Occurrence and Removal of Priority Substances and Contaminants of Emerging Concern at the WWTP of Benidorm (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substances Studied
2.2. Sampling
2.3. Analytical Methodology
2.3.1. GC-MS/MS
2.3.2. HPLC-MS/MS
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.; Ribeiro, A.R.; Pereira, M.F.; Silva, A.M. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Logar, I.; Brouwer, R.; Maurer, M.; Ort, C. Cost-Benefit Analysis of the Swiss National Policy on Reducing Micropollutants in Treated Wastewater. Environ. Sci. Technol. 2014, 48, 12500–12508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijani, J.O.; Fatoba, O.O.; Petrik, L.F. A Review of Pharmaceuticals and Endocrine-Disrupting Compounds: Sources, Effects, Removal, and Detections. Water Air Soil Pollut. 2013, 224, 1170. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Walker, G.W.; Muir, D.C.G.; Nagatani-Yoshida, K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulio, V.; van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ. Sci. Eur. 2018, 30, 5. [Google Scholar] [CrossRef]
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy; 2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDF (accessed on 25 October 2022).
- Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy; 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015D0495&from=EN (accessed on 25 October 2022).
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy; 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0840&rid=7 (accessed on 25 October 2022).
- Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy; 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2020.257.01.0032.01.ENG&toc=OJ:L:2020:257:TOC (accessed on 25 October 2022).
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Emerging contaminants: Analysis, aquatic compartments and water pollution. In Emerging Contaminants; Springer: Cham, Switzerland, 2021; Volume 1, pp. 1–111. [Google Scholar] [CrossRef]
- Teijon, G.; Candela, L.; Tamoh, K.; Molina-Díaz, A.; Fernández-Alba, A.R. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci. Total Environ. 2010, 408, 3584–3595. [Google Scholar] [CrossRef]
- Bueno, M.M.; Gomez, M.; Herrera, S.; Hernando, M.; Agüera, A.; Fernández-Alba, A. Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environ. Pollut. 2012, 164, 267–273. [Google Scholar] [CrossRef]
- Donner, E.; Eriksson, E.; Revitt, D.; Scholes, L.; Lützhøft, H.-C.H.; Ledin, A. Presence and fate of priority substances in domestic greywater treatment and reuse systems. Sci. Total Environ. 2010, 408, 2444–2451. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, I.; Gómez, M.; Molina-Díaz, A.; Huijbregts, M.; Fernández-Alba, A.; García-Calvo, E. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere 2008, 74, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Cirja, M.; Ivashechkin, P.; Schäffer, A.; Corvini, P.F.X. Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev. Environ. Sci. Bio/Technol. 2007, 7, 61–78. [Google Scholar] [CrossRef]
- Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317. [Google Scholar] [CrossRef] [Green Version]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Kruglova, A.; Ahlgren, P.; Korhonen, N.; Rantanen, P.; Mikola, A.; Vahala, R. Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 C temperature conditions. Sci. Total Environ. 2014, 499, 394–401. [Google Scholar] [CrossRef]
- Göbel, A.; McArdell, C.S.; Joss, A.; Siegrist, H.; Giger, W. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total. Environ. 2007, 372, 361–371. [Google Scholar] [CrossRef]
- Margot, J.; Rossi, L.; Barry, D.; Holliger, C. A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip. Rev. Water 2015, 2, 457–487. [Google Scholar] [CrossRef]
- Entidad Pública de Saneamiento de la Comunidad Valenciana, EPSAR. Available online: https://www.epsar.gva.es/benidorm-0 (accessed on 10 October 2022).
- Couto, C.F.; Lange, L.C.; Amaral, M.C. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J. Water Process. Eng. 2019, 32, 100927. [Google Scholar] [CrossRef]
- Khasawneh, O.F.S.; Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Saf. Environ. Prot. 2021, 150, 532–556. [Google Scholar] [CrossRef]
- Pasquini, L.; Munoz, J.-F.; Pons, M.-N.; Yvon, J.; Dauchy, X.; France, X.; Le, N.D.; France-Lanord, C.; Görner, T. Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. Sci. Total. Environ. 2014, 481, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Gao, X.; Huang, L.; Gan, X.-M.; Zhang, Y.-X.; Chen, Y.-P.; Peng, X.-Y.; Guo, J.-S. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: Mass balance analysis and consumption back-calculated model. Chemosphere 2014, 99, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Clara, M.; Strenn, B.; Kreuzinger, N. Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res. 2004, 38, 947–954. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Miao, X.-S.; Yang, J.-J.; Metcalfe, C.D. Carbamazepine and Its Metabolites in Wastewater and in Biosolids in a Municipal Wastewater Treatment Plant. Environ. Sci. Technol. 2005, 39, 7469–7475. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Ying, G.-G.; Liu, S.; Zhao, J.-L.; Yang, B.; Chen, Z.-F.; Lai, H.-J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total. Environ. 2013, 452, 365–376. [Google Scholar] [CrossRef]
- Dai, G.; Huang, J.; Chen, W.; Wang, B.; Yu, G.; Deng, S. Major Pharmaceuticals and Personal Care Products (PPCPs) in Wastewater Treatment Plant and Receiving Water in Beijing, China, and Associated Ecological Risks. Bull. Environ. Contam. Toxicol. 2014, 92, 655–661. [Google Scholar] [CrossRef]
- Ting, Y.F.; Praveena, S.M. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: A mini review. Environ. Monit. Assess. 2017, 189, 178. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.L.; Aparicio, I.; Callejón, M.; Alonso, E. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J. Hazard. Mater. 2009, 164, 1509–1516. [Google Scholar] [CrossRef]
- Jelić, A.; Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. In Emerging and Priority Pollutants in Rivers; Springer: Cham, Switzerland, 2012; pp. 1–23. [Google Scholar]
Substance | Origin | Classification | |||
---|---|---|---|---|---|
PS | CEC of the First Observation List (Commission Implemen-ting Decision (EU) 2015/495) | CEC of the Third Observation List (Commission Implementing Decision (EU) 2020/1161) | Other CECs of Interest | ||
17-α-ethinylestradiol | Pharm | X | |||
17-β-estradiol | Pharm | X | |||
Atrazine | Ind/Agr | X | |||
Brominated diphenyl ether | Ind/Agr | X | |||
Carbamazepine | Pharm | X | |||
Chloramphenicol | Pharm | X | |||
Chlorpyrifos | Ind/Agr | X | |||
Di(2-ethylhexy)l phthalate | Ind Agr | X | |||
Diclofenac | Pharm | X | |||
Diuron | Ind/Agr | X | |||
Erythromycin | Pharm | X | |||
Estriol | Pharm | X | |||
Estrone | Pharm | X | |||
Fluoxetine | Pharm | X | |||
Ibuprofen | Pharm | X | |||
Imazalil | Ind/Agr | X | |||
Isoproturon | Ind/Agr | X | |||
Ketoprofen | Pharm | X | |||
Octylphenol | Ind/Agr | X | |||
Orthophenylphenol | Ind/Agr | X | |||
Pentachlorobenzene | Ind/Agr | X | |||
Simazine | Ind/Agr | X | |||
Sulfamethoxazole | Pharm | X | |||
Terbuthylazine | Ind/Agr | X | |||
Terbutryn | Ind/Agr | X | |||
Thiabendazole | Ind/Agr | X | |||
Tributyltin | Ind/Agr | X | |||
Trifluralin | Ind/Agr | X |
Analyte | Analytical Technique | Extraction and/or Preconcentration Method | LOQ μg L−1 |
---|---|---|---|
17-α-ethinylestradiol | HPLC-MS | SPE | 0.05 |
17-β-estradiol | HPLC-MS | SPE | 0.005 |
Atrazine | HPLC-MS | SPE | 0.05 |
Brominated diphenyl ether | GC-MS | SBSE | 0.1 |
Carbamazepine | HPLC-MS | SPE | 0.05 |
Chloramphenicol | HPLC-MS | SPE | 0.005 |
Chlorpyrifos | GC-MS | SBSE | 0.03 |
Di(2-ethylhexyl) phthalate | GC-MS | SBSE | 1 |
Diclofenac | HPLC-MS | SPE | 0.01 |
Diuron | HPLC-MS | SPE | 0.05 |
Erythromycin | HPLC-MS | SPE | 0.05 |
Estriol | HPLC-MS | SPE | 0.1 |
Estrone | HPLC-MS | SPE | 0.005 |
Fluoxetine | HPLC-MS | SPE | 0.05 |
Ibuprofen | HPLC-MS | SPE | 0.05 |
Imazalil | HPLC-MS | SPE | 0.5 |
Isoproturon | HPLC-MS | SPE | 0.05 |
Ketoprofen | HPLC-MS | SPE | 0.05 |
Octylphenol | GC-MS | SBSE | 0.03 |
Orthophenylphenol | GC-MS | SBSE | 0.03 |
Pentachlorobenzene | GC-MS | SBSE | 0.003 |
Simazine | HPLC-MS | SPE | 0.05 |
Sulfamethoxazole | HPLC-MS | SPE | 0.05 |
Terbuthylazine | HPLC-MS | SPE | 0.05 |
Terbutryn | GC-MS | SBSE | 0.05 |
Thiabendazole | HPLC-MS | SPE | 0.5 |
Tributyltin | GC-MS | SBSE | 0.0001 |
Trifluralin | GC-MS | SBSE | 0.03 |
Substance | Influent Average (µg L−1 ± Standard Deviation) | Effluent Average (µg L−1 ± Standard Deviation) | Overall Removal (%) | Established Environmental Quality Standards (EU) (µg L−1) |
---|---|---|---|---|
17-α-ethinylestradiol * | <LOQ | <LOQ | - | |
17-β-estradiol | <LOQ | <LOQ | - | |
Atrazine ** | <LOQ | <LOQ | - | 0.6 |
Brominated diphenyl ether | <LOQ | <LOQ | - | - |
Carbamazepine | 0.359 ± 0.081 | 0.360 ± 0.081 | 0 | |
Chloramphenicol | 0.006 ± 0.010 | <LOQ | 100 | |
Chlorpyrifos | 0.235 ± 0.067 | 0.051 ± 0.031 | 78 | 0.03 |
Di(2-ethylhexyl) phthalate | 4.49 ± 0.291 | 0.972 ± 0.135 | 78 | 1.3 |
Diclofenac | 1.61 ± 0.174 | 1.13 ± 0.146 | 30 | |
Diuron | 0.048 ± 0.030 | 0.062 ± 0.034 | 0 | 0.2 |
Erythromycin | 0.196 ± 0.061 | 0.195 ± 0.061 | 1 | |
Estriol | 0.639 ± 0.108 | <LOQ | 100 | |
Estrone | 0.038 ± 0.026 | 0.009 ± 0.013 | 76 | |
Fluoxetine | 0.155 ± 0.053 | 0.073 ± 0.036 | 53 | |
Ibuprofen | 31.8 ± 0.760 | 0.397 ± 0.026 | 99 | |
Imazalil | <LOQ | <LOQ | - | - |
Isoproturon | <LOQ | <LOQ | - | 0.3 |
Ketoprofen | 2.54 ± 0.215 | 0.534 ± 0.098 | 79 | |
Octylphenol | <LOQ | <LOQ | - | 0.1 |
Orthophenylphenol | <LOQ | <LOQ | - | - |
Pentachlorobenzene | <LOQ | <LOQ | - | 0.007 |
Simazine | <LOQ | <LOQ | - | 1 |
Sulfamethoxazole *** | 0.699 ± 0.113 | 0.226 ± 0.064 | 68 | |
Terbuthylazine | <LOQ | <LOQ | - | - |
Terbutryn | <LOQ | <LOQ | - | 0.065 |
Thiabendazole | <LOQ | <LOQ | - | - |
Tributyltin | <LOQ | <LOQ | - | 0.0002 |
Trifluralin | <LOQ | <LOQ | - | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexa, E.T.; Bernal-Romero del Hombre Bueno, M.d.l.Á.; González, R.; Sánchez, A.V.; García, H.; Prats, D. Occurrence and Removal of Priority Substances and Contaminants of Emerging Concern at the WWTP of Benidorm (Spain). Water 2022, 14, 4129. https://doi.org/10.3390/w14244129
Alexa ET, Bernal-Romero del Hombre Bueno MdlÁ, González R, Sánchez AV, García H, Prats D. Occurrence and Removal of Priority Substances and Contaminants of Emerging Concern at the WWTP of Benidorm (Spain). Water. 2022; 14(24):4129. https://doi.org/10.3390/w14244129
Chicago/Turabian StyleAlexa, Edmond Tiberius, María de los Ángeles Bernal-Romero del Hombre Bueno, Raquel González, Antonio V. Sánchez, Héctor García, and Daniel Prats. 2022. "Occurrence and Removal of Priority Substances and Contaminants of Emerging Concern at the WWTP of Benidorm (Spain)" Water 14, no. 24: 4129. https://doi.org/10.3390/w14244129
APA StyleAlexa, E. T., Bernal-Romero del Hombre Bueno, M. d. l. Á., González, R., Sánchez, A. V., García, H., & Prats, D. (2022). Occurrence and Removal of Priority Substances and Contaminants of Emerging Concern at the WWTP of Benidorm (Spain). Water, 14(24), 4129. https://doi.org/10.3390/w14244129