Flow Hydrodynamic in Open Channels: A Constantly Evolving Topic
1. Introduction
2. Short Descriptive Summary of the Different Manuscripts
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Nezu, I.; Onitsuka, K. Turbulent structures in partly vegetated open-channel flows with LDA and PIV measurements. J. Hydraul. Res. 2001, 39, 629–642. [Google Scholar] [CrossRef]
- White, B.L.; Nepf, H.M. Shear instability and coherent structures in shallow flow adjacent to a porous layer. J. Fluid Mech. 2007, 593, 1–32. [Google Scholar] [CrossRef]
- De Serio, F.; Ben Meftah, M.; Mossa, M.; Termini, D. Experimental investigation on dispersion mechanisms in rigid and flexible vegetated beds. Adv. Water Resour. 2018, 120, 98–113. [Google Scholar] [CrossRef]
- Ben Meftah, M.; Mossa, M. Turbulence measurement of vertical dense jets in crossflow. Water 2018, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Mossa, M.; Ben Meftah, M.; De Serio, F.; Nepf, H. How vegetation in flows modifies the turbulent mixing and spreading of jets. Sci. Rep. 2017, 7, 6587. [Google Scholar] [CrossRef] [Green Version]
- Ben Meftah, M.; De Serio, F.; Mossa, M. Hydrodynamic behavior in the outer shear layer of partly obstructed open channels. Phys. Fluids 2014, 26, 065102. [Google Scholar] [CrossRef]
- Huai, W.; Xue, W.; Qian, Z. Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch. Adv. Water Resour. 2015, 80, 30–42. [Google Scholar] [CrossRef]
- Ben Meftah, M.; Mossa, M. Partially obstructed channel: Contraction ratio effect on the flow hydrodynamic structure and prediction of the transversal mean velocity profile. J. Hydrol. 2016, 542, 87–100. [Google Scholar] [CrossRef]
- Ben Meftah, M.; De Serio, F.; Malcangio, D.; Mossa, M.; Petrillo, A.F. A modified log-law of flow velocity distribution in partly obstructed open channels. Environ. Fluid Mech. 2016, 16, 453–479. [Google Scholar] [CrossRef]
- Aricò, C.; Corato, G.; Tucciarelli, T.; Ben Meftah, M.; Mossa, M.; Petrillo, F.A. Discharge estimation in open channels by means of water level hydrograph analysis. J. Hydraul. Res. 2010, 48, 612–619. [Google Scholar] [CrossRef]
- Huthoff, W.; Roos, P.C.; Augustijn, C.M.A.; Hulscher, S.J.M.H. Interacting divided channel method for compound channel flow. J. Hydraul. Eng. 2008, 134, 1158–1165. [Google Scholar] [CrossRef]
- Tang, X. An improved method for predicting discharge of homogeneous compound channels based on energy concept. Flow Meas. Instrum. 2017, 57, 57–63. [Google Scholar] [CrossRef]
- Yang, Z.; Li, D.; Huai, W.; Liu, J. A New method to estimate flow conveyance in a compound channel with vegetated floodplains based on energy balance. J. Hydrol. 2019, 575, 921–929. [Google Scholar] [CrossRef]
- Ben Meftah, M.; Mossa, M. Discharge prediction in partly vegetated channel flows: Adaptation of IDCM method with a curved interface and large-scale roughness elements. J. Hydrol. 2023, 616, 128805. [Google Scholar] [CrossRef]
- Kvočka, D.; Žagar, D.; Banovec, P. A review of river oil spill modeling. Water 2021, 13, 1620. [Google Scholar] [CrossRef]
- Eke, D.C.; Anifowose, B.; Van De Wiel, M.J.; Lawler, D.; Knaapen, M.A.F. Numerical modelling of oil spill transport in tide-dominated estuaries: A case study of Humber Estuary, UK. J. Mar. Sci. Eng. 2021, 9, 1034. [Google Scholar] [CrossRef]
- Guo, Y. Hydrodynamics in estuaries and coast: Analysis and modeling. Water 2022, 14, 1478. [Google Scholar] [CrossRef]
- Sohrt, V.; Hein, S.S.V.; Nehlsen, E.; Strotmann, T.; Fröhle, P. Model based assessment of the reflection behavior of tidal waves at bathymetric changes in estuaries. Water 2021, 13, 489. [Google Scholar] [CrossRef]
- Eyre, B.; Hossain, S.; McKee, L. A suspended sediment budget for the modified subtropical Brisbane River estuary, Australia. Estuar. Coast. Shelf Sci. 1998, 47, 513–522. [Google Scholar] [CrossRef]
- Chi, Y.; Rong, Z. Assessment of extreme storm surges over the Changjiang river estuary from a wave-current coupled model. J. Mar. Sci. Eng. 2021, 9, 1222. [Google Scholar] [CrossRef]
- Manes, C.; Brocchini, M. Local scour around structures and the phenomenology of turbulence. J. Fluid Mech. 2015, 779, 309–324. [Google Scholar] [CrossRef]
- Ben Meftah, M.; Mossa, M. Scour holes downstream of bed sills in low-gradient channels. J. Hydraul. Res. 2006, 44(4), 497–509. [Google Scholar] [CrossRef]
- Wang, L.; Melville, B.W.; Whittaker, C.N.; Guan, D. Temporal evolution of clear-water scour depth at submerged weirs. J. Hydraul. Eng. 2020, 146, 06020001. [Google Scholar] [CrossRef]
- Ben Meftah, M.; De Serio, F.; De Padova, D.; Mossa, M. Hydrodynamic structure with scour hole downstream of bed sills. Water 2020, 12, 186. [Google Scholar] [CrossRef] [Green Version]
- Papanicolaou, A.N.T.; Bressan, F.; Fox, J.; Kramer, C.; Kjos, L. Role of structure submergence on scour evolution in gravel bed rivers: Application to slope-crested structures. J. Hydraul. Eng. 2018, 144, 03117008. [Google Scholar] [CrossRef]
- Amini, A.; Melville, B.W.; Ali, T.M.; Ghazal, A.H. Clear-water local scour around pile groups in shallow-water flow. J. Hydraul. Eng. 2012, 138, 177–185. [Google Scholar] [CrossRef]
- Ben Meftah, M.; Mossa, M. New approach to predicting local scour downstream of grade-control structure. J. Hydraul. Eng. 2020, 146, 04019058. [Google Scholar] [CrossRef]
- De Padova, D.; Ben Meftah, M.; Mossa, M.; Sibilla, S. A multi-phase SPH simulation of hydraulic jump oscillations and local scouring processes downstream of bed sills. Adv. Water Resour. 2022, 159, 104097. [Google Scholar] [CrossRef]
- Njenga, K.J.; Kioko, K.J.; Wanjiru, G.P. Secondary current and classification of river channels. Appl. Math. 2013, 4, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Albayrak, I.; Lemmin, U. Secondary currents and corresponding surface velocity patterns in a turbulent open-channel flow over a rough bed. J. Hydraul. Eng. 2011, 137, 1318–1334. [Google Scholar] [CrossRef]
- Ben Meftah, M.; Mossa, M.; Pollio, A. Considerations on shock wave/boundary layer interaction in undular hydraulic jumps in horizontal channels with a very high aspect ratio. Eur. J. Mech. - B/Fluids 2010, 29, 415–429. [Google Scholar] [CrossRef]
- Ben Meftah, M.; De Serio, F.; Malcangio, D.; Mossa, M.; Petrillo, A.F. Experimental study of a vertical jet in a vegetated crossflow. J. Environ. Manag. 2015, 164, 19–31. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y.; Zhong, Q. Wavelet coherency structure in open channel flow. Water 2019, 11, 1664. [Google Scholar] [CrossRef] [Green Version]
- Ben Meftah, M.; Malcangio, D.; De Serio, F.; Mossa, M. Vertical dense jet in flowing current. Environ. Fluid Mech. 2018, 18, 75–96. [Google Scholar] [CrossRef]
- Yang, Z.; Bai, F.; Xiang, K. A lattice Boltzmann model for the open channel flows described by the Saint-Venant equations. R. Soc. Open Sci. 2019, 6, 190439. [Google Scholar] [CrossRef] [Green Version]
- Ben Meftah, M.; De Serio, F.; Mossa, M.; Pollio, A. Experimental study of recirculating flows generated by lateral shock waves in very large channels. Environ. Fluid Mech. 2008, 8, 215–238. [Google Scholar] [CrossRef]
- Da, J.; Wang, J.; Dong, Z.; Du, S. Hydraulic characteristics of lateral deflectors with different geometries in gentle-slope free-surface tunnels. Water 2022, 14, 2689. [Google Scholar] [CrossRef]
- Iouzzi, N.; Mouakkir, L.; Ben Meftah, M.; Chagdali, M.; Loudyi, D. SWAN modeling of dredging effect on the Oued Sebou Estuary. Water 2022, 14, 2633. [Google Scholar] [CrossRef]
- Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Real-time properties of hydraulic jump off a tidal bore, its generation and transport mechanisms: A case study of the Kampar River Estuary, Indonesia. Water 2022, 14, 2561. [Google Scholar] [CrossRef]
- Basile, R.; De Serio, F. Flow field around a vertical cylinder in presence of long waves: An experimental study. Water 2022, 14, 1945. [Google Scholar] [CrossRef]
- Flores-Vidriales, D.; Gómez, R.; Tolentino, D. Stochastic assessment of scour hazard. Water 2022, 14, 273. [Google Scholar] [CrossRef]
- Coscarella, F.; Penna, N.; Ferrante, A.P.; Gualtieri, P.; Gaudio, R. Turbulent flow through random vegetation on a rough bed. Water 2021, 13, 2564. [Google Scholar] [CrossRef]
- Choo, Y.-M.; Kim, J.-G.; Park, S.-H. A Study on the friction factor and Reynolds number relationship for flow in smooth and rough channels. Water 2021, 13, 1714. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Yang, Y.; Chiu, Y.-J.; Ji, X. Hydrodynamic characteristics of flow in a strongly curved channel with gravel beds. Water 2021, 13, 1519. [Google Scholar] [CrossRef]
- Ben Meftah, M.; De Padova, D.; De Serio, F.; Mossa, M. Secondary currents with scour hole at grade control structures. Water 2021, 13, 319. [Google Scholar] [CrossRef]
- Termini, D.; Fichera, A. Experimental analysis of velocity distribution in a coarse-grained debris flow: A modified Bagnold’s equation. Water 2020, 12, 1415. [Google Scholar] [CrossRef]
- Taye, J.; Barman, J.; Kumar, B.; Oliveto, G. Deciphering morphological changes in a sinuous river system by higher-order velocity moments. Water 2020, 12, 772. [Google Scholar] [CrossRef] [Green Version]
- Harasti, A.; Gilja, G.; Potočki, K.; Lacko, M. Scour at bridge piers protected by the riprap sloping structure: A review. Water 2021, 13, 3606. [Google Scholar] [CrossRef]
- D’Ippolito, A.; Calomino, F.; Alfonsi, G.; Lauria, A. Flow resistance in open channel due to vegetation at reach scale: A review. Water 2021, 13, 116. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Meftah, M. Flow Hydrodynamic in Open Channels: A Constantly Evolving Topic. Water 2022, 14, 4120. https://doi.org/10.3390/w14244120
Ben Meftah M. Flow Hydrodynamic in Open Channels: A Constantly Evolving Topic. Water. 2022; 14(24):4120. https://doi.org/10.3390/w14244120
Chicago/Turabian StyleBen Meftah, Mouldi. 2022. "Flow Hydrodynamic in Open Channels: A Constantly Evolving Topic" Water 14, no. 24: 4120. https://doi.org/10.3390/w14244120
APA StyleBen Meftah, M. (2022). Flow Hydrodynamic in Open Channels: A Constantly Evolving Topic. Water, 14(24), 4120. https://doi.org/10.3390/w14244120