https://doi.org/10.3390/w14244116
APA StyleSamsami, F., Haghshenas, S. A., & Soltanpour, M. (2022). Physical and Rheological Characteristics of Sediment for Nautical Depth Assessment in Bushehr Port and Its Access Channel. Water, 14(24), 4116. https://doi.org/10.3390/w14244116